Sources of Galactic CRs

Silvia Celli

silvia.celli@roma1.infn.it

INFN

TMEX-2023 THEORY MEETS EXPERIMENTS: PARTICLE ASTROPHYSICS AND COSMOLOGY LÝ THUYẾT GẶP THÍ NGHIỆM: VẬT LÝ THIÊN VĂN HẠT VÀ VŨ TRỤ HỌC

🗰 January 5 - 11, 2023

Quy Nhon, Binh Dinh

19th Rencontres du Vietnam - January 10th 2023

The local CR spectrum

Energy density

- which are the CR sources?
- how can we identify them?
 photon and v astronomy

Spectral shape

- which acceleration mechanism?
- what are the effects of the CR propagation?

Other observables

- Chemical composition
- Sky distribution

Accelerators that can produce particles up to the knee (~1 PeV) with no cut-off are PeVatrons!

Outline of the talk

- The Supernova Remnant (SNR) paradigm for the origin of Galactic cosmic rays:
 - the issue with maximum energy;
 - radiative signatures of SNR PeV activity.
- Alternative hadronic PeVatron candidate sources:
 - Young massive stellar clusters (YMSCs).
- Opening the ultra-high-energy gamma-ray domain: recent detections by LHAASO.

The SNR paradigm for the origin of Galactic CRs

$$\begin{split} U_{\rm CR} &= 0.5\,{\rm eV/cm}^3\\ V &= 4000\,{\rm kpc}^3\\ \tau_{\rm res} &= 15\times 10^6\,{\rm yr}\\ P_{\rm CR} &= \frac{U_{\rm CR}V}{\tau_{\rm res}}\sim 3\times 10^{40}\,{\rm erg/s} \end{split}$$

The SNR paradigm for the origin of Galactic CRs

The SNR paradigm for the origin of Galactic CRs

Proton-proton collisions

<u>1 PeV proton — ~100 TeV gamma rays, ~50 TeV neutrinos/electrons</u>

Gamma rays from SNRs

Drury et al., A&A 287 (1994) 959
Tsuguya & Fumio, J. Phys. G 20 (1994) 477
Funk et al., ARNPS 65 (2015) 245F

Middle-aged SNRs (20000 yrs)

- hadronic emission
- steep spectra
- E_{max} < 1 TeV</p>

Young SNRs (2000 yrs)

- hadronic/leptonic ?
- hard spectra
- E_{max =} 10 100 TeV

Very young SNRs (300 yrs)

- hadronic ?
- steep spectra E^{-2.3}
- E_{max =} 10 100 TeV

Are SNRs proton PeVatrons?

The problem of maximum energy in young SNRs

- <u>Type Ia</u> (e.g. Tycho) \longrightarrow expanding in constant density medium
- <u>Core Collapse</u> (e.g. CasA, RXJ1713.7-3946) expanding in the dense slow wind of the progenitor star

With NRSI, only special explosions can achieve the knee

Cardillo et al., Astropart. Phys. 69 (2015) 1

The role of particle escape or how do accelerated particles become CRs?

The role of particle escape or how do accelerated particles become CRs?

Defines E_{max} and spectral slope of both particles and radiation

A **phenomenological** model to investigate the particle **escape** through spectral and morphological features of evolved SNRs in the HE and VHE domain.

Celli et al., MNRAS 490 (2019) 3

A population study of evolved SNRs

The hydrodinamical evolution of an SNR

contact discontinuity

Vink, A&A Rev 20 (2012) 1

Ejecta-dominated (ED) stage $M_{\rm ej} \gg \frac{4}{3} \pi \rho R_s^3(t)$ free expansion II. Sedov-Taylor (ST) stage $M_{\rm ej} \sim \frac{4}{3} \pi \rho R_s^3(t)$ energy conservation **III.** Radiative stage

→ momentum conservation

IV. Merging phase

pressure comparable to ISM

The hydrodinamical evolution of an SNR

Maximum energy in SNRs

 At Sedov time, particles at maximum energy E_M are still confined:

 $\lambda_{\rm d}(E_{\rm M}, t_{\rm Sed}) \simeq R_{\rm s}(t_{\rm Sed})$

Later in the evolution, particles diffusion length increases faster than SNR shock size:

> $\lambda_{\rm d} \simeq D(E_{\rm M})/v_{\rm s} \propto t^{3/5}$ $R_s \propto t^{2/5}$

Particles previously confined will now violate Hillas criterion —— escape is expected to occur on shorter timescales for the highest energy particles, but it is not an instantaneous process

Maximum energy in SNRs

Celli et al., MNRAS 490 (2019) 3

Maximum energy in SNRs

In the scenario where the maximum momentum of particles confined by the shock is a decreasing function of time, i.e.

$$p_{\max,0}(t) = p_{\mathrm{M}} \left(\frac{t}{t_{\mathrm{Sed}}}\right)^{-\delta} \longrightarrow t_{\mathrm{esc}}(p) = t_{\mathrm{Sed}} \left(\frac{p}{p_{\mathrm{M}}}\right)^{-1/\delta}$$

Ptuskin & Zirakashvili, A&A 429 (2005) 755

 $\delta > 0$: high-energy particles escape earlier

- Magnetic field <u>not</u> amplified $p_{\rm max,0}(t) \propto t^{-1/5}$
- Magnetic field amplification driven by resonant waves $p_{\rm max,0}(t) \propto t^{-7/5}$
- Magnetic field amplification driven by non-resonant waves $p_{\rm max,0}(t) \propto t^{-2}$

$$f_0(p) \propto p^{-4}$$

 $f_{\rm SNR} = 1.5 \times 10^4 \,{\rm yr}, n_{\rm up} = 10 \,{\rm cm}^{-3}$
 $d = 1.5 \,{\rm kpc}, \xi_{\rm CR} = 2\%$
 $D(10 \,{\rm GeV}/c) = 10^{27} \,{\rm cm}^2 {\rm s}^{-1}$

$$f_0(p) \propto p^{-(4+1/3)}$$
$$T_{\rm SNR} = 3 \times 10^4 \,\text{yr}, n_{\rm up} = 10 \,\text{cm}^{-3}$$
$$d = 5.4 \,\text{kpc}, \xi_{\rm CR} = 12\% - 15\%$$
$$D(10 \,\text{GeV}/c) = 3 \times 10^{26} \,\text{cm}^2 \text{s}^{-1}$$

$$f_0(p) \propto p^{-4}$$

$$T_{\rm SNR} = 4 \times 10^4 \,\text{yr}, n_{\rm up} = 10 \,\text{cm}^{-3}$$

$$d = 2.0 \,\text{kpc}, \xi_{\rm CR} = 15\%$$

$$D(10 \,\text{GeV}/c) = 3 \times 10^{27} \,\text{cm}^2 \text{s}^{-1}$$

The CR spectrum injected into the Galaxy

 $f_{\rm inj}(p) = 4\pi \int_0^{R_{\rm esc}(p)} r^2 f_{\rm conf}\left(t_{\rm esc}(p), r, p\right) dr$

$$\longrightarrow f_{\rm inj}(p) \propto v_{\rm esc}^2(p) R_{\rm esc}^3(p) \frac{p^{-\alpha}}{\Lambda(p)}$$

$$\rightarrow f_{\rm inj}(p) \propto \frac{p^{-\alpha}}{\Lambda(p)}$$

Exact balance between v²_{esc} and R³_{esc} during the ST phase

The CR spectrum injected into the Galaxy

 $f_{\rm inj}(p) = 4\pi \int_0^{R_{\rm esc}(p)} r^2 f_{\rm conf}\left(t_{\rm esc}(p), r, p\right) dr$

$$\longrightarrow f_{\rm inj}(p) \propto v_{\rm esc}^2(p) R_{\rm esc}^3(p) \frac{p}{\Lambda(p)}$$

• <u>Ultra-relativistic limit</u> ($p \gg m_p c$):

$$f_{\rm inj}(p) \propto \begin{cases} p^{-\alpha} & \alpha > 4\\ p^{-4} & \alpha < 4 \end{cases}$$

Bell & Shure, MNRAS 437 (2014) 2802

Celli et al., MNRAS 490 (2019) 4317C

Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic Sources

Published online: 17 May 2021

VHE gamma rays from massive stellar clusters

Source	Cyg Cocoon	CMZ	Wd 1 Cocoon
Extension (pc)	50	175	60
Age of cluster (Myr) ²⁸	3–6	2–7	4–6
L_{kin} of cluster (erg/s)	2×10^{38} 37	1×10^{39} ²⁹	1×10^{39} 30
Distance (kpc)	1.4	8.5	4
$\omega_o(> 10 \text{TeV}) \text{ (eV/cm}^3)$	0.05	0.07	1.2

Particle acceleration in wind-blown bubbles

- Anomalous CR composition can't be easily accommodated in the standard SNR scenario for the origin of GCRs
- In particular, the ²²Ne/²⁰Ne appears 5 times larger in CRs than in solar wind <u>Heavy ejecta required</u>

(1977) 377

(2021) 4

Stellar winds vs SNRs

Particle acceleration in wind-blown bubbles

What about Galactic SuperPeVatrons?

- Compelling fit to CR data (spectrum & composition)
- Contribution from clustered SNRs in compact MSCs takes over at few hundreds TeV, creating a knee-like feature

Vieu & Reville, MNRAS 515 (2022) 2256

Acceleration mechanism	$U (\mathrm{km}\mathrm{s}^{-1})$	<i>B</i> (μG)	<i>R</i> (pc)	$E_{\rm max}$, canonical (PeV)	$E_{\rm max}$, optimistic (PeV)
SB forward shock	30	1–10	50-100	0.01	0.1
SNR inside SB	3000	10–50	10–30	1	5
WTS around a compact cluster	2000	10–50	5–30	1	5
SNR embedded in a WTS	5000	10–50	5–30	5	10
HD turbulence	100	1–10	50-100	0.5	1
Collection of individual winds (loose cluster)	10–100	10–50	1–10	0.05	0.5

Conclusions

- LHAASO observations have unveiled many PeVatrons the Milky Way:
 - while spectral studies have allowed to locate accelerators, morphological studies are also needed to firmly identify them.
- The role of SNRs as PeV-hadron accelerators is not yet established, the main difficulties being the maximum achievable energy and the composition of injected particles:
 - isolated SNRs appear to be the main contributors of GCRs up to the knee;
 - none of VHE emitters shows ongoing PeV acceleration, still possibly PeV particles have escaped their shocks within the first 10-100 years;
 - particle escape still nowadays poorly understood, mainly because of its dependence on the dynamics of the magnetic turbulence — MM signatures.
- Massive stellar clusters are promising PeVatrons: a rigorous treatment for acceleration in these systems is still lacking, as it works differently in young and old systems:
 - extreme WTSs might produce PeV particles;
 - SNRs occurring in the hot and turbulent medium within WTSs might accelerate up to 100 PeV;
 - most likely, **mixed scenarios at PeV**.

Thanks for your kind attention!

