

Overview of binary detections

Frédérique Marion

On behalf of the LIGO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration

Detectors and observing runs

Frequency [Hz]

Improved sensitivity and longer runs...

BNS range

 Typical detection reach for binary neutron star mergers with signal to noise ratio of 8

O3b

Network duty factor [1256655618-1269363618] Triple interferometer [51.0%] Double interferometer [34.3%] Single interferometer [11.2%] No interferometer [3.4%]

... provide more and more detections

- All detections so far are from compact binary coalescences
 - Other types of sources also searched by LIGO-Virgo-KAGRA
- Searches are done on two timescales
 - \succ Low latency \rightarrow public alerts
 - > Offline re-analysis of archival data
- Latest catalog of detections through O3 reported in GWTC-3 <u>arXiv 2111.03606</u>
- Bulk data released at <u>gravitational wave open</u> <u>science center</u>
 - > Additional candidates reported by external groups

Searches in a nutshell

- Searches use cleaned, calibrated data with data quality information
- Two types of searches used to search for signals from compact binary coalescences
 - Modeled searches several pipelines
 - Assume source is compact binary coalescence
 - Use matched filtering and banks of template waveforms with varying parameters to find signals in data
 - Masses, (anti-)aligned spins
 - Look for coincidences
 - One pipeline also considers single-detector candidates
 - Minimally modeled search
 - Search for generic, short transients
 - Identify coherent excess power in timefrequency representations of data

Estimating significance

- □ False alarm rate (FAR)
 - How often do we expect noise to produce a trigger with same or higher ranking statistic?
 - Does not take into account any astrophysical information
- Probability of astrophysical origin (p_{astro})
 - Assess significance by comparing foreground and background ranking statistic distributions, informed by estimated astrophysical rates

$$p_{
m astro} = p_{
m BNS} + p_{
m NSBH} + p_{
m BBH} = 1 - p_{
m terr}$$

Event validation to check for possible instrumental origin

OBSERVIN O1 2015 - 2016	G		02 2016 - 2017		-	à					03a+b 2019 - 2020	
36 31	23 14	14 7.7	31 20	11 7.6	50 34	35 24	31 25	1.5 1.3	35 27	40 29	88 22	25
63	36	21	49	18	80	56	53	≤ 2.8	60	65	105	4]
CW150914	GW151012	GW151226	GW170104	сwi70608	GW170729	CW170809	CW170814	cw170817	cw170818	CW170823	CW190403_051519	CW190408_
30 8.3	35 24	48 32	41 32	2 1.4	107 77	43 28	23 13	36 18	39 28	37 25	66 41	95
37	56	76	70	3.2	175	69	35	52	65	59	101	156
CW190412	CW190413_052954	CW190413_134308	CW190421_213856	cw190425	CW190426_190642	CW190503_185404	CW190512_180714	GW190513_205428	CW190514_065416	CW190517_055101	GW190519_153544	GW1905
42 33	37 23	69 48	57 36	35 24	54 41	67 38	12 8.4	18 13	37 21	13 7.8	12 6.4	38
71	56	111	87	56	90	99	19	30	55	20	17	64
CW190521_074359	CW190527_092055	CW190602_175927	CW190620_030421	CW190630_185205	CW190701_203306	CW190706_222641	сw190707_093326	CW190708_232457	CW190719_215514	GW190720_000836	GW190725_174728	CW190727_0
12 8.1	42 29	37 27	48 32	23 2.6	32 26	24 10	44 36	35 24	44 24	9.3 2.1	8.9 5	21
20	67	62	76	26	55	33	76	57	66	11	13	35
GW190728_064510	GW190731_140936	GW190803_022701	CW190805_211137	GW190814	CW190828_063405	CW190828_065509	GW190910_112807	GW190915_235702	CW190916_200658	CW190917_114630	GW190924_021846	CW190925_2
40 23	81 24	12 7.8	12 7.9	11 7.7	65 47	29 5.9	12 8.3	53 24	11 6.7	27 19	12 8.2	25
61	102	19	19	18	107	34	20	76	17	45	19	41
GW190926_050336	GW190929_012149	GW190930_133541	GW191103_012549	cw191105_143521	CW191109_010717	cw191113_071753	cw191126_115259	CW191127_050227	GW191129_134029	CW191204_110529	CW191204_171526	GW191215_2
12 7.7 19 GW191216 213338	31 1.2 32 GW191219 163120	45 35 76 GW191222_033537	49 37 82 GW191230 180458	9 1.9 11 GW200105_162426	36 28 61 CW200112_155838	5.9 1.4 7.2 GW200115_042309	42 33 71 GW2200128_022011	34 29 60 GW200129_065458	10 7.3 17 GW200202_154313	• • • • • • • • • • • • • • • • • • •	51 12 61 GW200208_222617	36 60 5W200209.0
24 2.8 27 GW200210.092254	51 0 78 CW200216_220804	• • 28 38 • 28 62 GW200219_094415	87 61 141 GW200220.061928	³⁹ 28 64 GW200220_124850	40 33 69 GW200224, 222234	19 14 32 GW200225.060421	• 20 38 20 56 CW200302_015811	28 15 42 GW200306_093714	36 14 47 GW200308_173609	34 28 59 CW200311_115853	13 7.8 20 cw200316_215756	• 34 • 53 CW200322
						F		The self	Bas IIII A	1		

ARC Centre of Excellence for Gravitational Wave Discover,

GRAVITATIONAL WAVE

SINCE 2015

~M OzGrav

91 candidates, including

- 10-15% contamination from noise
- 76 used in population studies

Science from:

- Remarkable, individual events
- Multi-messenger events
- Event populations

Source diversity

Source parameter estimation

- > Coherent analysis of signal measured by detector network
- Identify parameters best matching signal
 - Multidimensional parameter space
 - Some parameter degeneracies
 - Needs complete, reliable waveform models

Up to 19 parameters

- > Intrinsic
 - Masses (2)
 - Spins (6)
 - Deformability for neutron stars (2)
 - Eccentricity (2)
- > Extrinsic
 - Location : luminosity distance, right ascension, declination (3)
 - Orientation: inclination, polarization (2)
 - Time and phase at merger (2)
- Many binary black hole (BBH) mergers
 - Most with ~ equal masses
 - > Discovery signal GW150914 turned out to be quite typical
- 2 binary neutron star (BNS) mergers
- 2 neutron star black hole (NSBH) mergers

Signal basic features

Extrinsic parameters

 $h_{+,\times} \propto \frac{1}{D_L}$

Distance - inclination correlation

Sky localization from time of flight between detectors + relative amplitude and phase

Inspiral dynamics

$$\mathcal{M} = rac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

At leading order: driven by chirp mass

- \mathcal{M} precisely measured
- m_1 and m_2 correlated

At higher orders

- Mass ratio q
- Effective spin $\chi_{
 m eff}$
- q and $\chi_{
 m eff}$ correlated

$$q = m_2/m_1$$

$$\chi_{ ext{eff}} = rac{(m_1ec{\chi_1}+m_2ec{\chi_2})\cdot \hat{L}_{ ext{N}}}{M}$$

 $m_2^{
m source}({
m M}_{\odot})$

More signal structure: matter effects

GW170817

- Point-mass approximation in BNS or NSBH binaries breaks down before end of inspiral
- Neutron star tidal deformation from companion's gravitational field accelerates inspiral
 - > Depends on neutron star tidal deformability
 - Subtle effect, becomes significant above 600 Hz
 potentially measurable
- Upper limits on deformability constrain NS radii and equation of state

Metzger 2019

GW170817

1st binary neutron star merger

- Strong signal (signal-to-noise ratio 32)
- Well-localized source (2+1 detectors, 28 deg²)

With counterparts identified across EM spectrum

- Short Gamma-ray burst and afterglow + kilonova
- Structure of extreme matter in neutron stars
- Short Gamm-ray burst progenitor
- First confirmed kilonova observation
- Production of heavy elements in ejecta
- Gravitational waves propagate at the speed of light
- Hubble constant measurement

More signal structure: higher order modes

$$h_{+} - ih_{\times} = \sum_{l \ge 2} \sum_{m=-l}^{l} {}_{-2}Y_{lm}(\iota, \phi_c)h_{lm}$$

Dominant quadrupolar mode

 $l=2 m=\pm 2$

Higher-order modes significant

- For asymmetric systems
- For systems seen edge-on

More signal structure: precession

Orbital plane precession

- > If significant in-plane spin component
- Time varying inclination induces amplitude and phase modulation of signal
- Observable for edge-on binaries

- □ Few cycles observed, dominated by merger and ringdown
- □ Many interpretations of GW190521
 - Precessing, quasi-circular binary
 - Eccentric binary +/- precessing
 - > Dynamical capture of black holes
 - Merger of boson stars

GW190521 as the heaviest source to date

Merger rates

Detection

efficiency

Observed sample

Merger rates

 $\mathcal{R}_{BNS} = 13$ - 1900 Gpc⁻³yr⁻¹

 $\mathcal{R}_{\rm NSBH}=7.4$ - $320~{\rm Gpc}^{-3}{\rm yr}^{-1}$

$$\mathcal{R}_{\rm BBH} = 16 - 130 \ {\rm Gpc}^{-3} {\rm yr}^{-1}$$

Intrinsically rarer but dominate observed sample – louder sources detectable at larger distances Uncertainties: statistical + population mass distribution

BBH merger rate increases with redshift

Masses

 Heavy stellar-mass black holes, pointing to low-metallicity environments

- Steep drop-off in merger rate above neutron star-like masses
- Potential mass gap but may not be empty
 - > e.g., GW190814 has $m_2 = 2.59^{+0.08}_{-0.09} M_{\odot}$

Masses: neutron stars

- Broad mass distribution with more support for heavy NSs than Galactic population
- □ Gaussian Peak model does not recover sharp peak at 1.35 M_☉
- Power law model consistent with uniform distribution

Masses: black holes

Distribution has structure

- $\succ\,$ Overdensity at ~10 $M_{\odot}-$ contributes biggest fraction to merger rate
- > Overdensity at ~35 M_{\odot} contributes biggest fraction to observed mergers
- $\succ\,$ Tentative additional overdensity at ~18 M_{\odot}
- No evidence for an upper mass gap
 - $\succ~$ No sharp cutoff at ~50 M_{\odot}

Black hole spins

 χ_{eff} ~ average spin parallel to orbital axis χ_{p} ~ dominant spin perpendicular to orbital axis

 Spin magnitudes generally small but non-vanishing
 Significant support at χ_{eff} < 0
 Non-vanishing spin-tilt misalignment angles

BBH spin orientations probe binary formation

Isolated field binaries: preferentially aligned spins

Dynamical assembly in clusters: isotropically aligned spins

Further searches

Sub-solar mass binaries

- Targeting new physics
 - e.g., primordial black holes or black holes from collapse of dissipative dark matter
- No detection so far
- Intermediate mass black hole binaries
 - GW190521 only detection so far
- Gravitationally lensed merger signals
 - > Variety of expected lensing effects on merger signals
 - Amplification, multiple signals, signal distortion
 - > Unlikely with current detector reach, no detection so far
- Dedicated searches associated to GRBs
 - GW170817 only detection so far

10^{0} Unior JLA 10^{-1} fPBH 10^{-2}

 10^{0}

 $m(M_{\odot})$

 10^{-1}

 10^{2}

 10^{1}

Future prospects

Estimated yearly rate of public alerts

04	HKLV	$36\substack{+49 \\ -22}$	6^{+11}_{-5}	$260\substack{+330 \\ -150}$
05	HKLV	$180\substack{+220 \\ -100}$	31^{+42}_{-20}	870^{+1100}_{-480}
		BNS	NSBH	BBH

[Public alerts user guide]

More sensitive detectors for more science

Sensitivity

- More statistics to characterize source populations
- Higher signal-to-noise ratio for exceptional events

Bandwidth

- Low-frequency sensitivity
 - High-mass BBH mergers
 - More accurate parameter estimation
- > High-frequency sensitivity
 - Post-merger signal
 - Black hole spectroscopy

Network size and robustness

- > Duty cycle
- > 3-detector observations
 - Improved sky localization

Multi-messenger approach

- Low-latency alerts
 - Possibly early warning

Conclusion

- Observations with ever more sensitive detectors has brought tally of compact merger detections to 91 candidates
 - > A goldmine for fundamental physics, astrophysics, cosmology
 - Stay tuned to other talks in this session to hear more about the beautiful science they enable
- Exciting O4 run coming soon
 - > More statistics and more discoveries around the corner
 - Hopefully including more multi-messenger events