Stringent constraint on CPT violation with the synergy of T2K-II, NOvA extension, and JUNO

Based on our recent works arXiv:2210.13044 (accepted to publish on PRD)

in collaboration w/ T. V. Ngoc, N. T. H. Van, and P.T. Quyen

2023 Jan. 8, "Theory Meeting Experiment", ICISE, Quy Nhon

Son Cao, IFIRSE

Outline

- Progress in neutrino study (from neutrino oscillation)
- CPT in neutrino oscillation: recent investigation
- CPT sensitivity with T2K-II, NOvA extension, and JUNO
- Summary

Adapted "The Growing Excitement of Neutrino Physics " by APS

- ★ 1930: On-paper appearance as "desperate" remedy by W. Pauli
- \star 1956: Anti-v_e first experimentally discovered by Reines & Cowan
- \star 1962: v_{μ} existence confirmed by Lederman *et al*
- 1986: Existence of v_{τ} was established \star
- \star 1998: Atmospheric v oscillations discovered by Super-K
- \star 2001: Solar v oscillations detected by SNO (KamLAND 2002)
- ★ 2011: $v_{\mu} \rightarrow v_{\tau}$ transitions observed by OPERA
- ★ 2011-13: $v_{\mu} \rightarrow v_{e}$ observed by T2K and anti- $v_{e} \rightarrow anti-v_{e}$ by Daya Bay
- \star 2015: Nobel prize for v oscillations, Breakthrough prize (2016)
- ★ 2018: T2K hints on leptonic CP violation

1930	~25 vears	1956	1962	1964
Pauli predicts the Neutrino	Fermi's theory of weak interactions	Reines & Cowan discover (anti)neutrino	muon neutrinos discovery	Solar neutrino anomaly

More detail: https://neutrino-history.in2p3.fr/neutrinos-milestones-and-historical-events/

T2K hints on leptonic CP violation IceCUBE observes extragalactic v Nobel prize & Breakthrough prize for v oscillation T2K observe v_e appeared from v_{μ} **Daya Bay observe anti-***v***e disappeared** K2K confirm atmospheric v oscillation KamLAND confirms solar v oscillation Nobel prize for v astrophysics SNO observe solar v oscillation to active flavor Super-K confirms solar v deficit and images the sun Super-K observes v oscillation **Nobel Prize for** *v* **discovery** SAGE/<u>Gallex</u> observe the solar v deficit LEP shows 3 active flavors Kamioka-II confirms solar deficit Nobel Prize for neutrino beam & v_{μ} discovery

Supernova neutrino observed

1980

1998

2018

Here, there, every where...tiny, elusive but mighty

- 340 neutrinos/cm³, the s particles, (the mo

particles, (the most abundant massive particles)

Significant progress from a century of neutrino study, but...

Still, neutrino is the most mysterious particles

Three known unknown in the particle physics (*at observable level*) and all relates to Neutrino

Neutrino mass spectrum (both absolute scale and mass ordering)

• CP-violation phase in the leptonic mixing matrix

• Whether the leptonic mixing angle θ_{23} maximal or not

Neutrinos are "special" particles and they may break the fundamental rules (quantum mechanics, relativity, non-standard interaction ...).

Neutrino oscillations: A game-changer

Takaaki Kajita and Arthur B. McDonald

"for the discovery of neutrino oscillations, which shows that neutrinos have mass'

...for the discovery of neutrino oscillations, which shows that neutrinos have mass"

Nobelprize.org

Neutrino oscillations in briefing

Neutrino can be detected with different flavors than the original one when give it time to propagate

- Neutrino oscillations require an existence of neutrino **mass spectrum**, i.e mass eigenstate v_i with definite mass m_i (where *i* is 1, 2, 3^{*} at least)
- It requires flavor eigenstate with definite flavor, v_{α} (where α is e, μ , τ) must be superpositions of the mass eigenstates, a fundamental quantum mechanic phenomenon

*It's still possible that there are more than 3 mass eigenstates **PMNS is shorted for Pontecorvo-Maki-Nakagawa-Sakata

Neutrino oscillation: charmed tool to sense the Elusive

By measuring the oscillation pattern/probability, it enables us to unravel the neutrino mass spectrum and determine the leptonic mixing matrix

PMNS leptonic mixing matrix

Unitarity & 3 ν mass eigenstates are assumed

$$U_{\text{PMNS}} = \begin{pmatrix} c_{12}c_{13} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{CP}} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{CP}} \end{pmatrix}$$

- U_{PMNS} is 3x3 unitary matrix and parameterized with 3 mixing angles (θ_{12} , θ_{13} , θ_{23}) and one irreducible Dirac CP-violation phase (δ_{CP}), similar to CKM matrix of quark mixing
- If neutrino is Majorana particle, there are two additional **CP-violation phases** (ρ_1 , ρ_2), which play no role in neutrino oscillations

Neutrino oscillation measurement can't tell whether neutrino is Dirac or Majorana particle. Unitarity of mixing matrix must be tested

Present landscape of neutrino mass fr. Neutrino Oscillation Exp.

The situation is not much different.

The mass of neutrinos is much smaller than that of other charged fermions, and their spectra show no "familiar" pattern.

Present landscape of leptonic mixing parameters

*Dot area is proportional to the matrix element amplitude

JHEP 09 (2020) 178

Global neutrino exp. fit

MINOS, T2K, NOvA; Daya Bay, RENO, Double Chooz, KamLAND; SNO, Borexino; IceCube, Super-K

What's behind the *difference* in the mixing patterns of quark and lepton is unknown and must be understood

The latest update at NEUTRINO 2022 https://neutrino2022.org The situation is not much different.

CPT in neutrino oscillation

CPT in Neutrino Oscillation

If CPT invariance is hold

If CPT invariance is violated

 $m_i \neq \overline{m}_i$

(Different mass spectra)

 $(\nu_{\alpha} \rightarrow \nu_{\beta}) \xrightarrow{\operatorname{CPT}} (\overline{\nu}_{\beta} \rightarrow \overline{\nu}_{\alpha})$

 $P(\nu_{\alpha} \to \nu_{\beta}) = P(\overline{\nu}_{\beta} \to \overline{\nu}_{\alpha})$

 $P(\nu_{\alpha} \rightarrow \nu_{\alpha}) \neq P(\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\alpha})$ $U_{\alpha i} \neq U_{\alpha i}$ (Different mixing matrix)

Neutrino and anti-neutrino oscillations

Assume CPT this changes to (—) invariance

CPT invariance is built in the Standard Neutrino Model. CPT violation, if discovered, is revolutionary!

Early work: LSND anomaly and CPT-violation suggested

H. Murayama, PhysLett.B. 520 (2001) 263-268

*Later measurement of KamLAND with reactor antineutrinos shows that the anti-neutrinos mass spectrum here is not supported although the LSND anomaly (also MiniBooNE anomaly) is still unsolved.

Empirical approach to test CPT

If CPT invariance is violated

 $P(\nu_{\alpha} \rightarrow \nu_{\alpha}) \neq P(\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\alpha})$

 $f(\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}, \Delta m_{21}^2, \Delta m_{31}^2)$

- Some challenges in measuring precisely the neutrino/antineutrino parameters
 - Statistics is low due to weak interaction of neutrinos; understanding (natural/man-made) neutrino source
 - Detector capability to detect all flavors and measure precisely neutrino energy • Parameter degeneracy presented in oscillation probability (*e.g different parameter sets give same*
 - probabilities)

 $f(\overline{\theta}_{12}, \overline{\theta}_{23}, \overline{\theta}_{13}, \overline{\delta}_{CP}, \Delta \overline{m}_{21}^2, \Delta \overline{m}_{31}^2)$

• We assume neutrino and antineutrino oscillations are governed by independent parameter sets

• Each measurement is sensitive to a subset of parameters, not all; few channels can be measured

Generations of Accelerator-based Long-baseline Exp.

- K2K confirmed the neutrino oscillations (pioneered by Super-K, SNO...)
- MINOS: measure precisely $\nu_{\mu} \rightarrow \nu_{\mu}$; indicated $\nu_{\mu} \rightarrow \nu_{e}$; 1st neutrino vs. anti-neutrino oscillations
- T2K make observation of $\nu_{\mu} \rightarrow \nu_{e}$; hint on CP violation; precision measurement w/ (anti-)neutrino
- NOvA provide evidence of $\overline{\nu}_{\mu} \to \overline{\nu}_{e}$; CP search; precision measurement
- Hyper-K/DUNE for definite answers for last 3 unknowns in neutrino oscillation and beyond

187 kton

Four main measurement channels

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) \sim 1 - \left(\cos^{4}\theta_{13} \cdot \sin^{2} 2\theta_{23} + \sin^{2} 2\theta_{13} \cdot \sin^{2} \theta_{23} \right) \cdot \sin^{2} \frac{\Delta m_{31}^{2} \cdot L}{4E}$ Leading-term Next-to-leading

*Focus on accelerator-based neutrino experiments

Magnetic horn system is essential

Flexibility to change the horn current -> capability to select the meson charge -> allow to produce highly pure of neutrino or antineutrino

Parameterize the CPT asymmetry

- Propagation of neutrino/antineutrino in matter of the Earth induces "extrinsic" CPT effect, but insignificant w/ experimental setup of T2K and NOvA
- This channel is governed mainly by 2 parameters $(\Delta m_{31}^2, \sin^2 \theta_{23})$; doesn't depend on the poorly-measured δ_{CP} phase

CPT constraints from neutrinos

G. Barenboim et al, JHEP 2020 (2020)

> at 3σ C.L. : $|\delta_{\nu\overline{\nu}}(\Delta m_{31}^2)| < 2.5 \times 10^{-4} \text{ eV}^2$ $|\delta_{\nu\nu}(\sin^2\theta_{23})| < 0.19$

Present global constraints on CPT

One of the best CPT constraints in neutral kaon system

$$\frac{m(K^{\circ}) - m(\overline{K}^{\circ})}{m_{K}} \bigg| < 6 \times 10^{-19} \text{ at } 90 \% \text{ C.}$$
$$|m^{2}(K^{\circ}) - m^{2}(\overline{K}^{\circ})| < 0.3 \text{ eV}^{2}.$$

Neutrino oscillation can provide the best constraints on CPT violation in term of the mass-squared difference.

CPT testing w/ accelerator-based long-baseline exp.

No hint for CPT violation. Precision test is dominatedly limited by statistics of anti-neutrino samples

Reactor-based experiments and JUNO

$$\overline{\theta}_{12}, \ \Delta \overline{m}_{32}^2, \ \Delta \overline{m}_{21}^2$$

KamLAND, Japan (now KamLAND-Zen)

- First oscillation pattern (as function of energy) w/ man-made source
- Precisely measure $\Delta \overline{m}_{21}^2$
- First investigation on geoneutrino

Prospects on CPT test w/ T2K-II, NOvA extension, and JUNO

- $\nu: \overline{\nu} \sim 1.2: 1.0)$
- $\nu: \overline{\nu} \sim 1.0: 1.0$
- JUNO: 6 years operation with 36 GW thermal reactor power

• T2K-II: T2K operation until 2027, collecting 10e21 Protons-on-target (POT) (collected 3.6e21 POT;

• NOvA extension or NOvA-II: NOvA operation until 2024, collecting 7.2e21 POT (collected 2.6e21 POT;

Sensitivity to CPT testing: Improvement w/joint analysis

- violation sensitivity in the mass-squared difference and in the in mixing angle

• It is expected that a combination of T2K-II and NOvA-II improves both the CPT-

• JUNO will help the sensitivity in the mass-squared difference but not in the mixing angle

Possibly established bounds on CPT violation

	3σ C. L. u	pper lin
Experiments	$ \delta_{ u\overline{ u}}(\Delta m_{31}^2) $	$ \delta_{ u\overline{ u}}(\mathbf{s}) $
T2K-II	$2.0 \times 10^{-4} \text{ eV}^2$	0
T2K-II+NO ν A-II	$1.2 \times 10^{-4} \text{ eV}^2$	0
T2K-II+NO ν A-II+JUNO	$5.3 \times 10^{-5} \mathrm{eV}^2$	C

Ref. DUNE $\delta_{\nu\bar{\nu}} (\Delta m_{31}^2) < 8.1 \times 10^{-5} \text{ eV}^2$ at 3σ C.L.

- If CPT is not violated, expect to establish unprecedented bounds
- JUNO will help the sensitivity in the mass-squared difference but not in the mixing angle

Significance of CPT exclusion: dependence and projection

• Dependence of $\delta_{\nu\bar{\nu}} \left(\Delta m_{31}^2\right)$ sensitivity on the true values of underlying parameters is small—the bound is robust against the parameter fluctuation

• If asymmetry in MINOS(+)/NOvA best fit is persisted, expect to have 4σ CPT exclusion

Significance of CPT exclusion: dependence and projection

- Dependence of $\delta_{\nu\bar{\nu}}(\sin^2_{23})$ sensitivity on the true values of mass-squared difference parameters is relatively small but significant on the mixing angles
- It is due to the octant degeneracy presented in the probabilities of muon (anti-)neutrino disappearance

n 2010- 1.500 0484 5	MINOS(+)	T2K	NOνA
$\sin^2 heta_{23}$	$0.43\substack{+0.20 \\ -0.04}$	$0.51\substack{+0.06 \\ -0.07}$	$\left 0.51^{+0.06}_{-0.06} ight $
$\sin^2\overline{ heta}_{23}$	$0.41\substack{+0.05 \\ -0.08}$	$0.43\substack{+0.21 \\ -0.05}$	$0.41^{+0.04}_{-0.03}$

• If asymmetry in T2K/NOvA best fit is persisted, expect to have 3σ or higher CPT exclusion

Summary

- After ~ a century of study, neutrino is still one of the most mysterious particles
- Neutrino oscillation is a charmed and powerful tool to unravel the neutrino unknown and sense the tiny non-standard effect (such as CPT)
- CPT invariance has been tested directly w/ MINOS, T2K, and NOvA. No signifiant deviation is observed
 - Statistic error in anti-neutrino data sample is the main
 - ...But already provided an encouraging upper limit on CPT in term of mass-squared difference
- More data with T2K-II, NOvA-II (by ~2027, start of Hyper-K/DUNE) and sub-percent precision measurements from JUNO will provide *unprecedented bounds on the CPT* if no violation is discovered...
 - ... or lead to 3σ significance to exclude CPT if present deviation in the T2K/NOvA/MINOS best fit persists

