SAFARI: A differential approach to probe the cosmological sky-averaged 21-cm signal

30th Anniversary of the Recontres du Vietnam Windows on the Universe Astro/Cosmo Plenary Session #1 07 Aug 2023

Bang D. Nhan

Jansky Postdoc Fellow National Radio Astronomy Observatory (NRAO) Central Development Lab (CDL) Charlottesville, Virginia, USA <u>Email</u>: bnhan@nrao.edu In collaboration with Dr. **Richard F. Bradley** (NRAO/CDL)

Outline

I. Background

- i. High-redshift universe
- ii. Global 21-cm Experiments
 - Conventional Total-power Experiments
 - EDGES & SARAS Results

iii. Experimental Challenges

II. SAFARI – Scaled Antennas & Differential Measurement Approach

- i. General Concept & Formalism
- ii. Experiment design and Observation strategy

Early Universe (~400,000 years after the Big Bang)

Neutral Hydrogen Spin-flip 21-cm Probe

- No observable bright sources
- Abundance of neutral hydrogen in the early time

Approach 1: Interferometric EoR 21-cm Experiments

z=10.0 103 (mK^2) 10 $\Delta^{2}_{21}(k)$ PT2 0.1 0.01 0.1 k (Mpc⁻¹) OmK **Spatial fluctuations** Power spectrum of of 21-cm emission spatial fluctuations LOFAR (NL)

21cmFAST simulation <u>Credit</u>: Mesinger et al. (2011)

SKA-low (AUS)

Approach 2: Spatially Averaged (Global) 21-cm Measurement (This talk)

Rationale

• Foreground: spectrally smooth (~ power law with spectral index - β) \rightarrow Get global 21-cm background by subtracting power law

Conventional Global 21-cm Experiment Examples Single element

Compact Array

Try to achieve spectrally smooth antenna response over a broad range range (somewhere within 40-200MHz) "Spectral = frequency-dependent"

Space & Lunar-based Global 21-cm Experiments

Bassett + (2020), ASR 66

- Radio quiet on lunar farside
- Free from ionosphere
- Logistically challenged

Lunar orbit (farside)

Lunar surface (farside)

EDGES low band (Western Australia)

Observation does not match theory (Amplitude & Shape)

Possible explanations:

- Instrument systematics
- Foreground fitting error
- Exotic dark matter physics
- Potential excess radio synchrotron background

On the detection of a cosmic dawn signal in the radio background (2021)

Saurabh Singh[®]^{1,2,3}, Jishnu Nambissan T.^{1,4}, Ravi Subrahmanyan[®]^{1,5}, N. Udaya Shankar¹, B. S. Girish[®]¹, A. Raghunathan[®]¹, R. Somashekar[®]¹, K. S. Srivani[®]¹ and Mayuri Sathyanarayana Rao[®]¹

hyperfine spin levels in neutral hydrogen atoms. We report a radiometer measurement of the spectrum of the radio sky in the 55-85 MHz band, which shows that the profile found by Bowman et al. in data taken with the Experiment to Detect the Global Epoch of Reionization Signature (EDGES) low-band instrument is not of astrophysical origin; their best-fitting profile is rejected with 95.3% confidence. The profile was interpreted to be a signature of the cosmic dawn; however, its amplitude was substantially higher than that predicted by standard cosmological models. Our non-detection bears out earlier concerns and suggests

ARTICLES

Check for update

ttps://doi.org/10.1038/s41550-022-01610-

Challenge #1 Foreground Removal

Incomplete absolute maps
High dynamic range (4-6 orders of 21-cm signal)

de Oliveira-Costa+ 2008, MNRAS 388

Challenge #2 Chromatic Antenna Response

Typical broadband dipole antenna beam

Observed foreground spectrum being distorted

Our approach: SAFARI Scaled Antennas For Ascertaining the Radio Index

1) Uncertain absolute foreground → Differential measurement
 → Can the FG's spectral index be constrained differentially?
 → How does that help to constrain potential cosmological 21-cm signal?

2) Chromatic broadband antenna beam → Scaled antennas
 → Can identical performance be achieved between two frequencies?

Spectral index β as proxy

Simulation settings:

Scaled Haslam sky map (408 MHz) with a power law (spectral index = -2.5)
Add different underlying background signal

Derived Spectral Index

(differential measuring the *i*-th adjacent freq pair):

$$\beta_{obs}^{i} = -\frac{\log[T(\nu_{Hi})/T(\nu_{Lo})]_{i}}{\log(\nu_{Hi}/\nu_{Lo})_{i}}$$

- If no background signal, β = flat (dashed)
- Change in β = deviation from power law FG

 → Proxy for background 21-cm signal

Broadband vs scaled narrow band (Beam)

 Dipole, blade (Mozden+ 2016), & monocone (Raghunathan+ 2021) with infinite ground plane simulation boundary condition

Broadband vs scaled narrow band (Beam)

 Dipole, blade (Mozden+ 2016), & monocone (Raghunathan+ 2021) with infinite ground plane simulation boundary condition

Radiated power:

$$P_{\rm rad}(\nu) = \iint_{\Omega} U(\nu, \theta, \phi) \, d\Omega.$$

Radiation intensity
~ Farfield beam

Nhan & Bradley (In Prep)

Scaled antennas – Antenna design selection

Criteria:

- High gain \rightarrow narrow beam
- Narrow band
- Simple for scaling
- Low interaction with surrounding

Scaled every components respect to wavelength λ (practicality challenge):

- Dipole arm length & diameter
- Dipole height
- Reflector panel size
- Etc.

Other studied designs: simple dipole & Yagi Not meeting the requirements

@ 110 MHz: reflector ~ 11.4 m x 7.6 m

Chosen Antenna Design – Dipole with corner reflector

Nhan & Bradley (In Prep)

Scaled corner reflector

Antenna deployment configuration

Randomized layout to minimize systematics

Independent & self-contained systems

Low-noise amplifier

Bandpass filter

Analog-to-Digital

Practical Antenna Scaling

Scaling the antennas components (e.g., dipole diameter, reflector panel sizes)

Derived Spectral Index (for *i*-th adjacent freq pair):

$$\beta_{obs}^{i} = -\frac{\log[T(v_{Hi})/T(v_{Lo})]_{i}}{\log(v_{Hi}/v_{Lo})_{i}}$$

Scaling the antennas ~ every **10 MHz** \rightarrow Enough resolution for the change in spectral index

> Goals: Detection & isolation (not characterization yet)

Adaptive antenna design allows us to scale up & down the band with the same beam (Since we don't know where the signal actually is)

Prototype and Deployment Phases

Conclusion

- Observation of the Dark Age and Cosmic Dawn using 21-cm neutral hydrogen signal is challenging due to:
 - Uncertain bright foreground synchrotron emission
 - Need to characterize high precision antenna response
 - Any instrumental systematic can distort the weak 21-cm signal of interest
- EDGES, SARAS, and other ground-based global 21-cm experiments are working on verifying the report 78-MHz absorption feature
 - A new measurement approach is imperative to isolate different types of systematics
- SAFARI will provide:
 - Differential measurement of the foreground spectral index as a sensitive proxy for the weak global
 21-cm background signal without the need of complete knowledge of the foreground emission
 - A pathway to achieve **spectrally flat antenna response** by **scaling narrow-band antennas** electromagnetically
 - An adaptive scheme that can scale the antennas up and down the frequency range to search for the unknown global 21-cm signal