Novel Applications of Primordial Black Holes

Michael J. Baker

19th Rencontres du Vietnam – TMEX 2023 07 January 2023

2105.10506, 2210.02805 - MJB, A. Thamm

Novel Applications of Primordial Black Holes

Michael J. Baker

19th Rencontres du Vietnam – TMEX 2023 07 January 2023

2105.10506, 2210.02805 - MJB, A. Thamm

Introduction

- Introduction
- Black Hole Evaporation

- Introduction
- Black Hole Evaporation
 - Standard Model

- Introduction
- Black Hole Evaporation
 - Standard Model
 - Beyond the Standard Model

- Introduction
- Black Hole Evaporation
 - Standard Model
 - Beyond the Standard Model
- Conclusions

Mass: Sun

Lifetime: 10^{67} years

Mass: Sun Moon

Lifetime: 10^{67} years

10⁴⁴ years

Lifetime:

 10^{67} years

10⁴⁴ years

13.8 Gyr

Lifetime:

1 s

13.8 Gyr

Primordial Black Holes

Primordial Black Holes

- Motivations
 - Remove unwanted monopoles or domain walls
 - Seeds for SMBHs or LSS
 - Dark matter?

Primordial Black Holes

- Motivations
 - Remove unwanted monopoles or domain walls
 - Seeds for SMBHs or LSS
 - Dark matter?
- Production mechanisms
 - Density perturbations generated during inflation
 - Topological defects
 - Scalar condensates
 - First order cosmological phase transition

HAWC Observatory

• So,

- So,
 - There could be black holes which are evaporating today

- So,
 - There could be black holes which are evaporating today
 - As the black hole shrinks, it heats up (finally reaching $T \sim M_{\rm Pl}$)

- So,
 - There could be black holes which are evaporating today
 - As the black hole shrinks, it heats up (finally reaching $T \sim M_{\rm Pl}$)
 - The black hole radiates all fundamental d.o.f. (SM and BSM) lighter than T

- So,
 - There could be black holes which are evaporating today
 - As the black hole shrinks, it heats up (finally reaching $T \sim M_{\rm Pl}$)
 - The black hole radiates all fundamental d.o.f. (SM and BSM) lighter than T
 - Experiments are currently looking for their final explosion

- So,
 - There could be black holes which are evaporating today
 - As the black hole shrinks, it heats up (finally reaching $T \sim M_{\rm Pl}$)
 - The black hole radiates all fundamental d.o.f. (SM and BSM) lighter than ${\it T}$
 - Experiments are currently looking for their final explosion

We ask the question:

- So,
 - There could be black holes which are evaporating today
 - As the black hole shrinks, it heats up (finally reaching $T \sim M_{\mathrm{Pl}}$)
 - The black hole radiates all fundamental d.o.f. (SM and BSM) lighter than T
 - Experiments are currently looking for their final explosion

- We ask the question:
 - What could we learn about BSM physics if an evaporating black hole were observed today?

- Introduction
- Black Hole Evaporation
 - Standard Model
 - Beyond the Standard Model
- Conclusions

Primary Particles and Mass Evolution

Primary Particles and Mass Evolution

$$\frac{d^2 N_{\rm p}^i}{dt dE} = \frac{n_{\rm dof}^i \Gamma^i(M, E)}{2\pi (e^{E/T} \pm 1)}$$

$$T = \frac{1}{8\pi \, GM}$$

Primary Particles and Mass Evolution

$$\frac{d^2 N_{\rm p}^i}{dt dE} = \frac{n_{\rm dof}^i \Gamma^i(M, E)}{2\pi (e^{E/T} \pm 1)}$$

$$T = \frac{1}{8\pi \, GM}$$

$$\frac{dM}{dt} = -\frac{\alpha(M)}{M^2}$$

$$\alpha(M) = M^2 \sum_{i} \int_{0}^{\infty} \frac{d^2 N_{\rm p}}{dt dE} (M, E) E dE$$

Primary Particles and Mass Evolution

$$\frac{dM}{dt} = -\frac{\alpha(M)}{M^2} \qquad \qquad \alpha(M) = M^2 \sum_{i} \int_{0}^{\infty} \frac{d^2 N_{\rm p}}{dt dE} (M, E) E dE$$

Primary Particles and Mass Evolution

$$\frac{dM}{dt} = -\frac{\alpha(M)}{M^2} \qquad \qquad \alpha(M) = M^2 \sum_{i} \int_{0}^{\infty} \frac{d^2 N_{\rm p}}{dt dE} (M, E) E dE$$

Secondary Photons

Secondary Photons

Secondary Photons

$$\frac{d^2 N_{\rm s}^{\gamma}}{dt dE} = \sum_{i} \int_{0}^{\infty} \frac{d^2 N_{\rm p}^{i}}{dt dE_{\rm p}} (M, E_{\rm p}) \frac{dN^{i \to \gamma}}{dE} (E_{\rm p}, E) dE_{\rm p}$$

Primary and Secondary Photon Spectra

Photon Spectra at HAWC

Photon Spectra at HAWC

- Introduction
- Black Hole Evaporation
 - Standard Model
 - Beyond the Standard Model
- Conclusions

Primary Particles and Mass Evolution Beyond the Standard Model

Primary Particles and Mass Evolution Beyond the Standard Model

Primary Particles and Mass Evolution Beyond the Standard Model

Photon Spectra at HAWC

18

Photon Spectra at HAWC

Dark Sector Exclusion Plot

If there are ~ 3000 EBHs pc⁻³ yr⁻¹, then 83% (1.4%) chance of at least one event closer than 0.05 (0.01) pc giving $\gtrsim 10$ (200) photons at HAWC in next 5 years

If there are ~ 3000 EBHs pc⁻³ yr⁻¹, then 83% (1.4%) chance of at least one event closer than 0.05 (0.01) pc giving $\gtrsim 10$ (200) photons at HAWC in next 5 years

Distance Scale	Limit	Method
Cosmological Scale	$< 10^{-6} \mathrm{pc^{-3} yr^{-1}}$	(1)
Galactic Scale	$< 0.42 \text{ pc}^{-3} \text{yr}^{-1}$	(2)
Kiloparsec Scale	$< 0.0012 \mathrm{pc^{-3}yr^{-1}}$	(3)
Parsec Scale	$< 4.6 \times 10^5 \text{ pc}^{-3} \text{yr}^{-1}$	(4)

If there are ~ 3000 EBHs pc⁻³ yr⁻¹, then 83% (1.4%) chance of at least one event closer than 0.05 (0.01) pc giving $\gtrsim 10$ (200) photons at HAWC in next 5 years

Distance Scale	Limit	Method	Caveats
Cosmological Scale	$< 10^{-6} \mathrm{pc^{-3} yr^{-1}}$	(1)	
Galactic Scale	$< 0.42 \ \mathrm{pc^{-3}yr^{-1}}$	(2)	
Kiloparsec Scale	$< 0.0012 \mathrm{pc^{-3} yr^{-1}}$	(3)	
Parsec Scale	$< 4.6 \times 10^5 \text{ pc}^{-3} \text{yr}^{-1}$	(4)	

If there are ~ 3000 EBHs pc⁻³ yr⁻¹, then 83% (1.4%) chance of at least one event closer than 0.05 (0.01) pc giving $\gtrsim 10$ (200) photons at HAWC in next 5 years

Distance Scale	Limit	Method	Caveats
Cosmological Scale	$< 10^{-6} \mathrm{pc^{-3} yr^{-1}}$	(1)	Clustering (e.g., by 7 orders of mag.), QCD, BSM
Galactic Scale	$< 0.42 \ \mathrm{pc^{-3}yr^{-1}}$	(2)	
Kiloparsec Scale	$< 0.0012 \mathrm{pc^{-3} yr^{-1}}$	(3)	
Parsec Scale	$< 4.6 \times 10^5 \text{ pc}^{-3} \text{yr}^{-1}$	(4)	

If there are ~ 3000 EBHs pc⁻³ yr⁻¹, then 83% (1.4%) chance of at least one event closer than 0.05 (0.01) pc giving $\gtrsim 10$ (200) photons at HAWC in next 5 years

Distance Scale	Limit	Method	Caveats
Cosmological Scale	$< 10^{-6} \mathrm{pc^{-3} yr^{-1}}$	(1)	Clustering (e.g., by 7 orders of mag.), QCD, BSM
Galactic Scale	$< 0.42 \ \mathrm{pc^{-3} yr^{-1}}$	(2)	QCD, BSM
Kiloparsec Scale	$< 0.0012 \mathrm{pc^{-3} yr^{-1}}$	(3)	
Parsec Scale	$< 4.6 \times 10^5 \text{ pc}^{-3} \text{yr}^{-1}$	(4)	

If there are ~ 3000 EBHs pc⁻³ yr⁻¹, then 83% (1.4%) chance of at least one event closer than 0.05 (0.01) pc giving $\gtrsim 10$ (200) photons at HAWC in next 5 years

Distance Scale	Limit	Method	Caveats
Cosmological Scale	$< 10^{-6} \mathrm{pc^{-3} yr^{-1}}$	(1)	Clustering (e.g., by 7 orders of mag.), QCD, BSM
Galactic Scale	$< 0.42 \ \mathrm{pc^{-3}yr^{-1}}$	(2)	QCD, BSM
Kiloparsec Scale	$< 0.0012 \mathrm{pc^{-3} yr^{-1}}$	(3)	QCD, production and propagation of antiprotons, BSM
Parsec Scale	$< 4.6 \times 10^5 \text{ pc}^{-3} \text{yr}^{-1}$	(4)	

- Introduction
- Black Hole Evaporation
 - Standard Model
 - Beyond the Standard Model
- Conclusions

• Evaporating Black Holes could potentially be observed in the near future

- Evaporating Black Holes could potentially be observed in the near future
- They would give us unprecedented information on BSM physics, and give definitive information on the particle spectrum of nature

- Evaporating Black Holes could potentially be observed in the near future
- They would give us unprecedented information on BSM physics, and give definitive information on the particle spectrum of nature
- More work to be done to see if it's reasonable to hope for an observation

- Evaporating Black Holes could potentially be observed in the near future
- They would give us unprecedented information on BSM physics, and give definitive information on the particle spectrum of nature
- More work to be done to see if it's reasonable to hope for an observation

Thank you!