

Recent results from TALE and Telescope Array

Keitaro Fujita ICRR, University of Tokyo

Contents:

- 1. Introduction
- 2. Recent results

3. Recent progress of extension/expansion projects

Telescope Array: Largest cosmic ray observatory in northern hemisphere with Hybrid Detectors

Telescope Array Project - Black Rock Mesa

Located in Utah, USA, at altitude of 1400 m

Telescope Array collaboration

140 collaborators from 32 institutions in 7 countries

R.U. Abbasi¹, T. Abu-Zayyad^{1,2}, M. Allen², Y. Arai³, R. Arimura³, E. Barcikowski², J.W. Belz², D.R. Bergman², S.A. Blake², I. Buckland², B.G. Cheon⁴, M. Chikawa⁵, T. Fujii⁶, K. Fujisue⁵, K. Fujita³, R. Fujiwara³, M. Fukushima⁵, G. Furlich², N. Globus^{7*}, R. Gonzalez², W. Hanlon², N. Hayashida⁸, H. He⁷, K. Hibino⁸, R. Higuchi⁵, K. Honda⁹, D. Ikeda⁸, N. Inoue¹⁰, T. Ishii⁹, H. Ito⁷, D. Ivanov², H. Iwakura¹¹, A. Iwasaki³, H.M. Jeong¹², S. Jeong¹², C.C.H. Jui², K. Kadota¹³, F. Kakimoto⁸, O. Kalashev¹⁴, K. Kasahara¹⁵, S. Kasami¹⁶, S. Kawakami³, K. Kawata⁵, I. Kharuk¹⁴, E. Kido⁷, H.B. Kim⁴, J.H. Kim^{2†}, J.H. Kim², S.W. Kim¹², Y. Kimura³, I. Komae³, Y. Kubota¹¹, V. Kuzmin^{14⁴}, M. Kuznetsov^{14,17}, Y.J. Kwon¹⁸, K.H. Lee¹², B. Lubsandorzhiev¹⁴, J.P. Lundquist^{2,19}, H. Matsumiya³, T. Matsuyama³, J.N. Matthews², R. Mayta³, I. Myers², S. Ogio⁵, M. Ohnishi⁵, H. Ohoka⁵, Y. Oku¹⁶, T. Okuda²¹, Y. Omura³, M. Ono⁷, A. Oshima²², S. Ozawa²³, I.H. Park¹², M. Potts^{2⁸}, M.S. Pshirkov^{14,24}, J. Remington², D.C. Rodriguez², C. Rott^{2,12}, G.I. Rubtsov¹⁴, D. Ryu²⁵, H. Sagawa⁵, N. Sakaki⁵, T. Sako⁵, N. Sakurai³, K. Sato³, T. Seki¹¹, K. Sekino⁵, P.D. Shah², Y. Shibasaki¹¹, N. Shibata¹⁶, T. Shibata⁵, J. Shikita³, H. Shimodaira⁵, B.K. Shin²⁵, H.S. Shin⁵, D. Shinto¹⁶, J.D. Smith², P. Sokolsky², B.T. Stokes², T.A. Stroman², K. Takahashi⁵, M. Takamura²⁶, M. Takeda⁵, R. Takeishi⁵, A. Taketa²⁷, M. Takita⁵, Y. Tameda¹⁶, K. Tanaka²⁸, M. Tanaka²⁹, Y. Tanoue³, S.B. Thomas², G.B. Thomso², P. Tinyakov^{14,17}, I. Tkachev¹⁴, H. Tokuno³⁰, T. Tomida¹¹, S. Troitsky¹⁴, R. Tsuda³, Y. Tsunesada^{3,31}, S. Udo⁸, T. Uehama¹¹, F. Urban³², D. Warren⁷, T. Wong², M. Yamamoto¹¹, K. Yamazaki²², K. Yashiro²⁶, F. Yoshida¹⁶, Y. Zhezher^{5,14}, and Z. Zundel²

¹ Department of Physics, Loyola University Chicago, Chicago, Illinois 60660, USA

² High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112-0830, USA

³ Graduate School of Science, Osaka Metropolitan University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan

⁴ Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul 426-791, Korea

⁵ Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan

⁶ The Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8501, Japan

⁷ Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama 351-0198, Japan

⁸ Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa 221-8686, Japan

⁹ Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi 400-8511, Japan

¹⁰ The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338-8570, Japan

¹¹ Academic Assembly School of Science and Technology Institute of Engineering, Shinshu University, Nagano, Nagano 380-8554, Japan

¹² Department of Physics, SungKyunKwan University, Jang-an-gu, Suwon 16419, Korea

¹³ Department of Physics, Tokyo City University, Setagaya-ku, Tokyo 158-8557, Japan

¹⁴ Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia

¹⁵ Faculty of Systems Engineering and Science, Shibaura Institute of Technology, Minato-ku, Tokyo 337-8570, Japan

¹⁶ Department of Engineering Science, Faculty of Engineering, Osaka Electro-Communication University, Neyagawa-shi, Osaka 572-8530, Japan

¹⁷ Service de Physique Théorique, Université Libre de Bruxelles, Brussels 1050, Belgium

¹⁸ Department of Physics, Yonsei University, Seodaemun-gu, Seoul 120-749, Korea

¹⁹ Center for Astrophysics and Cosmology, University of Nova Gorica, Nova Gorica 5297, Slovenia

²⁰ Faculty of Science, Kochi University, Kochi, Kochi 780-8520, Japan

²¹ Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

²² College of Engineering, Chubu University, Kasugai, Aichi 487-8501, Japan

²³ Quantum ICT Advanced Development Center, National Institute for Information and Communications Technology, Koganei, Tokyo 184-8795, Japan

²⁴ Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow 119991, Russia

²⁵ Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan 689-798, Korea

²⁶ Department of Physics, Tokyo University of Science, Noda, Chiba 162-8601, Japan

²⁷ Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo 277-8582, Japan

²⁸ Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima 731-3194, Japan

²⁹ Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki 305-0801, Japan

³⁰ Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan

³¹ Nambu Yoichiro Institute of Theoretical and Experimental Physics, Osaka Metropolitan University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan

³² CEICO, Institute of Physics, Czech Academy of Sciences, Prague 182 21, Czech Republic

TMEX2023

Telescope Array Detectors

Jan. 07, 2023

-HVIEA2023

TA Low energy Extension(TALE)

- Low energy CRs-induced shower
 - Not so bright, higher X_{max} \rightarrow high elevation telescope
 - compact shower size \rightarrow dense SD array
- Constructed in north part of TA site
- Same concept as TA detector
 - 10 Fluorescence Telescopes
 - 80 Surface Detectors, 20 km²
- Low energy target: E > 10¹⁶ eV
- Operation: FD since Sep. 2013
 SD since Nov. 2017

TAx4 Detectors

Dept. of Physics Univ. of Utah

J

- Focus on highest energies
 E >10^{19.5} eV
- New Northern and Southern SD array
 - expand TA SD area by factor 4 ~3000 km²
 - 2.08 km spacing (TA: 1.2km)
- New 4 + 8 FDs
- In operation both detectors
 - over 3 yrs data taking

TMEX2023

Event Reconstruction, Hybrid/Stereo time

- time vs. angle fit to obtain shower geometry
 - in hybrid: add SD info.
 - → most precise shower geometry
- stereo case: 2FDs observe same shower
 → intersect shower image
- shower profile reconstruction using signal intensities
- Integral of *dE/dX* to obtain energy

$$E \propto \int_0^\infty \frac{dE}{dX} dX$$

• Achieve ~8% *E* resolution

Event Reconstruction, FD Low energy event

- detect Cherenkov light like IACT \rightarrow achieve low energy threshold
- simultaneous reconstruction for shower geometry and shower profile
 - constrained shower geometry by shower profile because of Cherenkov light directivity

• Integral of dE/dX to obtain energy

$$- E \propto \int_0^\infty \frac{dE}{dX} dX$$

- same way as high energies
- Achieve ~1° angular resolution
 ~10% *E* resolution @10PeV

Event Reconstruction, SD

- Measured footprint
- Arrival direction reconstructed using relative timing differences
- LDF fit has done to obtain energy estimator

TMEX2023

Energy Spectrum

Energy Spectrum in UHE

- Energy spectrum ($E > 10^{18} \text{eV}$)
 - 14 yrs TA SD
 - declination dependence
 - 2yrs TAx4 SD ($E > 10^{19} eV$)

-2.69±0.02

log_(E/eV)

log E_{cutoff}

 $= 19.78 \pm 0.04$

20

-4.47±0.41

20.5

log₁₀(E/eV)

TMEX2023

10²³

10²⁵

E³J [m⁻² s⁻¹ sr¹ eV²] 0 5 -3.27±0.02

 χ^2/ndf

prob

log E_{ankle}

18.5

 $= 18.68 \pm 0.01$

26.1062/(23-6)

19

0.07255

New feature in energy spectrum

Pierre Auger found a spectrum hardening in 10¹⁹ – 10^{19.5} eV range

- 2-step softening after the ankle
 Two-step softening exists in TA SD spectrum
- 4.0 σ deficit above 10^{19.22} eV from an assumption of no breaks before the high-energy steepening

A. Aab et al. (The Pierre Auger Collaboration) Phys. Rev. Lett. 125, 121106 (2020)

Energy Spectrum in lower energy

TALE FD monocular mode measurement Cherenkov dominated spectrum

TALE Energy Spectrum (Monocular)

Energy	Source	Value	Contribution to Flux
$< 10^{17} eV$	photonic scale	10%	20%
$< 10^{17} eV$	missing energy	10%	20%
$< 10^{17} eV$	atmosphere	0	0
$< 10^{17} eV$	Cherenkov model	5%	10%
$< 10^{17} eV$	fluorescence yield	0	0
$< 10^{17} eV$	composition (X_{max})	3%	6%
10 ¹⁸ eV	photonic scale	10%	20%
$10^{18} \mathrm{eV}$	missing energy	5%	10%
$10^{18} \mathrm{eV}$	atmosphere	2%	4%
$10^{18} \mathrm{eV}$	Cherenkov model	0	0
$10^{18} \mathrm{eV}$	fluorescence yield	10%	20%
$10^{18} \mathrm{eV}$	composition (X_{\max})	3%	6%
<10 ¹⁷ eV	total	15%	31%
$10^{18} \mathrm{eV}$	total	15%	31%

Down to 2 PeV with FD measurement Energy resolution at 2 PeV : 20% at 6 PeV : 15% at 100 PeV: 10%

Energy Spectrum in lower energy

 -3.28 ± 0.02

 -3.29 ± 0.01

4yrs data

TALE Hybrid Spectrum with TA spectra

Summary of systematic uncertainties in energy, *X*_{max}

Sources	Energy
Photonic Scale	10 %
Relative Time of FD and SD	0
Fluorescence yield	3 to 10%
Cherenkov model	5 to 1 %
Atmosphere	$^{+2.7}_{-1.8}$ %
Missing energy	6 %
Total	12.6 to 15.7 %

Down to 10^{16.5} eV with Hybrid measurement Energy resolution at 10^{16.5} eV: <10%

Clearly shows break feature at $10^{17} \, eV$

Jan. 07, 2023

TA SD

TA BRM / LR FDs

Energy Spectrum in lower energy

- TALE SD measurement
 - 2.5yrs data

 $E > 10^{17} eV: \sim 20\%$

Consistent with TA results

Down to ~10¹⁷ eV with only SD array Energy estimator: s600 look up table was made

- same way as TA SD
- reconstructed θ and s600 is used Finally scaled to FD energy

Jan. 07, 2023

67

TMEX2023

TA energy spectrum All energy range

Mass Composition

Mass composition analysis

Estimate primary cosmic ray mass composition from the depth of the air shower maximum (X_{max})

TA Stereo measurement

Xmax resolution < 25 g/cm², Energy resolution < 7 % (energy dependent) Systematic uncertainty on is 15 g/cm² Scatter plot of Xmax vs energy.

Measured data and from QGSJET II-04 MC predictions (proton and iron) Data support a light component at any energy

Quality cuts: Coincidence FDs within 2 ms, Downward-going, SDP angle < 170°, track length \ge 6°, duration \ge 2 µs, Xmax in FOV

TA Hybrid measurement

TALE Hybrid X_{max} measurement²²

Measured reconstructed $\langle X_{max} \rangle / \sigma(X_{max})$ vs. energy - Nov. 2017 - May. 2022 (4 yrs, 1880 hours)

TALE Hybrid X_{max} measurement²³ Measured reconstructed $\langle X_{max} \rangle / \sigma(X_{max})$ vs. energy Nov. 2017 - May. 2022 (4 yrs, 1880 hours)

Jan. 07, 2023

Anisotropy

Anisotropy, in higher energy(E>57EeV)

.

Search for Intermediate-scale anisotropy in the UHECR arrival directions

Original hotspot reported in 2014, from 5 years of data Ap. J., 790, L21(2014) E > 57 EeV (Observed 72 events) 20° over-sampling circle 19 events fall in "Hotspot" centered at (146.7°, 43.2°) (Expected = 4.5 events) local significance 5.1 σ post trial significance 3.4 σ

Anisotropy, in higher energy(E>57EeV)

Search for Intermediate-scale anisotropy in the UHECR arrival directions

E > 57 EeV, in total 205 events

44 events fall in Hotspot (α =144.0°, δ =40.5°, 25° radius, 22° from SGP) expected=16.9 events local significance: 5.1 σ , chance probability: 3.2 σ 25° over-sampling radius shows the highest local significance (scanned 15° to 35° with 5° step) Jan. 07, 2023

New excess of events with E $\geq 10^{19.4} \text{ eV}^{27}$

- 1060 events with $E \ge 10^{19.4} \, eV$ (14yrs TA SD data)
- Maximum local significance: 3.8σ at (17.4°, 36.0°)

Observed: 95 events

Expected from isotropy: 61 events

- post trial : 3.1σ

New excess of events with $E \ge 10^{19.4} \text{ eV}^{28}$

Compare new excess with the major structures within 150 Mpc

- Virgo cluster (17 Mpc)
- PPSC (70 Mpc)
- Coma supercluster (90 Mpc)
- Leo supercluster (135 Mpc)
- Hercules supercluster (135 Mpc)

Jan. 07, 2023

Result indicates that a CRs source may exist in the direction of PPSC

Large scale anisotropy

ApJL, 898, L28 (2020) TA SD, E > 8.8 EeV TALE SD, 1 EeV < E < 3 EeV χ^2 /ndf=14.1/10 TA χ^2 /ndf=3.8/10 --- Auger (2017) $\phi_{1} = 131 \pm 33$ $r_{\alpha} = 0.033 \pm 0.019$ $r_{\alpha} = 0.009 \pm 0.043$ $\phi_{\alpha} = 327^{\circ} + 267^{\circ}$

200

Right Ascension(deg)

TA SD 11 years data 6032 events observed above 8.8 EeV

TALE SD 2years data 1122 events observed in 1 EeV < E < 3 EeV

F > 8.8 FeV

 $N_{exp})/N_{exp}$

Consistent with both isotropic and Auger reported dipole

EeV < E < 3 EeV

Consistent with isotropic

Need more statistics

Right Ascension [degree] Jan. 07, 2023

200

150

Residual intensity $(N_{obs}-N_{exp})/N_{exp}$

0.3

0.2

0.1

-0.1

-0.2

Recent progress of extension project

Future prospect

- Farther low energy extension with Hybrid mode
 - 50 SDs with 100m spacing
- Target energy: E > 10¹⁵ eV
- SD production on Oct. 2021
 - same design as TA/TALE SD

- plan to start data taking on 2023
- MC study is ongoing also

Jan. 07, 2023

Summary

Telescope Array is UHECR observatory in the northern hemisphere

Spectrum

- 5 orders of spectrum are observed
- new feature above ankle

Mass composition

- heavy to light above 2nd knee
- Compatible with a light component in higher energies

Anisotropy search

- new excess above 10^{19.4} eV
- PPSC is behind

We need much more data at highest energy

-> TAx4 is in operation!

TMEX2023