The Physics of Massive Neutrinos

Joachim Kopp (CERN & JGU Mainz) Windows on the Universe • Quy Nhon • Vietnam • August 2023

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

Precision Neutrino Physics

Quarks

Leptons

Next-Generation Long-Baseline Experiments

Far Detectors (measure oscillations)

Near Detectors (measure unoscillated flux)

Neutrino source

Yes, But Why?

- Connection between leptonic CP violation and baryogenesis
- Portal to new physics
- Precise knowledge of particle physics is indispensable for using neutrinos as astrophysical messengers
- Hints for the origin of flavour
- Multi-purpose detectors with lots of secondary opportunities (supernova neutrinos, light dark sectors, proton decay, ...)

talk by Son Cao on Thursday

Image Credit: Callum Wilkinson

Image Credit: Callum Wilkinson

Image Credit: Callum Wilkinson

Image Credit: Callum Wilkinson

Image Credit: Callum Wilkinson

10

10

Mitigation of Systematic Uncertainties

Experimental Mitigation

Theory Needs

 better modelling of neutrino interactions
 new strategies for optimally exploiting near detector data (e.g. DUNE-PRISM)

11

solar neutrinos
* stellar evolution

solar neutrinos ★ stellar evolution supernova neutrinos ★ death throes of massive stars ★ nucleosynthesis ★ matter under extreme conditions

solar neutrinos ★ stellar evolution

high-E neutrinos ★ origin of cosmic rays ★ AGNs, blazars, MW

supernova neutrinos ★ death throes of massive stars ★ nucleosynthesis ★ matter under extreme conditions

solar neutrinos ★ stellar evolution

high-E neutrinos ★ origin of cosmic rays ★ AGNs, blazars, MW

cosmology early Universe \star

supernova neutrinos ★ death throes of massive stars ★ nucleosynthesis ★ matter under extreme conditions

solar neutrinos ★ stellar evolution

high-E neutrinos ★ origin of cosmic rays ★ AGNs, blazars, MW

cosmology early Universe \star

supernova neutrinos ★ death throes of massive stars ★ nucleosynthesis ★ matter under extreme conditions

talks by Aya Ishihara and **Yvonne Wong**

solar neutrinos ★ stellar evolution

high-E neutrinos ★ origin of cosmic rays ★ AGNs, blazars, MW

cosmology ★ early Universe

supernova neutrinos ★ death throes of massive stars ★ nucleosynthesis ★ matter under extreme conditions

neutron stars common-envelope systems muon decays (mb bonus slides)

Common-Envelope Evolution

- □ neutron star enters companion star
- □ gigantic accretion rates (up to 0.1 M_{\odot} /yr for several months)
- only cooling channel is via neutrinos
 new type of neutrino source
- □ in addition: de-protonization
- □ rate < core collapse SN rate

Beacom Esteban JK in preparation

Common-Envelope Evolution

neutron star enters companion star

gigantic accretion rates (up to 0.1 M_{\odot} /yr for several months)

- only cooling channel is via neutrinos here new type of neutrino source
- □ in addition: de-protonization
- □ rate < core collapse SN rate

Beacom Esteban JK in preparation

Common-Envelope Evolution

 3σ sensitivity (Normal Ordering)

- □ neutron star enters companion star
- □ gigantic accretion rates (up to 0.1 M_{\odot} /yr for several months)
- only cooling channel is via neutrinos
 new type of neutrino source
- □ in addition: de-protonization
- □ rate < core collapse SN rate

Beacom Esteban JK in preparation

Neutrino Physics Beyond the Standard Model

15

Neutrino Physics Beyond the Standard Model

e.g. sterile neutrinos

e.g. non-standard interactions

15

Sterile Neutrinos

□ Very generic extension of SM

- leftovers of extended gauge multiplets?
- □ Useful phenomenological tool
 - o v masses
 - (seesaw mechanism, $m \sim TeV...M_{Pl}$)
 - cosmic baryon asymmetry (thermal leptogenesis at $m \gg 100$ GeV, ARS leptogenesis at m<100 GeV)
 - dark matter (m ~ keV)
 - mediator to a dark sector (any mass)

17

4.8 σ excess of v_e in a v_μ beam

17

□ baseline too short for std. oscillations

□ but could be explained by eV-scale sterile neutrino

 $\Box \sim \text{consistent with}$ other anomalies talk by Mikhail Danilov

□ but inconsistent with null searches

MicroBooNE

□ LAr TPC → superior event reconstruction

no excess seen so far

(but still consistent with MiniBooNE)

$\Delta \rightarrow N \gamma$ **Background**

- NC interaction: $v + N \rightarrow v + \Delta(1232)$
- \Box Most $\Delta(1232)$ decay to π + N
- But rare decay exists to $\gamma + N$
- MiniBooNE cannot distinguish single-y background from CC v_e signal

21

$\Delta \rightarrow N \gamma$ **Background**

- $\Box \Delta$ production rate can be estimated from $\Delta \rightarrow \pi N$
- Pions may be absorbed on their way out of the nucleus
 - O may excite another $\Delta(1232)$ $\rightarrow \gamma N$ enhanced
 - O or may be absorbed control region suppressed

Ioannisian <u>1909.08571</u> Giunti Ioannisian Ranucci 1912.01524

(These effects have been taken into account by MiniBooNE)

MiniBooNe, <u>arXiv:2006.16883</u>

Neutrinos as a Nuisance

Neutrinos have become a major background to **Direct Dark Matter** searches Collider searches for dark matter new physics searches in beam dump experiments

Example: Neutrino Magnetic Moments

In the SM: generated at 1-loop

tiny in the SM (< $10^{-19} \mu_B$), but possibly much larger in BSM

Couples LH and RH neutrinos

electromagnetic field strength tensor

Example: Neutrino Magnetic Moments

$$\mathcal{L} \supset \frac{1}{2} \mu_{\nu}^{\alpha\beta} \, \bar{\nu}_{L}^{\alpha} \sigma^{\mu\nu} \nu_{R}^{\beta} F_{\mu\nu}$$

In the SM: generated at 1-loop

tiny in the SM (< $10^{-19} \ \mu_{B}$), but possibly much larger in BSM

Coloma Machado Martinez-Soler Shoemaker <u>1707.08573</u>, Magill Plestid Pospelov Tsai <u>1803.03262</u> Shoemaker Wyenberg <u>1811.12435</u>, Brdar Greljo JK Opferkuch <u>arXiv:2007.15563</u>, Greljo Stangl Thomsen <u>2103.13991</u>

Shoemaker Wyenberg 1811.12435, Brdar Greljo JK Opferkuch arXiv:2007.15563, Greljo Stangl Thomsen 2103.13991

Thank You!

JGU

N. 1

Bonus Slides

Neutrinos from Neutron Stars

thermal flux from "Urca" processes low energy undetectable after ~10 sec

Neutrinos from Neutron Stars

thermal flux
from "Urca" processes
low energy
undetectable after ~10 sec

neutron stars evolve:
spin-down / spin-up
accretion
expulsion of *B*-fields
tidal deformation

Result: enhanced out-ofequilibrium Urca processes extra neutrinos

JK Opferkuch in preparation

Muons in Neutron Stars

Muons in Neutron Stars

Neutrino **PLATFORM**

in the core: µ decay Pauli-blocked drop in core density may reduce equilibrium μ abundance at $t \ge 10^4$ yrs, Urca interactions too slow to maintain equilibrium muons diffuse outward and decay neutrinos! observable signal requires

 $\mathcal{O}(0.001)$ change in μ abundance

major caveat

equilibrium μ abundance typically increases over time

