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Fig. 1— Formation of a Milky Way-sized dark matter halo in a cosmological simulation of flat ⇤CDM cosmology
(⌦m = 1 � ⌦⇤ = 0.3, h = 0.7, �8 = 0.9). The panels show an evolutionary sequence at nine redshifts (from left to
right and from top to bottom) focusing on the most massive progenitor of the main halo at each epoch (redshift of
each epoch is shown in the left upper corner). The rendering shows the dark matter particles with intensity indicating
the local matter density on a logarithmic stretch. The build-up of the halo proceeds through a series of spectacular
mergers, particularly frequent in the early stages of evolution. Many of the merging clumps survive until the present
epoch ( = 0) in the form of ”substructure”. The size of the region shown is about 3 comoving Mpc at = 15,
monotonically zooming in to a scale of ⇡ 1 comoving Mpc across at = 0.

is a visual manifestation of approximate self-
similarity of CDM halos of di↵erent mass. If
we would compare similar images of distribu-
tion of luminous matter around galaxies and
clusters, the di↵erence would be striking.

The manifestly di↵erent observed satellite

populations around galaxies of di↵erent lu-
minosities and expected approximately self-
similar populations of satellite subhalos around
halos of di↵erent mass is known as the sub-

structure problem. [19, 20, 16]. In the case of
the best studied satellite systems of the Milky

2

Dark Matter in “Heaven”

A Milky Way sized dark matter halo
 with CDM cosmology



WIMPY Dark Matter



Weakly Interacting Massive Particle(WIMPs)

DM in thermal equilibrium with bath particles in 
early universe

the DM is a WIMP, the relic density is obtained by the solution of the Boltzmann equation,

describing the evolution of the DM number density n�,
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�
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2
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where, neq is the equilibrium number density, H being the Hubble parameter, and <

�v > represents the velocity averaged sum of the cross section to all annihilation channels.

The physics of freeze out of WIMP DM has been well documented in the literature. The

calculation proceeds with the ansatz that the DM is in thermal equillibrium with the SM

(and potentially other BSM) particles in the early universe. The DM candidate either has an

extremely long life time (larger than the age of the universe), or is stabilized by some internal

symmetry (Z2,R-parity, K-K parity..). As the universe expands and cools, various particles

decouples from the thermal bath at their respective thresholds. The number density n�,

keeps dropping but still tracks the equilibrium value neq. Eventually as all bath particles

(SM and BSM) freeze out, the interaction rate n� < �vMoller > falls below the Hubble rate,

and thus without any other particles to annihilate to, the DM freezes out and yields a relic

density that we observe today. A brief summary of the calculations we perform can be found

in Appendix B. For a process �12!34 The velocity averaged cross section is given by,
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Given the above formula for the velocity averaged annihilation cross section for 2 ! 2

processes, one can then solve Eq. 5 to solve for n� at freeze out and thus calculate the relic

density, using the formula,
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where xf = mDM/Tf , defines the freeze out temperature, geff are the e↵ective degrees of

freedom of the DM particle. For the velocity averaged cross sections we have a variety of

processes that contribute to the annihilation processes. The s channel diagrams connecting
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where d⇧LIPS is the Lorentz-invariant phase space element and the overline indicates spin-

averaging. The thermally-averaged cross section is then calculated via,

h�annvreli(x) =
4x

K2(x)2

Z
+1

1

ds

p
s · (s� 1) ·K1(2x

p
s) · �ann

where x ⌘ m�/T , s ⌘ s/4m2

�
, and Kj(x) is jth modified Bessel function of the second kind.

The final element of the Boltzmann equation is the Hubble parameter H(T ), which encodes

how an expanding universe impacts the DM density. According to the FLRW model,

H(T ) =

r
8⇡

3
G · ⇢tot(T )

where ⇢tot(T ) is the total energy density of the universe at temperature T . This is technically

all the information needed to solve the Boltzmann equation, describing the evolution of the

DM candidate
dn�

dt
+ 3Hn� = �h�annvreli

⇣
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⌘
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where n� ⌘ N�/V is the DM number density, n�,eq is the would-be equilibrium value of

n�, and h�annvreli is the thermally-averaged cross-section [41]. Integrating the Boltzmann

equation from T ⇠ m� to T0 yields the theory prediction for n�(T0). From there, the

DM energy density is calculated as ⇢� = m� · n�, and a theory prediction (⌦h2)theory is

determined. This paper adopts the perspective that additional DM content besides � might

exist, such that (⌦h2)exp is only an upper bound on (the model’s) (⌦h2)theory. As such, (the

model) is deemed consistent with reality so long as (⌦h2)theory  (⌦h2)exp = 0.1199 [43] is

satisfied.

However, analytically solving the Boltzmann equation is oftentimes impossible, and even

numerical solutions su↵er from the equation’s sti↵ness. Furthermore, its solutions span

many orders of magnitude, making them prone to numerical errors. This is in part due

to the expansion of the universe, which drives n� lower even after � has frozen out. To

counter this e↵ect, the Boltzmann equation is often rewritten in a more manageable form:

the evolution parameter t is replaced by the common combination x ⌘ m�/T and the desired

solution n� is replaced by Y ⌘ n�/stot, where stot is the total entropy density of the universe

[42]. Because stot also scales inversely with the volume of the universe but otherwise varies

slowly, its inclusion helps temper the radically-decreasing values of n�. These replacements

transform the Boltzmann equation into,12

dY
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= �

�(x)

x2
(Y 2

� Y
2

eq
) where �(x) ⌘

stot(m�)

H(m�)
h�annvreli(x) (B2)

By assumption, Y = Yeq ⌘ n�,eq/stot when x ⇠ 1, so the Boltzmann equation may be

integrated with initial condition Y (1) = Yeq(1) up to the modern x0 ⌘ m�/T0. But this is

12 DF: If stot is evaluated a constant T = m�, then how does that temper n�? Hmmm, will look into.
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64 3. Thermal History

WIMP Miracle⇤

It just remains to relate the freeze-out abundance of dark matter relics to the dark matter

density today:
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where we have used that the number of WIMPs is conserved after freeze-out, i.e. NX,0 = N
1

X
.

Substituting N
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where we have used (3.3.92) and (3.2.62). Using (3.2.67) for H(MX), gives

⌦X =
⇡

9

xf

h�vi

✓
g?(MX)

10

◆
1/2

g?S(T0)

g?S(MX)

T
3

0

M
3

pl
H

2

0

. (3.3.98)

Finally, we substitute the measured values of T0 and H0 and use g?S(T0) = 3.91 and g?S(MX) =

g?(MX):

⌦Xh
2 ⇠ 0.1

⇣
xf

10
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10

g?(MX)

◆
1/2 10�8GeV�2

h�vi . (3.3.99)

This reproduces the observed dark matter density if
p

h�vi ⇠ 10�4GeV�1 ⇠ 0.1
p

GF .

The fact that a thermal relic with a cross section characteristic of the weak interaction gives the

right dark matter abundance is called the WIMP miracle.

3.3.3 Recombination

An important event in the history of the early universe is the formation of the first atoms. At

temperatures above about 1 eV, the universe still consisted of a plasma of free electrons and

nuclei. Photons were tightly coupled to the electrons via Compton scattering, which in turn

strongly interacted with protons via Coulomb scattering. There was very little neutral hydrogen.

When the temperature became low enough, the electrons and nuclei combined to form neutral

atoms (recombination20), and the density of free electrons fell sharply. The photon mean free

path grew rapidly and became longer than the horizon distance. The photons decoupled from the

matter and the universe became transparent. Today, these photons are the cosmic microwave

background.

Saha Equilibrium

Let us start at T > 1 eV, when baryons and photons were still in equilibrium through electro-

magnetic reactions such as

e
� + p

+ $ H+ � . (3.3.100)

20Don’t ask me why this is called recombination; this is the first time electrons and nuclei combined.
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3.3.2 Dark Matter Relics

We start with the slightly speculative topic of dark matter freeze-out. I call this speculative

because it requires us to make some assumptions about the nature of the unknown dark matter

particles. For concreteness, we will focus on the hypothesis that the dark matter is a weakly

interacting massive particle (WIMP).

Freeze-Out

WIMPs were in close contact with the rest of the cosmic plasma at high temperatures, but

then experienced freeze-out at a critical temperature Tf . The purpose of this section is to solve

the Boltzmann equation for such a particle, determining the epoch of freeze-out and its relic

abundance.

To get started we have to assume something about the WIMP interactions in the early uni-

verse. We will imagine that a heavy dark matter particle X and its antiparticle X̄ can annihilate

to produce two light (essentially massless) particles ` and ¯̀,

X + X̄ $ `+ ¯̀ . (3.3.87)

Moreover, we assume that the light particles are tightly coupled to the cosmic plasma,19 so that

throughout they maintain their equilibrium densities, n` = n
eq

`
. Finally, we assume that there

is no initial asymmetry between X and X̄, i.e. nX = n
X̄
. The Boltzmann equation (3.3.85) for

the evolution of the number of WIMPs in a comoving volume, NX ⌘ nX/s, then is
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where N eq

X
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X
/s. Since most of the interesting dynamics will take place when the temperature

is of order the particle mass, T ⇠ MX , it is convenient to define a new measure of time,

x ⌘ MX

T
. (3.3.89)

To write the Boltzmann equation in terms of x rather than t, we note that
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where we have assumed that T / a
�1 (i.e. g?S ⇡ const. ⌘ g?S(MX)) for the times relevant to

the freeze-out. We assume radiation domination so that H = H(MX)/x2. Eq. (3.3.88) then

becomes the so-called Riccati equation,
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, (3.3.91)

where we have defined

� ⌘ 2⇡2
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We will treat � as a constant (which in more fundamental theories of WIMPs is usually a good

approximation). Unfortunately, even for constant �, there are no analytic solutions to (3.3.91).

Fig. 3.7 shows the result of a numerical solution for two di↵erent values of �. As expected,

19This would be case case, for instance, if ` and ¯̀ were electrically charged.
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Finally, from (3.2.18), it is easy to see that we recover the expected pressure-density relation for

a relativistic gas (i.e. ‘radiation’)

P =
1

3
⇢ . (3.2.43)

Exercise.⇤—For µ = 0, the numbers of particles and anti-particles are equal. To find the “net particle
number” let us restore finite µ in the relativistic limit. For fermions with µ 6= 0 and T � m, show
that
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Note that this result is exact and not a truncated series.

Non-Relativistic Limit

In the limit x � 1 (m � T ), the integral (3.2.31) is the same for bosons and fermions
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Most of the contribution to the integral comes from ⇠ ⌧ x. We can therefore Taylor expand the

square root in the exponential to lowest order in ⇠,
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The last integral is of the form of the integral (3.2.34) with n = 2. Using �(3
2
) =

p
⇡/2, we get
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which leads to
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As expected, massive particles are exponentially rare at low temperatures, T ⌧ m. At lowest

order in the non-relativistic limit, we have E(p) ⇡ m and the energy density is simply equal to

the mass density

⇢ ⇡ mn . (3.2.49)

Exercise.—Using E(p) =
p

m2 + p2 ⇡ m+ p
2
/2m, show that

⇢ = mn+
3

2
nT . (3.2.50)

Finally, from (3.2.18), it is easy to show that a non-relativistic gas of particles acts like pres-

sureless dust (i.e. ‘matter’)

P = nT ⌧ ⇢ = mn . (3.2.51)
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�v > represents the velocity averaged sum of the cross section to all annihilation channels.

The physics of freeze out of WIMP DM has been well documented in the literature. The

calculation proceeds with the ansatz that the DM is in thermal equillibrium with the SM

(and potentially other BSM) particles in the early universe. The DM candidate either has an

extremely long life time (larger than the age of the universe), or is stabilized by some internal

symmetry (Z2,R-parity, K-K parity..). As the universe expands and cools, various particles

decouples from the thermal bath at their respective thresholds. The number density n�,

keeps dropping but still tracks the equilibrium value neq. Eventually as all bath particles

(SM and BSM) freeze out, the interaction rate n� < �vMoller > falls below the Hubble rate,

and thus without any other particles to annihilate to, the DM freezes out and yields a relic

density that we observe today. A brief summary of the calculations we perform can be found

in Appendix B. For a process �12!34 The velocity averaged cross section is given by,
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Given the above formula for the velocity averaged annihilation cross section for 2 ! 2

processes, one can then solve Eq. 5 to solve for n� at freeze out and thus calculate the relic

density, using the formula,
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where xf = mDM/Tf , defines the freeze out temperature, geff are the e↵ective degrees of

freedom of the DM particle. For the velocity averaged cross sections we have a variety of

processes that contribute to the annihilation processes. The s channel diagrams connecting
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where d⇧LIPS is the Lorentz-invariant phase space element and the overline indicates spin-

averaging. The thermally-averaged cross section is then calculated via,
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where n� ⌘ N�/V is the DM number density, n�,eq is the would-be equilibrium value of

n�, and h�annvreli is the thermally-averaged cross-section [41]. Integrating the Boltzmann

equation from T ⇠ m� to T0 yields the theory prediction for n�(T0). From there, the

DM energy density is calculated as ⇢� = m� · n�, and a theory prediction (⌦h2)theory is

determined. This paper adopts the perspective that additional DM content besides � might

exist, such that (⌦h2)exp is only an upper bound on (the model’s) (⌦h2)theory. As such, (the

model) is deemed consistent with reality so long as (⌦h2)theory  (⌦h2)exp = 0.1199 [43] is

satisfied.

However, analytically solving the Boltzmann equation is oftentimes impossible, and even

numerical solutions su↵er from the equation’s sti↵ness. Furthermore, its solutions span

many orders of magnitude, making them prone to numerical errors. This is in part due

to the expansion of the universe, which drives n� lower even after � has frozen out. To

counter this e↵ect, the Boltzmann equation is often rewritten in a more manageable form:

the evolution parameter t is replaced by the common combination x ⌘ m�/T and the desired

solution n� is replaced by Y ⌘ n�/stot, where stot is the total entropy density of the universe

[42]. Because stot also scales inversely with the volume of the universe but otherwise varies

slowly, its inclusion helps temper the radically-decreasing values of n�. These replacements
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By assumption, Y = Yeq ⌘ n�,eq/stot when x ⇠ 1, so the Boltzmann equation may be

integrated with initial condition Y (1) = Yeq(1) up to the modern x0 ⌘ m�/T0. But this is

12 DF: If stot is evaluated a constant T = m�, then how does that temper n�? Hmmm, will look into.
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Finally, we substitute the measured values of T0 and H0 and use g?S(T0) = 3.91 and g?S(MX) =

g?(MX):

⌦Xh
2 ⇠ 0.1

⇣
xf

10

⌘✓
10

g?(MX)

◆
1/2 10�8GeV�2

h�vi . (3.3.99)

This reproduces the observed dark matter density if
p
h�vi ⇠ 10�4GeV�1 ⇠ 0.1

p
GF .

The fact that a thermal relic with a cross section characteristic of the weak interaction gives the

right dark matter abundance is called the WIMP miracle.

3.3.3 Recombination

An important event in the history of the early universe is the formation of the first atoms. At

temperatures above about 1 eV, the universe still consisted of a plasma of free electrons and

nuclei. Photons were tightly coupled to the electrons via Compton scattering, which in turn

strongly interacted with protons via Coulomb scattering. There was very little neutral hydrogen.

When the temperature became low enough, the electrons and nuclei combined to form neutral

atoms (recombination20), and the density of free electrons fell sharply. The photon mean free

path grew rapidly and became longer than the horizon distance. The photons decoupled from the

matter and the universe became transparent. Today, these photons are the cosmic microwave

background.

Saha Equilibrium

Let us start at T > 1 eV, when baryons and photons were still in equilibrium through electro-

magnetic reactions such as

e
� + p

+ $ H+ � . (3.3.100)

20Don’t ask me why this is called recombination; this is the first time electrons and nuclei combined.
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3.3.2 Dark Matter Relics

We start with the slightly speculative topic of dark matter freeze-out. I call this speculative

because it requires us to make some assumptions about the nature of the unknown dark matter

particles. For concreteness, we will focus on the hypothesis that the dark matter is a weakly

interacting massive particle (WIMP).

Freeze-Out

WIMPs were in close contact with the rest of the cosmic plasma at high temperatures, but

then experienced freeze-out at a critical temperature Tf . The purpose of this section is to solve

the Boltzmann equation for such a particle, determining the epoch of freeze-out and its relic

abundance.

To get started we have to assume something about the WIMP interactions in the early uni-

verse. We will imagine that a heavy dark matter particle X and its antiparticle X̄ can annihilate

to produce two light (essentially massless) particles ` and ¯̀,

X + X̄ $ `+ ¯̀ . (3.3.87)

Moreover, we assume that the light particles are tightly coupled to the cosmic plasma,19 so that

throughout they maintain their equilibrium densities, n` = n
eq

`
. Finally, we assume that there

is no initial asymmetry between X and X̄, i.e. nX = n
X̄
. The Boltzmann equation (3.3.85) for

the evolution of the number of WIMPs in a comoving volume, NX ⌘ nX/s, then is

dNX
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= �sh�vi

h
N

2

X � (N eq

X
)2
i
, (3.3.88)

where N eq

X
⌘ n

eq

X
/s. Since most of the interesting dynamics will take place when the temperature

is of order the particle mass, T ⇠ MX , it is convenient to define a new measure of time,

x ⌘ MX

T
. (3.3.89)

To write the Boltzmann equation in terms of x rather than t, we note that

dx
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where we have assumed that T / a
�1 (i.e. g?S ⇡ const. ⌘ g?S(MX)) for the times relevant to

the freeze-out. We assume radiation domination so that H = H(MX)/x2. Eq. (3.3.88) then

becomes the so-called Riccati equation,

dNX

dx
= � �
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h
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2
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X
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i

, (3.3.91)

where we have defined

� ⌘ 2⇡2

45
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3

X
h�vi

H(MX)
. (3.3.92)

We will treat � as a constant (which in more fundamental theories of WIMPs is usually a good

approximation). Unfortunately, even for constant �, there are no analytic solutions to (3.3.91).

Fig. 3.7 shows the result of a numerical solution for two di↵erent values of �. As expected,

19This would be case case, for instance, if ` and ¯̀ were electrically charged.
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Finally, from (3.2.18), it is easy to see that we recover the expected pressure-density relation for

a relativistic gas (i.e. ‘radiation’)

P =
1

3
⇢ . (3.2.43)

Exercise.⇤—For µ = 0, the numbers of particles and anti-particles are equal. To find the “net particle
number” let us restore finite µ in the relativistic limit. For fermions with µ 6= 0 and T � m, show
that
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. (3.2.44)

Note that this result is exact and not a truncated series.

Non-Relativistic Limit

In the limit x � 1 (m � T ), the integral (3.2.31) is the same for bosons and fermions
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2

e

p
⇠2+x2

. (3.2.45)

Most of the contribution to the integral comes from ⇠ ⌧ x. We can therefore Taylor expand the

square root in the exponential to lowest order in ⇠,
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The last integral is of the form of the integral (3.2.34) with n = 2. Using �(3
2
) =

p
⇡/2, we get

I±(x) =

r
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2
x
3/2

e
�x

, (3.2.47)

which leads to

n = g
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mT
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◆
3/2

e
�m/T

. (3.2.48)

As expected, massive particles are exponentially rare at low temperatures, T ⌧ m. At lowest

order in the non-relativistic limit, we have E(p) ⇡ m and the energy density is simply equal to

the mass density

⇢ ⇡ mn . (3.2.49)

Exercise.—Using E(p) =
p

m2 + p2 ⇡ m+ p
2
/2m, show that

⇢ = mn+
3

2
nT . (3.2.50)

Finally, from (3.2.18), it is easy to show that a non-relativistic gas of particles acts like pres-

sureless dust (i.e. ‘matter’)

P = nT ⌧ ⇢ = mn . (3.2.51)
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Freeze-in (FIMP) and Super WIMPS (SWIMPS)

(Non-) Thermal mechanisms 

Freeze-In Super WIMPS

  

Freeze-in: general idea
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DM produced from decays/annihilations of other particles.

DM production disfavoured → Abundance freezes-in

· DM interacts very weakly with the SM.

· DM has a negligible initial density.

Two basic premises :

Assume that in reaction A → B, ξ
A
�ξ

Β
 particles of type χ are destroyed/created. 

Integrated Boltzmann equation :
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Both set ups characterised by extremely weakly interacting particles  
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Figure 3: Schematic representation of the four possible scenarios involving the freeze-in
mechanism. The left-hand figures show the LOSP/FIMP spectrum with circles repre-
senting cosmologically produced abundances. The large (small) circles represent the
dominant (sub-dominant) mechanism for producing the dark matter relic abundance,
a dotted (solid) circle signifies that the particle is unstable (stable), and a filled (open)
circle corresponds to production by freeze-in (freeze-out). The right-hand figures show
the LOSP and FIMP abundances as a function of time. The initial era has a thermal
abundance of LOSPs and a growing FIMP abundance from freeze-in. The LOSP and
FIMP are taken to have masses of the same order, so that FIMP freeze-in ends around
the same time as LOSP freeze-out. Considerably later, the heavier of the LOSP and
FIMP decays to the lighter.

1. Freeze-in of FIMP DM The FIMP is the DM and the dominant contribution to the
relic DM abundance is generated via the freeze-in mechanism. A small abundance of LOSP
freezes-out which then decays late to FIMP dark matter.

2. LOSP freeze-out and decay to FIMP DM The FIMP is again the DM but now the
dominant contribution to the relic abundance is generated via the conventional freeze-out of
the unstable LOSP which then decays to the FIMP. A sub-dominant component of FIMP
DM arises from freeze-in.

3. FIMP freeze-in and decay to LOSP DM The LOSP is the DM and the dominant
contribution to the relic abundance comes from the freeze-in of a long lived FIMP which
later decays to the LOSP. A sub-dominant component of DM arises from LOSP freeze-out.

4. Freeze-out of LOSP DM The LOSP is again the DM but the dominant contribution to
the relic abundance comes from conventional freeze-out of the LOSP. A small abundance of

11

If there is a lightest observable  
sector particle (LOSP)

Typical models : 
1. Moduli with weak scale SUSY 
2. FIMPs from kinetic mixing with hidden U(1) 
3. Right handed sneutrino in weak scale SUSY 
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DM density calculations in freeze-in scenarios

Andreas Goudelis

Given the previous subtleties and the potentially large number of contributing processes, freeze-
in calculations can get tricky.

· Until recently, no publicly available computational tools:

 → Can compute the freeze-in DM abundance in fairly generic BSM scenarios: scattering, decays 
of heavier bath particles/FIMPs/relics.

arXiv:1801.03509

p.5

Hopefully will boost activity in

· Model-building: what types of (“well-motivated”) 
models can accommodate freeze-in?

· Phenomenology: what are the “standard” 
signatures of freeze-in scenarios?
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Freeze-in vs freeze-out

Need to track the evolution of heavier states

· FO: equilibrium erases all memory.

· FI: their decays can dominate DM production.

Initial conditions:

Heavier particles:

· FI: Ωh2 depends on the initial conditions.

· FO: pretty irrelevant (exc. coannihilations/late decays).

In equilibrium? Relics? FIMPs?

· FI: several possibilities (m
χ
/3, m

parent
/3, T

R
 or higher), 

depending on nature of underlying theory.

Relevant temperature:
· FO: around m

χ
/20.

- Statistics/early Universe physics can become important.

Naively, the freeze-in BE is simpler than the freeze-out one. However : 

Need dedicated Boltzmann eqs

Andreas Goudelis p.6

Freeze-in (FIMP)

Dedicated Codes to perform the integrations

MicrOmegas 5 + Belanger, Boudjema, Goudelis


Pukhov, Zaldivar
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Model-building issues

Andreas Goudelis

What kind of couplings do we need for successful freeze-in?

p.6
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χ1
)1/2

How can we justify such small numbers?

Scale suppression

Decay:

Symmetries
Potentially IR-dominated

Two main ways so far:
UV-dominated, cf talks by Y. Mambrini, K. Olive, D. Chowdhury
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How can we justify such small numbers?

Scale suppression

Decay:

Symmetries
Potentially IR-dominated

Two main ways so far:
UV-dominated, cf talks by Y. Mambrini, K. Olive, D. Chowdhury

Potentially IR dominated

How to dynamically and “naturally” generate such small couplings with order 1 numbers ? 
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Freeze-in (FIMP) : Some Examples
Higgs Portal

can, in the simplest form, be parametrized by one of the following operators:

�hs
2

|�|2s2,
�h 
⇤

|�|2 ̄ and
�hA
2

|�|2AµA
µ . (4.1)

In addition to the above portal coupling the assumed mass of the DM particle will enter the
cross sections for the relevant interaction rates. While these e↵ective operators provide a
simple parametrization of DM interactions, there are several immediate shortcomings.

First, in the above e↵ective theory formulation an ad hoc discrete symmetry for scalar
DM candidate must be postulated in order to guarantee its stability. Second, the Lagrangian
for the singlet fermion is non-renormalizable and requires a UV completion. Third, while
the vector Lagrangian looks renormalizable, it is really not the case as the vector mass must
be put in by hand. This in turn leads to undesirable high energy behavior and violation of
unitarity. Also this model can be UV completed to resolve these problems, and due to larger
particle content, any UV completion will imply very di↵erent phenomenology than the simple
e↵ective theory form. More complete models also allow one to address further problems, like
the order of the electroweak phase transition, in addition to the existence of DM [304–306].

As a concrete example of freeze-in production of DM in such a model, let us consider a
real scalar singlet s which is odd under a Z2 symmetry while all the SM particles are even.
The most general renormalizable scalar potential reads

V (�, s) = µ2
h|�|

2 + �h(�
†�)2 +

µ2
s

2
s2 +

�s
4
s4 +

�hs
2

|�|2s2, (4.2)

whereH is the usual SM Higgs doublet with the standard kinetic terms. If the portal coupling
is very weak, �hs . 10�7, the singlet sector does not equilibrate with the SM. Furthermore,
if 2ms  mh, the abundance of s particles is produced via freeze-in through the Higgs boson
decay channel h ! ss. The final s abundance is

⌦sh2

0.12
' 5.3⇥ 1021 �2hs

⇣ ms

GeV

⌘
, (4.3)

in analogy with Eq. (3.9). If the mass hierarchy is reversed, ms � mh, the result is given
by an expression similar to Eq. (3.11). However, as discussed in Section 3.4, the whole
picture can change considerably if the 2 ! 4 scalar self-interactions are active, i.e. if �s was
su�ciently large. In that case, the s particles may thermalize within itself after the initial
DM production from the SM sector has ended and the DM number density can change even
after the coupling between DM and the SM has been e↵ectively shut o↵. That being the
case, the final DM abundance is determined not only by the freeze-in, but also by the dark
freeze-out occurring in the hidden sector [240, 241, 284, 293, 294].

From Eq. (4.3) one can see that obtaining the correct DM abundance generically requires
a very small coupling, �hs . 10�9. One might worry that the smallness of the portal coupling
poses a naturalness problem and makes this scenario unappealing for model building. How-
ever, as the running of �hs is usually negligible (see e.g. Ref. [276]), the requirement of having
�hs ⌧ 1 at the scale where DM production takes place does not impose a fine-tuning prob-
lem. Furthermore, it has been argued that the small coupling connecting a nearly isolated
hidden sector to the SM can be seen as technically natural due to the enhanced space-time
symmetry group in the limit of decoupling [307].

As an extension of the simplest framework, Eq. (4.2), consider the case where the hidden
sector consists of a real singlet pseudoscalar field s and a fermion  , invariant under the parity
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DM production from the SM sector has ended and the DM number density can change even
after the coupling between DM and the SM has been e↵ectively shut o↵. That being the
case, the final DM abundance is determined not only by the freeze-in, but also by the dark
freeze-out occurring in the hidden sector [240, 241, 284, 293, 294].

From Eq. (4.3) one can see that obtaining the correct DM abundance generically requires
a very small coupling, �hs . 10�9. One might worry that the smallness of the portal coupling
poses a naturalness problem and makes this scenario unappealing for model building. How-
ever, as the running of �hs is usually negligible (see e.g. Ref. [276]), the requirement of having
�hs ⌧ 1 at the scale where DM production takes place does not impose a fine-tuning prob-
lem. Furthermore, it has been argued that the small coupling connecting a nearly isolated
hidden sector to the SM can be seen as technically natural due to the enhanced space-time
symmetry group in the limit of decoupling [307].

As an extension of the simplest framework, Eq. (4.2), consider the case where the hidden
sector consists of a real singlet pseudoscalar field s and a fermion  , invariant under the parity
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In addition to the above portal coupling the assumed mass of the DM particle will enter the
cross sections for the relevant interaction rates. While these e↵ective operators provide a
simple parametrization of DM interactions, there are several immediate shortcomings.

First, in the above e↵ective theory formulation an ad hoc discrete symmetry for scalar
DM candidate must be postulated in order to guarantee its stability. Second, the Lagrangian
for the singlet fermion is non-renormalizable and requires a UV completion. Third, while
the vector Lagrangian looks renormalizable, it is really not the case as the vector mass must
be put in by hand. This in turn leads to undesirable high energy behavior and violation of
unitarity. Also this model can be UV completed to resolve these problems, and due to larger
particle content, any UV completion will imply very di↵erent phenomenology than the simple
e↵ective theory form. More complete models also allow one to address further problems, like
the order of the electroweak phase transition, in addition to the existence of DM [304–306].
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Pseudo-Scalar Portaltransformation s(t, x) ! �s(t, �x) and  (t, x) ! �0 (t, �x) [276]. The fermionic part of
the portal sector is

L =  ̄ (i �µ@µ �m ) + i g s  ̄ �5  , (4.4)

and we again assume the form (4.2) for the scalar potential. In principle, the fermion could
be interpreted as a special case of a sterile neutrino. Here we will take this particular model
just as a simple illustrative case and consider sterile neutrino DM in more detail in the next
Subsection. If the singlet scalar is light enough, 2ms < mh, the final yield becomes

⌦DMh2

0.12
= 5.3⇥ 1021 �2hsN

⇣mDM

GeV

⌘
. (4.5)

If DM is composed of singlet scalar, ms < 2m , then mDM = ms and N = 1. On the other
hand, if DM is the fermion, ms > 2m , then mDM = m and N = 2 accounts for the fact
that in each subsequent s decay two fermions  are produced. However, this result can again
change if the number-changing interactions in the hidden sector are sizable [284].

Similarly, one can consider Higgs portal vector DM [241, 253, 308, 309]. To have a well
defined UV theory, one assumes that the vector is a gauge boson of a hidden gauge symmetry
which in the simplest case is SU(2). This is an appealing choice, since then there is a residual
SO(3) symmetry guaranteeing the stability of the vector DM. Furthermore, in comparison
to the U(1) gauge symmetry there is no mixing with the SM hypercharge which would need
to be tuned to be small to agree with experiments [310–312], as we will discuss below.

One interesting subset of portal models consists of scale invariant theories. Such models
have been applied to explain dynamically the origin of the electroweak scale and connect the
electroweak and DM scales, see e.g. Refs. [307, 313–328] and references therein. They have
also attracted some further attention within the context of producing the DM abundance via
the freeze-in mechanism [15, 296, 329, 330]. One attractive feature of this approach is that
as the number of free parameters is reduced, the predictability of the model increases. Let
us briefly review this model building paradigm with an example of a self-interacting, scale
invariant hidden sector consisting of a real singlet Z2-symmetric scalar.

The singlet scalar is coupled to the SM via the usual Higgs portal, Eq. (4.2). For the
scalar self-interaction, one assumes �s > 0 for stability and for the portal coupling �hs > 0
in order not to induce a vev for the singlet scalar s. The coupling between the dark and
visible sectors is assumed small, �hs . 10�7. Scale generation in the dark sector is driven by
the spontaneous symmetry breaking in the Higgs sector, which we here parametrize with the
vacuum expectation value v of the Higgs field.5 As

p
2� = (0, v + h), where v = 246 GeV,

the singlet gains a mass

ms =

r
�hs
2

v. (4.6)

The DM abundance, produced via the freeze-in mechanism, is in this case

⌦sh2

0.12
' 5⇥ 1019 �2hs

⇣ ms

10 MeV

⌘
' 6⇥ 1023 �5/2hs . (4.7)

Requiring the abundance to match the observed relic density implies �s ' 3 ⇥ 10�10 and
ms ' 2 MeV. Finally, the strength of singlet scalar self-interactions is

�s
ms

=
9�2s

32⇡m3
s
' 0.1

✓
�hs
10�9

◆�3/2✓ �s
0.1

◆2 cm2

g
. (4.8)

5In a more complete setting within the classically scale invariant framework, also this scale should be
dynamically generated, and various realizations can be found in the references above.
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Kinetic Portal 

Taking for example, �s/ms = 1 cm2/g (as discussed in Section 2.4) we see that this scenario
uniquely fixes all model parameters: �s ' 0.13, �hs ' 3 ⇥ 10�10 and ms ' 2 MeV. Because
of this feature, the scenario has been called the FIMP miracle [15, 296, 329].

However, the situation is more complicated than originally studied in Refs. [15, 296, 329]
if the DM self-interactions are large. In that case the hidden sector may again thermalize
within itself and the DM number density can change after the yield from the visible sector
has completed. This changes the requirements for the model parameters and renders the
FIMP miracle to a WIMP miracle of the second kind. This was originally pointed out in
Ref. [293] and studied in detail in Ref. [330].

4.1.2 Kinetic Mixing Portal

Another portal paradigm arises if the hidden sector consists of a new U(1) gauge field, a dark
photon. Then the Lagrangian will include a gauge invariant term

L � ✏Fµ⌫
Y FDµ⌫ , (4.9)

where Fµ⌫
Y and Fµ⌫

D are the field strengths of the SM hypercharge and the new dark U(1)
interaction, respectively, and the mixing parameter ✏ ⌧ 1. The dark photon is assumed to
have mass, mA, induced in a gauge invariant way by the Stückelberg mechanism [331] or
by a dark Higgs. If the dark photon is light, mA < 2me, as required by stability, then the
DM abundance can be produced by the freeze-in mechanism through photon scattering with
electrons and positrons or through electron-positron annihilation [332, 333]. In the relevant
mass range, the required magnitude of the coupling ✏ is already in the ballpark tested by
direct detection searches [310].

On the other hand, such feebly interacting vector DM abundance can also be produced
by quantum fluctuations during inflation [334],

⌦Ah2

0.12
'

⇣ mA

1 keV

⌘1/2
✓

H⇤
1012GeV

◆
, (4.10)

where H⇤ denotes the inflationary scale. In this case the vector is produced with a power
spectrum peaked at intermediate wavelengths. This suppresses the small wavelength isocur-
vature perturbations below the observed level, while at long wavelengths the perturbations
are the usual nearly scale-invariant adiabatic perturbations of the inflaton field. This is in
stark contrast to the scalar case [275, 276, 284], as we will discuss further in Section 5.4.

The setting (4.9) can be also enlarged by adding matter fields (either scalar or fermion)
charged under the hidden U(1) and singlet under the SM interactions. These new matter
fields will provide new DM candidates. The freeze-in production of the DM abundance in
such setting has been investigated in Refs. [58, 240, 335–337].

4.1.3 Other Portal Models

If the dark sector has scalar and fermion fields, it is possible to have portals via right-handed
SM leptons as in e.g. Ref. [338]. A further realization of such leptonic portal arises in the
so-called scotogenic model (or radiative seesaw model) [339] and its variants [340]. This
model is particularly appealing as it connects DM with the neutrino phenomenology. We
will review models of this type in more detail in the next Subsection.

Before concluding this Subsection, we note that hidden sectors, coupled with the SM
via a scalar portal, could be also composite [341–343], with UV description in terms of
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Can also be produced  by  Quantum Fluctuations during Inflation 

Sterile Neutrinos

gauge and fermion fields singlet under all the SM charges.6 In general there are many
reasons which make composite DM an appealing alternative: First, stability of DM can arise
automatically from global symmetries in the underlying theory. Second, strongly coupled
theories are natural candidates for self-interacting DM required to address issues observed
in small scale structure formation. Third, the DM scale arises similarly as the confinement
scale in QCD and is therefore natural. Fourth, the rich spectrum expected to arise in any
strongly coupled composite theory may provide unique observational cues. As an alternative
and much studied model building paradigm hidden sectors also appear in the context of
supersymmetric theories [345].

4.2 Sterile Neutrinos

Sterile neutrinos are the most studied DM candidates in the context of freeze-in mechanism.
They are a well-motivated extension of the SM, because they may not only comprise the
observed DM abundance but also accommodate a mechanism for generating Majorana masses
for the active SM neutrinos, for example by the seesaw mechanism. For a comprehensive list
of references on sterile neutrinos, we refer to a recent review [8]. Our discussion on sterile
neutrinos as frozen-in DM will also overlap with Ref. [286]. However, we will provide updates
by taking the newer literature into account, and include discussion on typical initial conditions
and number-changing interactions.

In the context of freeze-in production of DM, consider the Lagrangian

L � y L̄ �̃† ⌫R +m ⌫̄cR ⌫R + s ⌫̄cR (yS + i yP ) ⌫R + h.c.+ V (�, s) , (4.11)

where L = (e, ⌫L)T and �̃ = ✏�⇤, where ✏ is the antisymmetric SU(2) invariant tensor and
� is again the SM Higgs doublet. The first term in Eq. (4.11) gives rise to a Dirac after
the electroweak symmetry breaking, the second term is a Majorana mass and the third term
describes both a scalar and pseudo-scalar interactions between a singlet scalar s and a sterile
neutrino ⌫R. The last term is the scalar potential, which we leave unspecified. Here both s
and ⌫R are assumed to be sterile, i.e. singlets under the SM gauge symmetries.7

There are essentially two ways of producing sterile neutrino DM in this model setup:
via the weak interaction if the sterile neutrinos mix with the active neutrinos, or by decays
or (semi-)annihilations of the scalar s. Although the first mechanism does not actually fulfill
our definition of freeze-in (non-thermal DM density produced by decays and annihilations of
particles in thermal equilibrium), it is worth discussing here as a property of a generic sterile
neutrino model. The main production mechanism in the case of a sizable mixing angle ✓ is
the DW mechanism, which non-resonantly generates the sterile neutrino abundance around
T ' 150 MeV [237]. This means that sterile neutrino properties can be constrained both
by indirect detection experiments and their free-streaming length, i.e. observations of small
scale structure formation. Indeed, measurements of the Lyman-↵ forest have been shown to
rule out m⌫R . 16 keV if the DW-produced sterile neutrinos account for all DM [348]. On
the other hand, the active-sterile mixing allows for ⌫R to decay into an active neutrino and
a photon, and observations of the X-ray sky have been shown to rule out m⌫R & 4 keV if

6It is also possible that hidden sector contains millicharged fields, and this possibility also results in viable
DM candidates [344].

7Another possibility is to introduce a new electromagnetically charged scalar, so that the freeze-in pro-
duction of sterile neutrinos occurs via decay of the charged scalar to a sterile neutrino and a charged SM
lepton [346]. A related scenario, where an unstable FIMP decays into sterile neutrino DM in a similar model,
was studied in Ref. [347].
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Freeze-in (FIMP) : Exotic Stuff
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The idea of “Clockwork”-ing A clockwork scalar

 N+1 copies of U(1) global symmetry in theory space spontaneously broken down to 
a single U(1) at a scale f 

A. The scalar clockwork

A scalar clockwork set up can be constructed with a global N+1 U(1)i(i = 0, ...., N)

symmetry in some theory space. The underlying theory on which these global symmetries

act can be a set of N+1 real or complex scalars. The U(1)N+1 symmetry is spontaneously

broken at a scale f (for simplicity, all the breaking scales are assumed to be equal) to generate

N+1 massless goldstone bosons below this scale. The mechanism works like an Ising model,

with nearest neighbor interaction between lattice sites. The global U(1)N+1 is also softly

broken by N mass parameters m2
i

1. The charges associated with the U(1) global symmetry

is assumed to be “non-diagonal”, thus introducing “interactions” between nearest neighbor.

The charge defined on site i, is thus,

Qi = �ij � q�i,j+1 , q > 1 (1)

The parameter q is thus a site dependent strength (coupling) characterizing nearest neighbor

interactions. The choice q > 1 ensures that for a large number of sites, the coupling between

sites is suppressed as a power law. Well below the breaking scale f , the goldstones can be
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Symmetry approach: Clockworking FIMPs

Andreas Goudelis

The Clockwork mechanism was initially introduced to address completely different issues. Has 
found many more applications (inflation, neutrinos, flavour, axions...).
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· A Scalar Clockwork FIMP : 

Similar setup considered in arXiv:1709.04105

A. G., K. Mohan, D. Sengupta, arXiv:1807.xxxxx

arXiv:1511.01827, 1511.00132, 1610.07962...

· Clockwork FIMP approach: DM – SM 
coupling protected e.g. by Goldstone or 
chiral symmetry.

A clockwork scalar
Low energy effective lagrangian 

2.2 Clockwork scalar

The simplest way to implement the clockwork mechanism is with scalar fields [4, 5]. The
implementations in [4, 5] involve renormalisable scalar field theories, however we will focus
only on the low energy e↵ective theory, which may have di↵erent UV-completions. Let us
consider a theory with a global symmetry G = U(1)N+1 spontaneously broken at the scale
f . Below f , the e↵ective degrees of freedom are N+1 Goldstone bosons ⇡j, conveniently
described in terms of the fields

Uj(x) = ei⇡j(x)/f j = 0, .., N (2.8)

which transform by a phase under the corresponding Abelian factor U(1)j. For simplicity,
we assume that the spontaneous breaking of all Abelian factors contained in G occurs at the
same scale f .

We also explicitly, but softly, break G by means of N dimension-two parameters m2
j (with

j = 0, ..., N�1), which can be regarded as the background values of N spurion fields with
charge

Qi[m
2
j ] = �ij � q �i j+1 (2.9)

under the Abelian factor U(1)i. We take q > 1 and assume that the explicit breaking is small
with respect to the scale of spontaneous breaking, i.e. m2

j ⌧ f 2. The smallness of m2
j/f

2 is
technically natural becausem2

j/f
2

! 0 enhances the symmetry of the theory. The hypothesis
of a scale separation between m2

j and f 2 is the element that allows us to construct a low-
energy e↵ective theory of the pseudo-Goldstones ⇡j from symmetry considerations alone,
without committing to any specific UV completion at the scale f .

The unbroken U(1) corresponds to the generator

Q =
NX

j=0

Qj

qj
, (2.10)

where Qj are the generators of the Abelian factors in G. Indeed, all of the parameters
m2

j are neutral under the generator Q, since eq. (2.9) implies that Q[m2
j ] = 0 for any j.

To simplify expressions, henceforth we take a single scale for the explicit breaking, i.e.
m2

j ⌘ m2. The generalisation to non-universal values of f and m2 for the di↵erent U(1)
factors is straightforward, and the physical content of the theory does not change, as long
as we consider small deformations of the universal case.

The low-energy description of the Goldstone boson and the N pseudo-Goldstones is
captured by an e↵ective Lagrangian (formally G-invariant, once we treat m2

j as spurions
charged under G), which can be expanded in derivatives and powers of m2. The two leading
terms are2

L = �
f 2

2

NX

j=0

@µU
†
j @

µUj +
m2f 2

2

N�1X

j=0

⇣
U †
j U

q
j+1 + h.c.

⌘
. (2.11)

With no loss of generality the parameter m2 can be chosen real (actually, even non-universal
m2

j can all be made real simultaneously by an appropriate G transformation).

2
Throughout the paper we use positive signature for the metric in flat space, ⌘ = (�, +, +, +).
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in ref. [9], with UL, UR being the bi-unitary transformation matrices that diagonalize the

left handed and right handed chiral fermions. Crucially, the above eigen-vectors imply that

the clockwork mechanism is not altered by adding Majoranna mass terms to the fermionic

clockwork matrix (the qj suprression of the zero mode is still present), as it only adds a
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where  is a dimensionless coupling that we set to its maximally natural value of 1. We
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interaction between the N th site and the Higgs is of the form written down in the lagrangian
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above. This also ensures an absence of any higgs-clockwork mixing terms. As mentioned

earlier and as elucidated in Appendix. A, the diagonal mass term t2�2
i /2, does not change

the clockwork mechanism, but adds a mass t to the zero mode as well as to all the gears.

Interactions between the dark matter sector and the standard model arise through the

term |H†H|�2
n. After electroweak symmetry is broken, and �n is expanded in its eigen-basis

(ai), there are trilinear and quartic interactions between zero-modes and the Higgs, as well

as a0a0h and aiaih. We expand the clockwork states in its eigen-basis as, �k =
P

l Oklal.

Thus, expanding the interaction term, with |H| = (v + h)
p
2 we get,

Lint = |H†H|�2
n

= 
nX

j=0,k=0

OklOjmakal(v
2 + 2vh+ h2)/2 (18)

As noted earlier, this provides a small mass to the FIMP that is suppressed by a factor

⇠ q�N . The mass matrix is now modified to be

�iM̃ij�j = �iMij�j + v2�in�jn�n�n . (19)

We assume the gear masses m to be close to the breaking scale f , i.e., at the multi-TeV

scale. This choice also helps evade constraints from LHC and further ensures that v ⌧ m

and will thus have only a small e↵ect on the form of the diagolizaing matrix O. We do

not neglect this e↵ect in our calculations and numerically determine the exact diagonalizing

matrix Õ, that diagonlizes the mass matrix M̃ . Once electro-weak symmetry is broken, �n

receives an additional contribution t its mass.

The zero mode-zero mode-Higgs interaction is thus suppressed by ⇠

q2n , while the zero

mode-“j-th gear”-Higgs interaction is supressed by ⇠

qnOjn. Finally there are interactions

between gear-gear-Higgs that are un-supressed by the clockwork mechanism.

Notice that in the lagrangian (LsFIMP ) above, we have modified the quartic term from

its original form in Eq. 5. This we introduce in order to simplify our calculation of the relic.

This choice of interaction ensures that inspite of the modification of the mass matrix and

eigen-basis by the higgs vev,there are no quartic interactions between the zero mode and the

gears. In fact, in the eigenbasis, the quartic term is simply
P

a4i . We can thus completely

ignore the quartic terms when calculating the relic. We emphasize that this choice of quartic

coupling is not necessary for the freeze-in mechanism to produce the correct relic abundance,

however, there are certain caveats that one must be aware of. For instance, if instead of

using M̃ in the quartic interaction, we were to use M as is done in the original clockwork

setup, then, after electroweak symmetry breaking there will be interactions between the zero

mode a0 and the gears ai. This will result in production of a0 through processes of the form

aiai ! a0ai 3. The strength of the quartic interaction between a0 and the gears is determined

3 Since the gears ai have order one couplings to the higgs, they will be in thermal equilibrium with the SM.
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matrix Õ, that diagonlizes the mass matrix M̃ . Once electro-weak symmetry is broken, �n

receives an additional contribution t its mass.

The zero mode-zero mode-Higgs interaction is thus suppressed by ⇠

q2n , while the zero

mode-“j-th gear”-Higgs interaction is supressed by ⇠

qnOjn. Finally there are interactions

between gear-gear-Higgs that are un-supressed by the clockwork mechanism.

Notice that in the lagrangian (LsFIMP ) above, we have modified the quartic term from

its original form in Eq. 5. This we introduce in order to simplify our calculation of the relic.

This choice of interaction ensures that inspite of the modification of the mass matrix and

eigen-basis by the higgs vev,there are no quartic interactions between the zero mode and the

gears. In fact, in the eigenbasis, the quartic term is simply
P

a4i . We can thus completely

ignore the quartic terms when calculating the relic. We emphasize that this choice of quartic

coupling is not necessary for the freeze-in mechanism to produce the correct relic abundance,

however, there are certain caveats that one must be aware of. For instance, if instead of

using M̃ in the quartic interaction, we were to use M as is done in the original clockwork

setup, then, after electroweak symmetry breaking there will be interactions between the zero

mode a0 and the gears ai. This will result in production of a0 through processes of the form

aiai ! a0ai 3. The strength of the quartic interaction between a0 and the gears is determined

3 Since the gears ai have order one couplings to the higgs, they will be in thermal equilibrium with the SM.

9

Dominant process

Clockworking  a scalar FIMP

above. This also ensures an absence of any higgs-clockwork mixing terms. As mentioned

earlier and as elucidated in Appendix. A, the diagonal mass term t2�2
i /2, does not change

the clockwork mechanism, but adds a mass t to the zero mode as well as to all the gears.

Interactions between the dark matter sector and the standard model arise through the

term |H†H|�2
n. After electroweak symmetry is broken, and �n is expanded in its eigen-basis

(ai), there are trilinear and quartic interactions between zero-modes and the Higgs, as well

as a0a0h and aiaih. We expand the clockwork states in its eigen-basis as, �k =
P

l Oklal.

Thus, expanding the interaction term, with |H| = (v + h)
p
2 we get,

Lint = |H†H|�2
n

= 
nX

j=0,k=0

OklOjmakal(v
2 + 2vh+ h2)/2 (18)

As noted earlier, this provides a small mass to the FIMP that is suppressed by a factor

⇠ q�N . The mass matrix is now modified to be

�iM̃ij�j = �iMij�j + v2�in�jn�n�n . (19)

We assume the gear masses m to be close to the breaking scale f , i.e., at the multi-TeV

scale. This choice also helps evade constraints from LHC and further ensures that v ⌧ m

and will thus have only a small e↵ect on the form of the diagolizaing matrix O. We do

not neglect this e↵ect in our calculations and numerically determine the exact diagonalizing
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Thus, expanding the interaction term, with |H| = (v + h)
p
2 we get,

Lint = |H†H|�2
n

= 
nX

j=0,k=0

OklOjmakal(v
2 + 2vh+ h2)/2 (18)

As noted earlier, this provides a small mass to the FIMP that is suppressed by a factor

⇠ q�N . The mass matrix is now modified to be

�iM̃ij�j = �iMij�j + v2�in�jn�n�n . (19)

We assume the gear masses m to be close to the breaking scale f , i.e., at the multi-TeV

scale. This choice also helps evade constraints from LHC and further ensures that v ⌧ m

and will thus have only a small e↵ect on the form of the diagolizaing matrix O. We do

not neglect this e↵ect in our calculations and numerically determine the exact diagonalizing

matrix Õ, that diagonlizes the mass matrix M̃ . Once electro-weak symmetry is broken, �n

receives an additional contribution t its mass.

The zero mode-zero mode-Higgs interaction is thus suppressed by ⇠

q2n , while the zero

mode-“j-th gear”-Higgs interaction is supressed by ⇠

qnOjn. Finally there are interactions

between gear-gear-Higgs that are un-supressed by the clockwork mechanism.

Notice that in the lagrangian (LsFIMP ) above, we have modified the quartic term from

its original form in Eq. 5. This we introduce in order to simplify our calculation of the relic.

This choice of interaction ensures that inspite of the modification of the mass matrix and

eigen-basis by the higgs vev,there are no quartic interactions between the zero mode and the

gears. In fact, in the eigenbasis, the quartic term is simply
P

a4i . We can thus completely

ignore the quartic terms when calculating the relic. We emphasize that this choice of quartic

coupling is not necessary for the freeze-in mechanism to produce the correct relic abundance,

however, there are certain caveats that one must be aware of. For instance, if instead of

using M̃ in the quartic interaction, we were to use M as is done in the original clockwork

setup, then, after electroweak symmetry breaking there will be interactions between the zero

mode a0 and the gears ai. This will result in production of a0 through processes of the form

aiai ! a0ai 3. The strength of the quartic interaction between a0 and the gears is determined

3 Since the gears ai have order one couplings to the higgs, they will be in thermal equilibrium with the SM.
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     SuperWimps.

Consider a gravitino CDM populated thermally in the early universe through scatterings

7

by decrease in �8 with ⌦m una↵ected, which is better in
making agreement with the BOSS galaxy clustering con-
straint on (⌦m,�8) where the degeneracy between the
two gets broken [51].

The physics behind this resolution is nothing but the
suppression of the growth of the matter fluctuation at
k ⇠ 0.1�1hMpc�1 caused by the free-streaming of the
massive decay product when compared to the ⇤CDM
model prediction. Namely, the way for causing the sup-
pression is identical to that of a usual WDM scenario.
Yet, the DDM scenario is distinguished from the typical
WDM scenario in that the time-dependency is found in
both of the amount of the suppression and the cut-o↵
scale in the matter power spectrum [41]. For that rea-
son the suppression of the linear matter power spectrum
can be delayed until the time as late as z ⇠ 2 � 3 for a
large enough ��1

cdm
and a small enough ⇠. In that case,

the DDM scenario becomes closer to ⇤CDM model in
its e↵ect on CMB power spectrum with ` & O(10) by
avoiding to cause a significant early integrated Sachs-
Wolfe e↵ect and in its prediction for the growth rate
(f�8 ⌘ (d ln �m/d ln a)�8) for the time z & 1. With these
distinctions between the DDM and the WDM scenarios,
the potential significant late integrated Sachs-Wolfe ef-
fect on the CMB anisotropy power spectrum for low `

regime (` ⇠ 10) is expected to be caused by the late time
decay of the DDM and it further distinguishes the DDM
and the usual WDM scenarios.

Now inspired by the above phenomenologically com-
pelling resolution to S8, a natural question from the par-
ticle physics side is whether there exists a well-motivated
BSM model accommodating the DDM scenario address-
ing the S8 tension. Obviously one challenging point in an-
swering the question concerns the non-trivial mass spec-
trum of the three ingredients. We notice that the best-fit
value of ⇠ ' 7⇥ 10�3 is converted to 1% mass di↵erence
between the mother CDM and the massive decay prod-
uct. In the next section, we demonstrate that the model
presented in Sec. II can naturally realize the phenomeno-
logical DDM scenario alleviating the S8 tension when the
assumed Z4 symmetry is the gauge symmetry.

B. Model II

With the basic set-up presented in Sec. II and the dis-
crete symmetry Z4 specified as the gauged one,12 the
model II presented in this section does not have the ad-
ditional superpotential terms given in Eq. (4). Thus,
even after the spontaneous breaking of U(1)B�L at the
energy scale around VB�L ⇠ 1015GeV, the right-handed
neutrino N1 still remains massless. Because of this, sneu-
trino Ñ1 also remains massless until the SUSY-breaking
takes place.

12
Z4 in our model does not su↵er from any gauge anomaly.

Given this set-up, we find that this situation is
well suited for realizing the DDM scenario discussed in
Sec. IVA. Ñ1 is expected to obtain a mass once the
SUSY-breaking takes place and is mediated to Ñ1. Now
the soft mass of Ñ1 can be very close to a mass of grav-
itino provided it is dominantly generated by the gravity
mediation. Remarkably since Ñ1 is the SM gauge singlet,
even if we are to explain heavy enough mass spectrum for
the sparticles in the MSSM consistent with the null ob-
servation of SUSY particles in the LHC by relying on a
gauge mediation, the soft-mass of Ñ1 can be easily domi-
nated by the gravity mediation contribution provided we
assume messengers are singlets under U(1)B�L. Along
this line of reasoning, we see that the coupling between
the gravitino, Ñ1 and N1 in our model can be an excel-
lent candidate of the concrete particle physics example
realizing the DDM scenario resolving the S8 tension.13

For mapping to our model the phenomenological best-
fit values of (��1

cdm
, ⇠) = (56Gyrs, 7 ⇥ 10�3), we refer to

the rate of the gravitino decay to Ñ1 and N1 [52]

�(G̃µ ! Ñ1 +N1) =
m

3

3/2

192⇡M2

P

⇥

1�

✓
m1

m3/2

◆�2 "
1�

✓
m1

m3/2

◆2
#3

.

(12)

where m1 is the soft mass of Ñ1. The replacement of the
mass ratio m1/m3/2 with

p
1� 2⇠ and the substituting

the best-fit value in Eq. (12) yield m3/2 ' 216GeV. The
SUSY-breaking scale read from this m3/2 amounts to

m3/2 =
|F |p
3MP

' 216GeV ! |F | ' O(1021)GeV2
.

(13)
For the gravitino with m3/2 ' 216GeV to explain the

current DM relic density, we notice that the high enough
reheating temperature is necessarily required as shown
below. When scattering and decay processes involved
with strong and EW gauge interactions and top Yukawa
coupling are taken into account for gravitino thermal pro-
duction, the thermal gravitino relic abundance is given
by [53, 54]

⌦3/2h
2 = 0.217

✓
TRH

107GeV

◆✓
100GeV

m3/2

◆✓
mg̃(µ)

10TeV

◆2

,

(14)
where mg̃(µ) is the running gluino mass and the uni-
versal gaugino mass relation was used to write ⌦3/2h

2

13 Another possibility is to consider the MSSM extended by an
anomalous global U(1)PQ symmetry (anomalous with respect
to either SU(3)c or SU(2)L). If the axino is the LSP of the
model, the coupling between gravitino, axion and axino can be
also invoked to make the gravitino DDM candidate. See Refs. [44,
52].
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reheating temperature is necessarily required as shown
below. When scattering and decay processes involved
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duction, the thermal gravitino relic abundance is given
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Generally needs a very large reheating temperature to satisfy the relic density 

Gluino Scattering dominate in the hard thermal loop approximation Rychkov, Strumia 2003



What if the reheating temperature is low ? Thermal processes are suppressed 
 
Gravitino abundance is populated non thermally through decays  

strongly interacting gluino-gravitino-gluon vertex (along with sub-dominant electro-

weakino scatterings). The relic density is proportional to the reheating temperature,

given by,

⌦m3/2
h2

' 0.3
Trh

1010 GeV

1 GeV

m3/2

X

i

ciMi (3)

where Trh is the reheating temperature, m3/2 the gravitino mass, ci are order one

coe�cients, while Mi are gaugino masses. Thus if the reheating temperature is low,

the thermal gravitino abundance is suppressed in the early universe. Viewed from

the other angle, the requiremenet that we do not overclose the universe sets an upper

bound on the reheating temperature for a given gravitino mass.

The SuperWIMP mechanism is therefore a more e�cient way of achieving the observed

relic density of the universe , if the the gravitino is the LSP. The frozen out NSLP can

then decay late to populate the gravitino.

The most well motivated NLSP is the lightest neutralino (�0
1), which can freeze out

via a variety of mechanisms. We take this to be a free parameter in this study, with

the only requirement being that it reproduces the observed relic. The two body decay

width �0
1 ! G̃� is given by,

�(�0
1 ! G̃�) ⌘

cos
2 ✓Wm5

�0
1

48M2
Pm

2
G̃

"
1�

m2
G̃

m2
�0
1

#3 
1 + 3

m2
G̃

m2
�0
1

!
(4)

where ✓W is the Weinberg angle, and MP the reduced Planck mass. In the limit where

the gravitino and the bino mass is close enough, the lifetime is approximately,

⌧ ⌘ 2.3⇥ 10
7

✓
100 GeV

�m

◆3

s (5)

assuming mG̃ ' m�0
1
� 100 GeV. Since the decay width is Planck scale suppressed,

large decay widths and therefore short lifetimes can only be achieved if there is a large

mass hierarchy between the gravitino and the Bino. However, this also means that

the energy of released photon also is significantly large, which has severe consequences

in cosmology. Let’s then rewrite the expression for energy injection in terms of the

energy of the photon. Assuming that the Bino decays at rest, the photon energy is

simply,

E� =

m2
�0
1
�m2

G̃

2m�0
1

(6)
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Energy released in Photons
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.

Let’s also define the fractional energy injected as,

ESM = E�/m�0
1

(7)

.

The decay width can then be written as

�(�0
1 ! G̃�) ⌘

cos
2 ✓Wm5

�0
1

48M2
Pl

E3
SM

⇣
m�0

1
+mG̃

⌘3 ⇣
m2

�0
1
+m2

G̃

⌘

m2
G̃

(8)

Equivalently, we can rewrite the gravitino mass in terms of the injected energy fraction,

as mG̃ ⌘ m�0
1

p
1� 2ESM.

1
.

Note that for short lifetimes (large decay widths), we need a large hierarchy between

the Bino and the gravitino mass, i.e, a ESM implies a lighter gravitino mass.

Similar considerations apply for slepton-gravitino systems. The slepton decay width

to gravitino and a photon is given by,

�(l̃ ! G̃�) ⌘
1

48⇡M2
Pl

m5
l̃

m2
G̃

"
1�

m2
l̃

m2
G̃

#4

(9)

In terms of the SM energy released, this can be rewritten as

�(l̃ ! G̃`) ⌘
16

48⇡M2
Pl

m5
l̃

m2
G̃

E4
SM (10)

Here, it is important to distinguish between various various leptonic species.The elec-

tron assiciated with the selectron decay will immediately initiate an electromagnetic

cascade, and therefore the entirety of the released energy is converted into electromag-

netic energy. For smuons, the associated muons interact with the background photon

with an associated Thomson scattering cross section. As long as the interaction time

is shorter than the time dilated muon decay time, we can safely assume that all of the

1
When kinematically viable, there is an additional decay channel to Z bosons. However this decay channel

is suppressed by a factor 4 due to phase space and a sin
2
(✓W) factor. We therefore ignore this decay width

for this work. As we will observe, this decay can only make the constraint stronger for large mass gaps and

therefore short life times.
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       Cosmological constraints on SuperWimps.

Primary constraints studied so far : BBN, Neff

Total Relic Density : 

2

it can contribute to the radiation density by mimicking
an extra neutrino species. Therefore, such a light grav-
itino dark matter may reduce the Hubble tension. More
interestingly, our framework is highly predictive and can
be tested by the LHC experiment.

LIGHT GRAVITINO DARK MATTER

The gravitino is present in the gauge theory of local
supersymmetry. It is the spin-3/2 superpartner of the
graviton. The gravitino interactions are determined by
supergravity and by the MSSM parameters and are sup-
pressed by the Planck mass. The gravitino mass is ob-
tained via the Super-Higgs mechanism [40] and strongly
depends on the SUSY breaking schemes. In the gauge
mediated supersymmetry-breaking (GMSB) models, the
gravitino is usually the LSP and has a mass in the range
of 1 eV . m3/2 . 1 GeV [41]. However, this light grav-
itino dark matter may lead to some cosmological prob-
lems [42–48]. For example, if the gravitino was thermal-
ized in the early universe, its mass m3/2 should be less
than ⇠ 1 KeV to avoid overclosing the universe. Oth-
erwise, a low reheating temperature of inflation TR is
required to dilute the gravitino abundance and thus fails
to explain the baryon asymmetry by the thermal lepto-
genesis.

On the other hand, the messenger particles are always
predicted by the GMSB models, whose superpotential is
usually given by

W = S�M �̄M +�W (S,Zi), (2)

where S and Zi are respectively the spurion left chiral su-
perfield and the secluded sector fields, and �M and �̄M

are the messenger left chiral superfields which are charged
under the SM gauge group and transmit the SUSY break-
ing e↵ect to the visible sector in terms of gauge interac-
tion at the loop level. In the minimal version of the
GMSB, the messenger number is conserved so that the
lightest messenger particle would easily overclose the uni-
verse, unless it can be diluted to a very low abundance
or has a tens of TeV mass. However, it should be noted
that the lightest messenger can have interactions with
the SM particles and sparticles by introducing additional
messenger-matter interactions or gauge interaction [49–
51]. Then, the late decay of the lightest messenger to
visible sector particles can produce a substantial amount
of entropy, and will dilute the light gravitino relic den-
sity to the observed value in the present universe. The
dilution factor arising from the messenger decay can be
parameterized by

Dm =
4/3MmYm

(90/g⇤⇡2)1/4
p
�mMP

, (3)

where Ym is the yield of lightest messenger, Mm is the
mass of messenger and �m is the messenger decay width,

and g⇤ denotes the number of relativisitic degree of free-
dom at the temperature of the lightest messenger decay.
Given that the gravitino couplings are extremely weak,

the pre-existing gravitino can be in or out of the thermal
equilibrium in the early universe. The freeze-out temper-

ature of the gravitino T
3/2
f is given by

T
3/2
f ⇡ 0.66TeV

⇣
g⇤
100

⌘1/2 ⇣ m3/2

10keV

⌘2✓1TeV

mg̃

◆2

, (4)

where g⇤ is the e↵ective degrees of freedom of relativistic
particles at the gravitino freeze-out temperature and has
the value in the range of 90-140 [52]. mg̃ is the mass of
gluino and should be heavier than 1 TeV according to
the current LHC limits. From Eq. 4, it can be seen that
a keV gravitino corresponds to a low freeze-out temper-

ature T
3/2
f ⇠ 10 GeV. On the other hand, thanks to the

messenger dilution e↵ect, the reheating temperature TR

can be as high as ⇠ 109 GeV for the thermal leptogenesis.
This indicates that such a light gravitino dark matter in
the GMSB should be thermalized in the early universe,
and its relic density can be calculated by
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⌘
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Note that the gravitino can also be non-thermally gener-
ated via the late decay of the NLSP, for examlpe the ra-
diative decay of bino, B̃ ! G̃� [53–55]. As stated above,
such a non-thermal gravitino dark matter may be a solu-
tion to the Hubble constant problem. The non-thermal
relic density of gravitino is given by
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where the mass ratio R ⌘ m
2
B̃
/m

2
˜̀
R
. Given the strong

LHC bounds on the squarks and gluinos, we only in-
clude the contributions of the right-handed sleptons to
the relic abundance of bino NLSP in Eq. 7 [56]. For
simplicity, we assume m˜̀

R
as a common mass parameter

of the three generation right-handed sleptons. It should
be mentioned that only the first-two generation sleptons
should be included in Eq. 7 when mB̃ is less than m⌧ .
Since the decay width of the lightest messenger is much

smaller than the gravitino freeze-out temperature T
3/2
f ,

the messenger decay can dilute the thermally produced
gravitinos. Besides, the freeze-out temperature of the
bino NLSP is usually ⇠ mB̃/20. If the bino mass is

Non-thermal relic
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around 1 GeV, it can still freeze out before the messen-
ger decay and then be diluted by the entropy production.
It should be noted that the non-thermally produced grav-
itinos from the bino late decay will not be further diluted
as long as the bino decay is su�ciently delayed. There-
fore, the final gravitino abundance can be calculated by

⌦3/2h
2 =

1

Dm
(⌦TP

3/2h
2 + ⌦NTP

3/2 h
2). (8)

In our study, we require that the gravitinos solely com-
pose the dark matter and satisfy the observed relic den-
sity within the 3� range, 0.075 < ⌦3/2h

2
< 0.126 [57].

Another benefit of the messenger decay in our
scenario is that the entropy production can cool
down the velocity of the thermally produced grav-
itino dark matter. For example, when a particle with
mass m freezes out from the primordial plasma rel-
ativistically, it has a present-day velocitiy hv

0
3/2i ⇡

0.023kms�1 (g⇤(Tdec)/100)
�1/3 (m/1keV)�1, which will

be reduced to ⇠ hv
0
3/2i/D

1/3
m . Depending on the dilu-

tion factor, the thermally produced gravitino may be-
come non-relativistic, even its mass is less than ⇠ 10 keV.
Whereas, the non-thermally produced gravitino that in-
herits the kinetic energy from the bino decay can be still
relativistic. Due to the vague limits between hot, warm
and cold dark matter, we identify the thermal gravitino
dark matter as the CDM when hv3/2i < 0.1hv03/2i in the
following calculations.

CONSTRAINTS

The gravitino dark matter from the late decay of the
bino can be nearly relativistic, and thus produce an extra
radiation density ⇢

extra
R = f⇥⇢3/2⇥(�3/2�1) in the early

universe, where f = ⌦NTP
3/2 h

2
/(⌦TP

3/2h
2 + ⌦NTP

3/2 h
2) is the

fraction of the non-thermal gravitino density in the total
gravitino production and �3/2 is the boost factor of the
gravitino from the bino decay. At the matter-radiation
equality, the energy density per neutrino species is ap-
proximately equal to 16% of the energy density of CDM.
This implies that the non-thermal gravitino dark matter
that has a kinetic energy equivalent to 1.16 can be re-
garded as an additional neutrino species. Therefore, the
resulting e↵ective neutrino species �Ne↵ can be given
by [29]

�Ne↵ = f ⇥
�
�3/2 � 1

�
/0.16 (9)

with

�3/2(a) = 1 +
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where a⌧ is the scale factor at the time of bino de-
cay. In Ref. [5], a comprehensive investigation of the
CMB data and direct measurements shows a positive

correlation between Ne↵ and H0. For example, when
0.29 < �Ne↵ < 0.85, the Hubble constant can reach
H0 = 74.03 km s�1 Mpc�1. Similar results are also given
in [58]. Thus, increasing the e↵ective number of neutrino
species may provide an avenue to ameliorate the Hubble
tension. However, it should be noted that the extra rel-
ativistic degree of freedom is constrained by the Planck
data and baryon acoustic oscillation (BAO) data, which
indicates Ne↵ = 2.99±0.17 [2]. Comparing with the pre-
diction Ne↵ = 3.046 [59, 60] from the Standard Model
(SM) with three generations of fermions, this produces
an upper bound �Ne↵ < 0.29 at 95 % C.L.. We will
include this constraint in our following numerical calcu-
lations.
On the other hand, we should consider that the non-

thermal gravitino will a↵ect the growth of the structure
due to its large free-streaming length. The free-streaming
starts at the bino decay time and finishes at matter-
radiation equality, which is given by

�FS =

Z teq

⌧
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a(t)
dt
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If the free-streaming distance that the gravitino prop-
agates is larger than ⇠ Mpc set by the Lyman-alpha
forest [61], it roughly cannot form the observed large-
scale structure which in turn puts a constraint on the
non-themral gravitino dark matter. By fitting the CMB
data [2, 62], the large-scale structure observations [61]
and cosmological simulations [63], it is found that the
fraction of the non-thermal gravitino dark matter has to
be very small. In order to suppress such a contribution,
one can require the distortion on the linear matter power
spectra exp(�4.9f) > 0.95 [64, 65], which corresponds to
f < 0.01.
Besides, the late decay of bino via the process B̃ !

G̃� may a↵ect the big-bang nucleosynthesis (BBN) [66],
whose life-time in the limit of mB̃ � mG̃ is approxi-
mately given by

⌧B̃ '
48⇡M2

P

cos2 ✓W

 
m

2
3/2

m
5
B̃

!
. (12)

The photons from the bino decay may induce electromag-
netic showers through their scattering o↵ the background
photons and electrons [67, 68]. The energetic photon in
the shower can destroy the light elements such as D and
4He. The photodissociation of 4He happens at the cosmic
time of & 106s, while photodissociation of D will be im-
portant at higher temperature because of the smallness of
its binding energy, which corresponds to a long-lived par-
ticle with a lifetime longer than 104s [69, 70]. Thus, we
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If the free-streaming distance that the gravitino prop-
agates is larger than ⇠ Mpc set by the Lyman-alpha
forest [61], it roughly cannot form the observed large-
scale structure which in turn puts a constraint on the
non-themral gravitino dark matter. By fitting the CMB
data [2, 62], the large-scale structure observations [61]
and cosmological simulations [63], it is found that the
fraction of the non-thermal gravitino dark matter has to
be very small. In order to suppress such a contribution,
one can require the distortion on the linear matter power
spectra exp(�4.9f) > 0.95 [64, 65], which corresponds to
f < 0.01.
Besides, the late decay of bino via the process B̃ !
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The photons from the bino decay may induce electromag-
netic showers through their scattering o↵ the background
photons and electrons [67, 68]. The energetic photon in
the shower can destroy the light elements such as D and
4He. The photodissociation of 4He happens at the cosmic
time of & 106s, while photodissociation of D will be im-
portant at higher temperature because of the smallness of
its binding energy, which corresponds to a long-lived par-
ticle with a lifetime longer than 104s [69, 70]. Thus, we
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Freeze-in with a charged parent

p.13Andreas Goudelis

contribution in arXiv:1803.10379 
and arXiv:1811.05478

Distinguish three cases:

f = {e"μ"τ} → F transforms as (1, 1, -1)

f = {u"c"t} → F transforms as (3, 1, -2/3)

f = {d"s"b} → F transforms as (3, 1, 1/3)

“Heavy lepton”

“Heavy u-quark”

“Heavy d-quark”

Consider an extension of the SM by a Z
2
-odd real singlet scalar s (DM) along 

with a Z
2
-odd vector-like SU(2)-singlet fermion F (parent).

A Simplified Freeze-in Model

Belanger, DS et al, 2018, 2019 ++



  

Freeze-in with a charged parent

p.14
_

Consider an extension of the SM by a Z
2
-odd real singlet scalar s (DM) along 

with a Z
2
-odd vector-like SU(2)-singlet fermion F (parent).

Andreas Goudelis

contribution in arXiv:1803.10379 
and arXiv:1811.05478

· Study three cases separately.

· Only couple F to the Trst two generations.

· Set Higgs portal to zero → Only relevant coupling: y
s
f.

For simplicity :

i.e. add a single pair of F fermions at a time 

The collider pheno of 3rd generation fermions is a bit more tricky

p

p

l

s

l

s

F

F

�, Z

Figure 1. Diagram for the main production and decay process of F at the LHC, in the leptonic
model.

In order to perform our phenomenological analysis, we have implemented the three
models described by the Lagrangian of Eq.(2.2) in the FeynRules package [63] and exported
them in UFO [64] and CalcHEP [65] file format for use with MadGraph5 aMC@NLO [66]
and micrOMEGAs 5 [67]. The three cases (couplings to leptons, up- and down-type quarks)
have been implemented separately and the corresponding model files can be found in the
FeynRules Model Database [68], or directly in [69].

Before discussing the cosmology and LHC phenomenology of our models, we will briefly
comment on potential additional constraints in each specific case.

2.2.1 Coupling to leptons

In this variant of the model we take f ⌘ ` = {e, µ, ⌧}, which implies that F transforms as
(1,�1) under SU(3)c ⇥ U(1)Y . Since DM communicates with the SM through a Yukawa-
type interaction, we need to pick a flavor structure for the interaction terms in Eq. (2.2).
Since several of the LHC searches considered in section 4.3 require displaced decays (i.e:
within the detector but away from the primary vertex) to electrons and/or muons, we
will only consider couplings to the first two generation leptons7. The LHC signature of
the model, illustrated in Figure 1, is the Drell-Yan pair-production of F followed by the
F ! s` decay, which can be displaced or even take place outside the detector.

LEP2 constraints are relevant and we expect a bound on mF > 104 GeV, namely half
the maximum-center of mass energy. However, there are some loopholes in this statement:
taking into account the decay length c⌧ of F we actually obtain

• mF > 102 GeV for 0.3m . c⌧ . 3 mm.

• mF > 100 GeV for 3m . c⌧ . 300m (assuming 100% decay into muons).

• mF > 100 GeV for 0.3m . c⌧ . 300 mm (assuming 100% decay into electrons).

We have extracted these bounds from the two lower panels of Figure 7 of Ref. [70]. As
stressed in the recent literature, these loopholes from LEP reach can be probed at the
LHC with dedicated searches [71]. As for current collider constraints the current searches

7It is also conceivable to couple the s and F fields to ⌧ leptons. An analysis of a model with interactions
to all e, µ and ⌧ can be found in [57], with the key di↵erence that the dark sector particles have the opposite
spins, namely � is a fermion (gravitino in SUSY) and Y corresponds to a scalar lepton, ⌧̃ .

– 6 –

A Simplified Freeze-in Model



A Simplified Freeze-in Model

  

Non-LLP constraints: earth-bound

p.15
_

Focus on the Trst two models (heavy lepton, heavy u-quark).

Andreas Goudelis

Heavy lepton model Heavy quark model

· LEP2: m
F
 > 104 GeV · Direct collider bounds subleading

Actually slightly weaker, depending
on lifetime

· No EWPT constraints
arXiv:1404.4398

· Muon lifetime: μ → ess

· LFV processes, in particular μ → eγ

Checked, irrelevant

i.e. tiny

Require prompt jets

· Running of α
s 
: m

F
 > few hundred GeV

· Meson mixing: similarly to μ→ eγ, tiny

· Rare decays, e.g. K+ → π+ss

NA62 can reach down to y
s
 ~10-5

Globally: still lots of room for 
interesting phenomenology
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Parent particle lifetime and cosmology

p.16
_

Assuming that DM is mostly populated by F decays, we can relate the relic 
abundance with the parent particle lifetime:

Andreas Goudelis

Freeze-in favours long lifetimes, unless

Dark matter is very light

Additional constraints from

· Primordial nucleosynthesis: F long-lived but decays before neutrino freeze-out

· Lyman-α : m
s
 > 12 keV

Adapted from arXiv:1706.09909

The reheating temperature is low

LHC friendly minimal freeze-in models 7Julia Harz

Cosmological constraints

• relic density

• Lyman-α forest

Boulebnane, Heeck, Nguyen, Teresi, 1709.07283

• Big-Bang Nucleosynthesis

we consider 1cm < cτ < 104m  T~150 MeV�

 � heavy fermions decay well before onset of BBN

relic density implies for a certain reheating temperature T
R
 a speci>c DM mass m

s



  

Signatures at the LHC

p.17
_

So what are the model’s signatures at the LHC?

Andreas Goudelis

· First of all, production through :

· Several search strategies, depending on the lifetime of the parent particle, i.e. 
which part of the detector it mostly decays at (if at all). 

Heavy Stable Charged 
Particles (HSCPs)

Displaced 
leptons/vertices

Disappearing/kinked tracks 

Long lifetimes Short lifetimes

Intermediate lifetimes
(for lepton model)

Drell-Yan (lepton model)

Drell-Yan +QCD (quark model)
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F

F
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Figure 1. Diagram for the main production and decay process of F at the LHC, in the leptonic
model.
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Collider constraints

A Simplified Freeze-in Model



  

Results: lepton model
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Andreas Goudelis

HSCP: Tracker + TOF analysis more powerful 
for larger lifetimes, tracker-only for shorter ones.

DT: Order-of-magnitude diNerence in 
peak sensitivity between ATLAS/CMS

More accurate estimates require extensive input from EXP collaborations
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DT: Order-of-magnitude diNerence in 
peak sensitivity between ATLAS/CMS

More accurate estimates require extensive input from EXP collaborations

  

Results: quark model
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Clear complementarity between 
diNerent LHC searches

HSCP: Tracker-only analysis always more powerful,
neutral R-hadrons fail tracker + TOF selection.

DV: Impressive reach as 
high as cτ

F 
~ 100 m
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A Simplified Freeze-in Model

  

An interplay with baryo/leptogenesis ?

p.23
_
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· Assume s makes up all of dark matter.

· Assume we manage to measure cτ
F
 and m

F
 →  2 free parameters: m

s
 and T

R
.

· DiNicult to access m
s
 → take the lowest value allowed from Lyman-α.

If it doesn’t, argument even stronger!

If it’s heavier, argument even stronger!

If measurements point to T
R
 < T

EW
" T*, we can falsify 

baryogenesis models that rely on eNicient sphaleron transitions

· In E/W baryogenesis and leptogenesis, the reheating temperature must in general 
be larger than both the EW phase transition temperature (T

EW
~160 GeV) and the 

sphaleron freeze-out one (T*~132 GeV).

An upshot:

Belanger, DS, Zurita et al, 2018, 2019 ++



A similar story for SuperWIMPs
Originally used to solve the Lithium-7 problem

strongly interacting gluino-gravitino-gluon vertex (along with sub-dominant electro-

weakino scatterings). The relic density is proportional to the reheating temperature,

given by,

⌦m3/2
h2

' 0.3
Trh

1010 GeV

1 GeV

m3/2

X

i

ciMi (3)

where Trh is the reheating temperature, m3/2 the gravitino mass, ci are order one

coe�cients, while Mi are gaugino masses. Thus if the reheating temperature is low,

the thermal gravitino abundance is suppressed in the early universe. Viewed from

the other angle, the requiremenet that we do not overclose the universe sets an upper

bound on the reheating temperature for a given gravitino mass.

The SuperWIMP mechanism is therefore a more e�cient way of achieving the observed

relic density of the universe , if the the gravitino is the LSP. The frozen out NSLP can

then decay late to populate the gravitino.

The most well motivated NLSP is the lightest neutralino (�0
1), which can freeze out

via a variety of mechanisms. We take this to be a free parameter in this study, with

the only requirement being that it reproduces the observed relic. The two body decay

width �0
1 ! G̃� is given by,
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where ✓W is the Weinberg angle, and MP the reduced Planck mass. In the limit where

the gravitino and the bino mass is close enough, the lifetime is approximately,

⌧ ⌘ 2.3⇥ 10
7

✓
100 GeV

�m

◆3

s (5)

assuming mG̃ ' m�0
1
� 100 GeV. Since the decay width is Planck scale suppressed,

large decay widths and therefore short lifetimes can only be achieved if there is a large

mass hierarchy between the gravitino and the Bino. However, this also means that

the energy of released photon also is significantly large, which has severe consequences

in cosmology. Let’s then rewrite the expression for energy injection in terms of the

energy of the photon. Assuming that the Bino decays at rest, the photon energy is

simply,

E� =

m2
�0
1
�m2

G̃

2m�0
1

(6)
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1 Introduction

The results of a search for long-lived particles (LLP) decaying to a photon and a weakly-
interacting particle are presented. Neutral particles with long lifetimes are predicted in many
models of physics beyond the standard model (SM). In this paper, a benchmark scenario of su-
persymmetry (SUSY) [1–14] with gauge-mediated SUSY breaking (GMSB) [15–23] is employed,
commonly referred to as the “Snowmass Points and Slopes 8” (SPS8) benchmark model [24]. In
this scenario, pair-produced squarks and gluinos undergo cascade decays as shown in Fig. 1,
and eventually produce the lightest SUSY particle (LSP), the gravitino (eG), which is stable and
weakly interacting. The phenomenology of such decay chains is primarily determined by the
nature of the next-to-lightest SUSY particle (NLSP). In the SPS8 benchmark, the NLSP is the
lightest neutralino, ec0

1, and the mass of the NLSP is linearly related to the effective scale of
SUSY breaking, L [15, 25].
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Figure 1: Example Feynman diagrams for SUSY processes that result in diphoton (left) and
single photon (middle and right) final states via squark (upper) and gluino (lower) pair-
production at the LHC.

In the SPS8 model, L is a free parameter whose value determines the primary production
mode and decay rate of SUSY particles. Depending on the value of L, the coupling of the
NLSP to the gravitino could be very weak and lead to long NLSP lifetimes. The dominant
decay mode of the NLSP is to a photon and a gravitino, resulting in a final state with one or two
photons and missing transverse momentum (p

miss
T ). The dominant squark-pair and gluino-pair

production modes also result in additional energetic jets. If the NLSP has a proper decay length
that is a significant fraction of the radius of the CMS tracking volume (about 1.2 m), then the
photons produced at the secondary vertex tend to exhibit distinctive features. Because of their
production at displaced vertices and their resulting trajectories, the photons have significantly
delayed arrival times (order of ns) at the CMS electromagnetic calorimeter (ECAL) compared
to particles produced at the primary vertex and traveling at the speed of light. They also enter
the ECAL at non-normal impact angles.

The present search makes use of these features to identify potential signals of physics beyond
the SM. We select events with one or two displaced or delayed photons, and three or more
jets. Signal events are expected to produce large p

miss
T as the LSP escapes the detector volume

without detection. In the case of very long-lived NLSPs, one of the NLSPs may completely
escape the detector, further increasing the p

miss
T . Previously, similar searches for LLPs decay-

ing to displaced or delayed photons have been performed by the CMS [26] and ATLAS [27]

At LHC one needs to provide a  production model 
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Energy Injection Constraints on SuperWIMPS

Spectral Distortions

Energy Injection Constraints

Distortions of  the Blackbody spectrum of the primordial photon bath

Energy injection and deposition into the Intergalactic Medium (IGM)

The three main eras visible in the left panel of Figure 1 are the y, µ, and g eras. For
redshifts higher than
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⌦bh
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most of the injected energy tends to fully thermalize as the number count changing processes
of DC and BR are very e�cient [24, 96]. Hence, mostly temperature shifts will be caused,
and the era is named the g or thermal era. For redshifts between z = zµy ⇡ 5 ⇥ 104 and
z = zth, the number count changing processes become ine�cient, while CS is still e�cient.
This is the so-called µ era, during which the dominant contribution will be a µ distortion.
The final era is the y era, where CS is ine�cient and the injected energy is only partially
redistributed, so that a y distortion is created. This era lasts between z = zµy and today.
Finally, the residual distortions R(x) account for deviations from this simplified picture. The
corresponding shapes of the distortions at di↵erent times can be seen in the right panel of
Figure 1.

2.4 Causes of the distortions

As shown in the previous section, the magnitude of the final observed SDs has a complete
and unique dependence on the heating history of the universe, which can be parameterized
using the heating rate Q̇. To better understand how to calculate this heating rate, we start
with a general discussion regarding the di↵erence between injected and deposited energy in
Section 2.4.1, and then focus on energy deposition into heating in Section 2.4.2. Furthermore,
in Section 2.4.3 we discuss the di↵erent injection mechanisms predicted by the standard
⇤CDM model. This catalogue relies on the work of many recent publications like [26, 31, 39].
Finally, in Section 2.4.4 we additionally discuss a few of the most common non-standard
injection mechanisms.

2.4.1 Injection and deposition

The energy injection into the intergalactic medium (IGM) through various processes does
not necessarily immediately heat the IGM and the photon bath. As such, we di↵erentiate
energy injection, energy deposition, and various deposition channels. The injected energy is
the energy released by a given process. The deposited energy is the fraction of this energy
that eventually a↵ects the medium after the radiative transfer and electron cooling. The
deposition channels (labelled by an index c) describe the final impacts on the IGM.

The deposition function fc(z) represents the fraction of injected energy that is deposited
in channel c at redshift z. It can be decomposed into an injection e�ciency function fe↵(z)
and a deposition fraction �c(z), with all deposition fractions across all channels summing
up to one,

P
c
�c(z) = 1. The deposition fraction usually depends only on the free electron

fraction xe at a given redshift, and can thus be written as �c(xe(z)). In summary, the
injection and deposition rates are related through

dE

dtdV

����
dep,c

=
dE

dtdV

����
inj

fc =
dE

dtdV

����
inj

fe↵ �c ⌘ Q̇ �c , (2.36)

where we have defined the e↵ective rate of energy injection Q̇ as a useful shorthand. It should
not be confused with Q̇, which is the e↵ective heating term (see also Equation (2.37)).

– 13 –

The three main eras visible in the left panel of Figure 1 are the y, µ, and g eras. For
redshifts higher than

zth ⌘ 1.98 ⇥ 106
✓

1 � YHe/2

0.8767

◆�2/5
✓

⌦bh
2

0.02225

◆�2/5✓
T0

2.726 K

◆
1/5

⇡ 2 · 106 , (2.35)

most of the injected energy tends to fully thermalize as the number count changing processes
of DC and BR are very e�cient [24, 96]. Hence, mostly temperature shifts will be caused,
and the era is named the g or thermal era. For redshifts between z = zµy ⇡ 5 ⇥ 104 and
z = zth, the number count changing processes become ine�cient, while CS is still e�cient.
This is the so-called µ era, during which the dominant contribution will be a µ distortion.
The final era is the y era, where CS is ine�cient and the injected energy is only partially
redistributed, so that a y distortion is created. This era lasts between z = zµy and today.
Finally, the residual distortions R(x) account for deviations from this simplified picture. The
corresponding shapes of the distortions at di↵erent times can be seen in the right panel of
Figure 1.

2.4 Causes of the distortions

As shown in the previous section, the magnitude of the final observed SDs has a complete
and unique dependence on the heating history of the universe, which can be parameterized
using the heating rate Q̇. To better understand how to calculate this heating rate, we start
with a general discussion regarding the di↵erence between injected and deposited energy in
Section 2.4.1, and then focus on energy deposition into heating in Section 2.4.2. Furthermore,
in Section 2.4.3 we discuss the di↵erent injection mechanisms predicted by the standard
⇤CDM model. This catalogue relies on the work of many recent publications like [26, 31, 39].
Finally, in Section 2.4.4 we additionally discuss a few of the most common non-standard
injection mechanisms.

2.4.1 Injection and deposition

The energy injection into the intergalactic medium (IGM) through various processes does
not necessarily immediately heat the IGM and the photon bath. As such, we di↵erentiate
energy injection, energy deposition, and various deposition channels. The injected energy is
the energy released by a given process. The deposited energy is the fraction of this energy
that eventually a↵ects the medium after the radiative transfer and electron cooling. The
deposition channels (labelled by an index c) describe the final impacts on the IGM.

The deposition function fc(z) represents the fraction of injected energy that is deposited
in channel c at redshift z. It can be decomposed into an injection e�ciency function fe↵(z)
and a deposition fraction �c(z), with all deposition fractions across all channels summing
up to one,

P
c
�c(z) = 1. The deposition fraction usually depends only on the free electron

fraction xe at a given redshift, and can thus be written as �c(xe(z)). In summary, the
injection and deposition rates are related through

dE

dtdV

����
dep,c

=
dE

dtdV

����
inj

fc =
dE

dtdV

����
inj

fe↵ �c ⌘ Q̇ �c , (2.36)

where we have defined the e↵ective rate of energy injection Q̇ as a useful shorthand. It should
not be confused with Q̇, which is the e↵ective heating term (see also Equation (2.37)).

– 13 –

The three main eras visible in the left panel of Figure 1 are the y, µ, and g eras. For
redshifts higher than

zth ⌘ 1.98 ⇥ 106
✓

1 � YHe/2

0.8767

◆�2/5
✓

⌦bh
2

0.02225

◆�2/5✓
T0

2.726 K

◆
1/5

⇡ 2 · 106 , (2.35)

most of the injected energy tends to fully thermalize as the number count changing processes
of DC and BR are very e�cient [24, 96]. Hence, mostly temperature shifts will be caused,
and the era is named the g or thermal era. For redshifts between z = zµy ⇡ 5 ⇥ 104 and
z = zth, the number count changing processes become ine�cient, while CS is still e�cient.
This is the so-called µ era, during which the dominant contribution will be a µ distortion.
The final era is the y era, where CS is ine�cient and the injected energy is only partially
redistributed, so that a y distortion is created. This era lasts between z = zµy and today.
Finally, the residual distortions R(x) account for deviations from this simplified picture. The
corresponding shapes of the distortions at di↵erent times can be seen in the right panel of
Figure 1.

2.4 Causes of the distortions

As shown in the previous section, the magnitude of the final observed SDs has a complete
and unique dependence on the heating history of the universe, which can be parameterized
using the heating rate Q̇. To better understand how to calculate this heating rate, we start
with a general discussion regarding the di↵erence between injected and deposited energy in
Section 2.4.1, and then focus on energy deposition into heating in Section 2.4.2. Furthermore,
in Section 2.4.3 we discuss the di↵erent injection mechanisms predicted by the standard
⇤CDM model. This catalogue relies on the work of many recent publications like [26, 31, 39].
Finally, in Section 2.4.4 we additionally discuss a few of the most common non-standard
injection mechanisms.

2.4.1 Injection and deposition

The energy injection into the intergalactic medium (IGM) through various processes does
not necessarily immediately heat the IGM and the photon bath. As such, we di↵erentiate
energy injection, energy deposition, and various deposition channels. The injected energy is
the energy released by a given process. The deposited energy is the fraction of this energy
that eventually a↵ects the medium after the radiative transfer and electron cooling. The
deposition channels (labelled by an index c) describe the final impacts on the IGM.

The deposition function fc(z) represents the fraction of injected energy that is deposited
in channel c at redshift z. It can be decomposed into an injection e�ciency function fe↵(z)
and a deposition fraction �c(z), with all deposition fractions across all channels summing
up to one,

P
c
�c(z) = 1. The deposition fraction usually depends only on the free electron

fraction xe at a given redshift, and can thus be written as �c(xe(z)). In summary, the
injection and deposition rates are related through

dE

dtdV

����
dep,c

=
dE

dtdV

����
inj

fc =
dE

dtdV

����
inj

fe↵ �c ⌘ Q̇ �c , (2.36)

where we have defined the e↵ective rate of energy injection Q̇ as a useful shorthand. It should
not be confused with Q̇, which is the e↵ective heating term (see also Equation (2.37)).

– 13 –

Thermalisation via Compton, Double Compton and Brehmstrahlung scatterings Photon Phase Space Distribution

Distortions manifested in terms of temperature shifts g, chemical potential distortions mu, and Compton distortions y 



       Cosmological constraints on SuperWimps.

Similar considerations for axino SuperWimps  : Additional  freedom in decay width due to axion decay constant
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In consideration : Complementarity between collider, Warm DM bounds

Future : Axino/Gravitino decays for solving Hubble/S8  tensions consistent with constraints 
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We analyze cosmological constraints on superwimps....

I. INTRODUCTION

The pursuit of the true nature of dark matter has
been one of the defining challenges for over four decades.
In the likely scenario of dark matter being of particle
physics origin, the mass range of dark matter candidate
spans forty orders of magnitudes, from the ultra-light
[O(10�21) eV] to the ultra-heavy [O(1015) GeV] [1, 2].
The mechanisms for generating the observed dark matter
abundance are likewise extremely rich, many of which are
also well motivated from a fundamental particle physics
point of view. Leading the pack are Weakly Interact-
ing Massive Particles (WIMPs) provided by the light-
est supersymmetric particle (LSP) of Supersymmetry
(SUSY) [3] .

In R-parity conserving SUSY, the conventional LSP
dark matter candidate is the lightest neutralino, super-
partner of the electroweak gauge particles. With masses
mLSP ⇠ O(0.1–1) TeV and Weak-like interactions with
the Standard Model, the neutralino easily satisfies the
observed relic abundance of the universe and has a range
of signatures at collider physics experiments, as well as
at direct and indirect dark matter searches [4, 5].

In models of Supergravity or in SUSY models extended
to include the axion, however, the lightest neutralino may
not be the LSP, but can decay to lighter particles of these
theories, such as the gravitino or the axino. These de-
cay widths are generally suppressed, either by the Planck
mass mPl or by the axion decay constant fa, leading to a
lifetime for the neutralino that can be much longer than
its freeze-out time scale. Axino or gravitino abundance
can be generated either by thermal scattering in the early
universe , proportional to the reheating temperature, or
non thermally from decays of heavier supersymmteric
particles, the latter dubbed as the SuperWIMPs [6–9].
If the reheating temperature is low, the latter process
dominates.

In this case, dark matter production can take place in a
two-stage process: First, a neutralino population is pro-
duced by interactions with the Standard Model (SM).
Long after these interactions have frozen out, the neu-
tralino decays, whereby their decay products can provide
part or all of the observed dark matter in the universe.
Thus the neutralino is now the next to lightest supersym-
metric particle (NLSP), while the gravitino or the axino
serves as the LSP.

While a mPl- or fa-suppressed NLSP-to-LSP decay

width is a generic feature of the SuperWIMP scenario,
the actual decay width is model-dependent and must
be constrained by experiments/observations. Notably,
because NLSP-to-LSP decays are typically accompanied
by electromagnetic energy release, the potentially huge
amount of energy injected into the cosmic plasma over
a decay time scale comparable to those of big bang nu-
cleosynthesis [BBN; t ⇠ O(20) min] and of the forma-
tion of the cosmic microwave background [CMB; t ⇠

O(105) years] can significantly disrupt these processes.
In this work, we point out that compatibility with

the observed light element (D/H??, Helium-4??) abun-
dances, the CMB energy spectrum, and the CMB tem-
perature and polarisation anisotropies places stringent
constraints on the previously-viable SuperWIMP param-
eter space.
DS: This provides a powerful complementary approach

to conventional SUSY dark matter searches for Super-
WIMPS at the collider experiments. Since, SWIMPs
are extremely weakly coupled, prompt searches are in-
sensitive to a large part of the parameter space. Only
a small sliver can potentially be probed by long-lived
particle searches, ATLAS/CMS or future experiments
like FASER/Mathusla. Thus the coverage of the Su-
perWIMP parameter space depends crucially on a va-
riety of complementary experiments. Additionally, being
extremely weakly coupled, direct and indirect detection
bounds are almost non-existent, and therefore the best
prospects of probing the parameter space is via cosmo-
logical observables.
Cosmological constraints on gravitino SuperWIMPS

have been considered widely in the literature [7, 10–
13]. These constraints primarily look at constraints
from Big Bang Nucleosynthesis (BBN) and constraints
from �Neff bounds. Recently, some constraints have
been derived from CMB lensing data [13]. Additionally
within the context of LHC searches, constraints on grav-
itinos and axinos have been derived within model specific
circumstances[14–18], and correlating with cosmological
bounds. Similar studies have been considered for axino
SuperWIMPs as well [19–24]. Finally, in the recent years,
cosmological anomalies like the Hubble and the �8 ten-
sion has led to solutions involving gravitinos and axinos
and withn the context of decaying dark matter scenarios
[25–27]. It is thus important to have a comprehensive
picture of the SUSY SuperWIMP parameter space from
all possible sources. As we will demonstrate, the pri-
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Conclusions

•Extremely weakly coupled dark matter MeV-TeV dark matter is very well motivated

•Although not in full generality, can be probed in several different experiments

•Provides a synergy between cosmology and colliders

Conclusions
• Although not in full generality, but freeze-in can be tested at colliders 

• Simple freeze-in models have predictive and falsifiable signatures 

•  Leads to a wide array of exotic signatures at the LHC  and beyond.  

• Such scenarios also have interesting cosmological implications, in particular 
baryogengesis  and BBN 

We argue for  experimentalists to actively look for such signatures

Thanks to Julia and Andreas for  some slides
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