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Outline
I. Background 

i. High-redshift universe

ii. Global 21-cm Experiments

● Conventional Total-power Experiments

● EDGES & SARAS Results

iii. Experimental Challenges

II.SAFARI – Scaled Antennas & Differential Measurement 
Approach

i. General Concept & Formalism

ii. Experiment design and Observation strategy
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Credit: NAOJ

Early Universe (~400,000 years a;er the Big Bang)

Credit: Planck Collabora�on (2016)

CMB (z ~ 1,100)
Gunn-Pe erson Troughs 

EoR ends (z ~ 6-10)

Credit: Fan et al. (2006)Credit: Naidu et al. (2022)
SDSS (Red = quasars, 
yellow = galaxies)

Credit: Anand Raichoor 

JWST (z ~ 12)

GLASS-z12

Galaxy
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Neutral Hydrogen Spin-?ip 21-cm Probe

● No observable bright sources
● Abundance of neutral hydrogen in 

the early time

Credit: NAOJ

Unobserved

Hydrogen 

21-cm probe



 5

Ioniza�on history 
(Neutral Hydrogen density)

Both are func�on of 

redshi  z Thermal history 
(Spin temperature)

Wouthuysen-Field 
Effect
Couple 21-cm photons 
to Ly-alpha

Loeb (2006)

Credit: Burns et al. (2018), ASR 49:433-450

First galaxies

First BHs hea5ng

Reioniza5on

stars

stars

CMB 

Pritchard  & Loeb (2010)

spa�ally averaged

Radio freq.
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Approach 1: Interferometric EoR 21-cm Experiments

21cmFAST simula5on
Credit: Mesinger et al. (2011)

Power spectrum of 
spatial fluctuations

Spatial fluctuations 
of 21-cm emission

HERA (USA/SA)

LOFAR (NL)

PAPER (USA/SA)

MWA (AUS)SKA-low (AUS)
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Credit: Burns et al. (2017), ApJ

Approach 2: Spa�ally Averaged (Global) 21-cm Measurement  (This talk)

Rationale
● Foreground: spectrally smooth (~ power law with spectral index -β)

→Get global 21-cm background by subtracting power law

Ionosphere

No spatial 
information

Radio Frequency 
Interference

Instrumental Systematics

Milky Way
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Single element

Conven�onal Global 21-cm Experiment Examples

Compact Array

LOCOS/LOFAR 

(NL)

LEDA/LWA (USA)

BIGHORNS (AU)

EDGES II (USA)

PRIZM (Marion Isl./SA) SARAS 3 (India)

REACH (UK)

Try to achieve spectrally smooth antenna response 
over a broad range range (somewhere within 40-200MHz)

“Spectral = frequency-dependent”
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LuSEE-Night

Space & Lunar-based Global 21-cm Experiments

FARSIDE

 arXiv:2103.08623 

Lunar surface (farside)

● Radio quiet on lunar farside
● Free from ionosphere
● Logistically challenged

Bassett + (2020), ASR 66

30 kHz
RFI sim

Earth

DARE Burns + (2017), ApJ, 844:33

Lunar orbit (farside)

PRATUSH
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EDGES low band (Western Australia)

Antenna 

Observation does not match theory 

(Amplitude & Shape)

Possible explanations:
● Instrument systematics
● Foreground fitting error
● Exotic dark matter physics
● Potential excess radio 

synchrotron background

(Mirocha+ 2019, MNRAS 483 )

Bowman+ 2018, Nature

First Detection?

(2021)
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Challenge #1 Foreground Removal

de Oliveira-Costa+ 2008, MNRAS 388

GSM 2008 model

Spatially dependent

Foreground Spectral Index (β)

Foreground

Background

- Incomplete absolute maps 

- High dynamic range (4-6 orders 

of 21-cm signal)

Dowell+ 2017, MNRAS 469

Milky Way @ 408 MHz
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Challenge #2 Chromatic Antenna Response

Typical broadband dipole antenna beam

H-plane

E-plane
Added 

structures

Observed foreground spectrum being distorted
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Our approach: SAFARI
Scaled Antennas For Ascertaining the Radio Index

1) Uncertain absolute foreground → Differential measurement
→ Can the FG’s spectral index be constrained differentially?
→ How does that help to constrain potential cosmological 21-cm 
signal?

2) Chromatic broadband antenna beam → Scaled antennas
→ Can identical performance be achieved between two 
frequencies? 
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● If no background signal, β = flat (dashed)
● Change in β = deviation from power law FG 

→ Proxy for background 21-cm signal

Derived Spectral Index  
(differential measuring the i-th adjacent freq pair):

Spectral index β as proxy

FG scaled with β = 2.5

Global 21-cm derivative

Weak 21-cm signal not 

visible

Derived spectral index

ν_Hi
ν_Lo

March freq

EDGES’s level Simulation settings:
- Scaled Haslam sky map (408 MHz) with a 

power law (spectral index = -2.5)

- Add different underlying background signal 
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Broadband vs scaled narrow band (Beam)

  (a) (b)(c) (d)

Dipole Blade

Monocone

Corner 
reflectorFlat Ant 

Response?

● Dipole, blade (Mozden+ 2016), & 
monocone (Raghunathan+ 2021) with 
infinite ground plane simulation boundary 
condition
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Broadband vs scaled narrow band (Beam)

● Dipole, blade (Mozden+ 2016), & 
monocone (Raghunathan+ 2021) with 
infinite ground plane simulation boundary 
condition

Radiated power:

Radiation intensity
~ Farfield beam

Nhan & Bradley (In Prep)

Antenna
@ Center Freq

@ Center Freq

Spatial Integral

Freq. Derivative

  (a) (b)(c) (d)

Dipole Blade

Monocone

Corner 
reflectorFlat Ant 

Response?
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Corner 
reflector

Soil slab

Dipole 
antenna

Scaled antennas – Antenna design selection

Criteria:
● High gain → narrow beam
● Narrow band
● Simple for scaling
● Low interaction with surrounding

Scaled every components respect to 

wavelength λ (practicality challenge): 
● Dipole arm length & diameter
● Dipole height
● Reflector panel size
● Etc.

@ 110 MHz: reflector ~ 11.4 m x 7.6 m
Other studied designs: simple dipole & Yagi
Not meeting the requirements
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Chosen Antenna Design – Dipole with corner reflector

Constant antenna quality (Q-) factor

(E-plane) (H-plane)

Scaled 
beams are 
overlapped

Nhan & Bradley (In Prep)

Spatial Integral

Freq. Derivative
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Scaled corner reflector

Corner Reflector
55 MHz ver.

9 m

4 m

1.8 m

9 m

6 m

2 m
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Antenna deployment configuration

Randomized layout to 
minimize systematics

Nhan & Bradley (In Prep)

Independent & self-contained systems

Low-noise amplifier

Bandpass filter

Analog-to-Digital
B>10 λ

A0
,

B '>10 λ
A0

Antenna-0
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Derived Spectral Index  (for i-th adjacent freq pair):

Practical Antenna Scaling

FG scaled with β = 2.5

Global 21-cm derivative

Weak 21-cm signal not 

visible

Derived spectral index

Nhan & Bradley (In Prep)

Scaling the antennas ~ every 10 MHz
→ Enough resolution for the change in spectral index

Scaling the antennas components (e.g., dipole diameter, 
reflector panel sizes) 

Goals: Detection & isolation 
(not characterization yet)

Adaptive antenna design allows us to scale up & 
down the band with the same beam
(Since we don’t know where the signal actually is)
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Prototype and Deployment Phases
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Conclusion
● Observation of the Dark Age and Cosmic Dawn using 21-cm neutral hydrogen signal is 

challenging due to:

– Uncertain bright foreground synchrotron emission

– Need to characterize high precision antenna response 

– Any instrumental systematic can distort the weak 21-cm signal of interest

● EDGES, SARAS, and other ground-based global 21-cm experiments are working on verifying 

the report 78-MHz absorption feature

– A new measurement approach is imperative to isolate different types of systematics

● SAFARI will provide:

– Differential measurement of the foreground spectral index as a sensitive proxy for the weak global 

21-cm background signal without the need of complete knowledge of the foreground emission 

– A pathway to achieve spectrally flat antenna response by scaling narrow-band antennas 

electromagnetically

● An adaptive scheme that can scale the antennas up and down the frequency range to search for the unknown global 

21-cm signal
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