Solar Atmospheric Neutrinos

Kenny, Chun Yu Ng (吳震宇) The Chinese University of Hong Kong

The Sun as a VHE source

Kenny, Chun Yu Ng (吳震宇) The Chinese University of Hong Kong

Press, Spergel (1985) Krauss, Freese, Press, Spergel (1985) Silk, Olive, Srednicki (1985)

Solar WIMP Search

- Best limit on SD cross sections
 - Hard Channels

- Both scattering and Annihilation!
- How far can neutrino telescopes reach?

Sun – Cosmic-Ray Beam Dump

Solar atmospheric neutrinos

- Dark Matter Physics
 - Same direction as WIMP neutrinos
 - Different spectrum (poor energy resolution for ν_{μ})
- Neutrino Physics
 - A guaranteed astrophysical neutrino source
- Cosmic-ray and Solar Physics
 - Cosmic ray in the inner solar system
 - Local environment of solar atmosphere

Solar Atmospheric Neutrinos

Dilute atmosphere, larger neutrino flux

Seckel+ 1991, Moskalenko+, 1993, Ingelman+ 1996, Hettlage+ 2000, Fogli+ 2003 C.A. Argüelles+ *1703.07798* Joakim Edsjo+ 1704.02892 Mazziotta+ 2001.09933

Meson decay in the Sun

- Density of solar atmosphere << Earth atmospheric
- Meson decay >> Meson interaction => + Neutrinos

Kenny C.Y. NG, TMEX2023

Solar Atmospheric Neutrinos

KCYN, Beacom, Peter, Rott 2017

Dilute atmosphere, larger neutrino flux

Seckel+ 1991, Moskalenko+, 1993, Ingelman+ 1996, Hettlage+ 2000, Fogli+ 2003 C.A. Argüelles+ *1703.07798* Joakim Edsjo+ 1704.02892

Solar Atmospheric Neutrinos

Gigaton Neutrino Detectors

IceCube 2013-Southpole

KM3NeT (building) Mediterranean

Background or Signal? (Both!)

Theorist Expectation

Solar ATM neutrino – indirect detection Neutrino Floor (Background)

No B-field effect are considered

IceCube Search ongoing [S. In & C. Rott ICRC17 (965)]

KCYN, Beacom, Peter, Rott, PRD 2017 See also Arguelles+ 1703.07798 Edsjo+ 1704.02892

IceCube Search (Signal)

IceCube Search update(ICRC2021)

Only a factor of 2 away!
+ Sun shadow (analysis)?
+ Magnetic fields (theory)?

Solar Atmospheric Gamma Rays

Seckel, Stanev, Gaisser (1991) Zhou, *KCYN*, Beacom, Peter PRD 2017

CR protons Hadronic

u[±]. n

e[±]

Seckel Stanev Gaisser 1991

Figure 1: Model of magnetic fields near the photosphere. Shading increases with magnetic field intensity.

- Follow the field line
- Gas-B-field pressure equilibrium
- Magnetic field gradient -> mirroring
- Trajectory -> interaction probability -> ~ 1%

Boost gamma-ray production

Solar atmospheric gamma rays

Zhou, KCYN, Beacom, Peter PRD 2017

100 % CR

Limb contribution

Theoretical Max from CR

Reality

- Solar B-field
- Solar Modulation

Seckel, Stanev, Gaisser (1991) ~ 1 %?

Kenny C.Y. NG, TMEX2023

anna a

Finding the Sun with Fermi

Tang, KCYN, Linden, Zhou, Beacom, Peter PRD 2018

Observation: 9-year averaged spectrum

- Aug 2008 Jan 2010 (solar min. 76 weeks)
- 2008 2017 (9 years)

Time variation

KCYN, Beacom, Peter, Rott PRD 2016

Tang, KCYN, Linden, Zhou, Beacom, Peter PRD 2018

- Clear anticorrelation with solar activity from 1-10 GeV
- Less clear in 10-100 GeV (less variation or insufficient statistics)

Tang, KCYN, Linden, Zhou, Beacom, Peter PRD 2018

Spectrum, surprise (2)

- Hard spectrum till ~100 GeV
 - Magnetic enhancement works for protons ~ TeV
 - Enhancement increasingly efficient! Close to upper bound at HE

=, SLACTER (4)

High Energy on

Linden, Zhou, Beacom, Peter, KCYN, Tang PRL 2018

Solar Gamma Spectrum

- Fermi data shows rich phenomenology
- The effect of magnetic fields is strong and not understood

The HAWC Observatory

Hao Zhou TeVPA2018 Los Alamos

ATIONAL LABORATOR

---- EST. 1943 -----

300 Water Cherenkov Detectors
22,000 m² detector area
Sub TeV - >100 TeV Sensitivity
Wide field of view: ~2 sr
High duty cycle: >95%

Main array inaugurated on March 20

Excellent detector for extended sources

HAWC analysis of the Sun (2014-2017)

1.36 TeV

1.36 TeV

- Constrain ~10% of CR upper boun
- Exciting prospect for current solar

The TeV Sun Rises:

Discovery of Gamma rays from the Quiescent Sun with HAWC

2212.00815 [HAWC + Beacom, Linden KCYN, Peter, Zhou]

- Taking into account the Sun shadow
- Top: raw data, mostly cosmic rays
- Bottom panel: after gamma/hadron separation

The TeV Sun Rises:

Discovery of Gamma rays from the Quiescent Sun with HAWC

2212.00815 HAWC + Beacom, Linden KCYN, Peter, Zhou

- Gamma/hadron separation map minus Expected shadow (data)
- 6.3 sigma detection

The TeV Sun Rises:

Discovery of Gamma rays from the Quiescent Sun with HAWC

2212.00815 HAWC + Beacom, Linden KCYN, Peter, Zhou

Spectral index change!

LHAASO

South-western China

4X HAWC

Simulating the Sun

- Mazziotta et al 2001.09933 (FLUKA)
- Li et al (+KCYN) 2009.03888 (Geant4)

PFSS: Potential Field source surface Model

https://nso.edu/data/nisp-data/pfss/

 Corona B-field not enough to affect gamma-ray above 100 GeV

Astrophysics > High Energy Astrophysical Phenomena

[Submitted on 27 Jan 2020 (v1), last revised 1 Oct 2020 (this version, v3)]

Cosmic-ray interactions with the Sun using the FLUKA code

M. N. Mazziotta, P. De La Torre Luque, L. Di Venere, A. Fassò, A. Ferrari, F. Loparco, P. R. Sala, D.Serini

Neutrinos

Summary

- Solar atmospheric neutrinos

 IceCube, KM3NeT (future)
- Gamma rays (Fermi + HAWC)
 - Not fully explained
 - Complete model necessary for accurate neutrino flux

• Anomalous Signals from the Sun -> New Physics!