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The strong CP problem and axions
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» Measurements of the neutron dipole moment = [vJ| < 1010
» Fine tuning: Why not v = O(1)7!
» The Peccei-Quinn solution:

Promote ¢ to a field which dynamically relaxes to 0 (by
introducing a U(1) chiral symmetry spontaneously broken)



Peccei and Quinn overlooked an important, testable consequence of
their idea. The particles produced by their neutralizing field — its
quanta — are predicted to have remarkable properties. Since they
didn’t take note of these particles, they also didn’t name them.
That gave me an opportunity to fulfill a dream of my adolescence.
Frank Wilczek (Quanta Magazine 2016)



A few years before, a supermarket display of brightly colored boxes
of a laundry detergent named Axion had caught my eye. It
occurred to me that “axion” sounded like the name of a particle and
really ought to be one. So when | noticed a new particle that
“cleaned up” a problem with an “axial” current, | saw my chance.
Frank Wilczek (Quanta Magazine 2016)
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» Mass, myfa = m.f;

» Photon-coupling
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Axion-like particles (ALPs)
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» Scalar particles with spin 1, mass m,, coupling g,
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» Common in theories with spontaneous symmetry breakings
» QCD axion: gay =~ 10_19ma/e\/2
» Can explain inflation (inflaton), dark energy, dark matter, ...



Axion-like particles (ALPs)
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» Common in theories with spontaneous symmetry breakings
» QCD axion: gay =~ 10_19ma/e\/2
» Can explain inflation (inflaton), dark energy, dark matter, ...
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- For the rest of this talk...
» photon-ALP oscillations in astrophysical magnetic fields
> consider extragalactic magnetic fields in simulations
» Assume m, < 10710 eV and 8ay = 10711 Gev1
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SIGNATURES OF PHOTON-ALP
OSCILLATIONS IN PHOTON
SPECTRA



Electromagnetic cascades in extragalactic




Electromagnetic cascades in extragalactic
space




ELMAG [1106.5508, 1909.09210]

Monte Carlo simulation tool for electromagnetic cascades of
high-energy photons and electrons

> -+ yepr = e + e (pair production [E < 105 eV])
> e + yppL = e= + 7 (inverse Compton scattering)

» Photon-axion oscillations in a magnetic field (a <> )

Alternative Python codes:
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The physics of photon-ALP oscillations
Primakoff effect:

RS
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The physics of photon-ALP oscillations
Primakoff effect:
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Oscillation due to a mass difference of two mass eigenstates

= P, s = |(a|W(2))|* = sin?(20)sin (L (m? — m§)>
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= The oscillation length depends on the refractive index!
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The physics of photon-ALP oscillations
Primakoff effect:
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Oscillation due to a mass difference of two mass eigenstates

= P, s = |(a|W(2))|* = sin?(20)sin (L (m? — m§)>
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Contribution to the dispersion

1o Aosc ~ E_l Aosc ~E

Axion mass Aens
Aa . . -
_ Galactic magnetic field
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Signatures of photon-ALP oscillations in
photon spectra

1. Decreased opacity of the Universe

2. lrregularities in photon spectra
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1. Decreased opacity of the Universe

ALPs are not attenuated by the EBL!
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Average
1073 & .
Gaussian turbulence

Q104
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Example: GRB221009A

Photon-ALP oscillations can explain the 18 TeV LHAASO events!

GRB221009A
10+2005...10+800 s

[2210.07172] i

[E?dNIdE(erg/cm®s)
>

o Crab Nebula 0 EBL: Dominguez etal. (2011) \
=== Standard Model M
W/ ALPs \
1g12] — Fermi-LAT spectrum 1075 ] T memi00nev. g 21071 Gev- i
=== Kneiske & Dole (2010) =+ LHAASO highest £ \
----- Dominguez et al. (2011) upper b. » \ i
10" 10~ 5 )
[T TV (N R ' 10° 10 10
E(TeV) Energy (TeV)

Galanti et al. [2210.05659], Baktash et al. [2210.07172], Carenza & Marsh
[2211.02010], Troitsky [2210.09250]...
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2. Wiggles (“irregularities”) in photon spectra
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2. Wiggles (“irregularities”) in photon spectra
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The “irregularities” have the same regular behaviour as in a
homogeneous magnetic field
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A direct detection of ALP wiggles

» Idea: Use the energy dependence of the wiggles as observable
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/ dn q(n)e”

TImin

2

2
G(k) = ~ % Z exp {ink}

events

17



A direct detection of ALP wiggles

» Idea: Use the energy dependence of the wiggles as observable

Mmax ink
/ dn q(n)e”

TImin

2 2

G(k) = ~ % Z exp {ink}

events

» Observables:
> Peak in G(k) for  ~ E~1 at “low” energies
> Peak in G(k) for n ~ E at "high” energies
» No systematic signal otherwise

17



A direct detection of ALP wiggles

» Idea: Use the energy dependence of the wiggles as observable

Mmax ink
/ dn q(n)e”

TImin

2 2

G(k) = ~ % Z exp {ink}

events

» Observables:
> Peak in G(k) for  ~ E~1 at “low” energies
> Peak in G(k) for n ~ E at "high” energies
» No systematic signal otherwise
» This leads to a detection method independent of the modeling
of the magnetic fields

17



A direct detection of ALP wiggles

» Idea: Use the energy dependence of the wiggles as observable

TImax .
/ dn q(n)e™

TImin

2 2

G(k) = ~ % Z exp {ink}

events

» Observables:
> Peak in G(k) for n ~ E~! at “low” energies
> Peak in G(k) for n ~ E at "high” energies
» No systematic signal otherwise
» This leads to a detection method independent of the modeling
of the magnetic fields

» The signal can be used to infer information about the
magnetic field
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Example: detecting axion wiggles

0.10

0.08

Gn(k)IN
Number of photons




Test-statistic example

o
S
)

G(k)— Gp(k)

Gaussian

=== With axions

——  Without axions
1 1

N = 10*
L.=10Mpc 7

0 2 k4

» z=0.1,dN/dE ~ E~12, L. =10 Mpc

6

1.0
0.8
0.6
0.4
0.2

0.0

2'5f dk (GSN'Q G%)J(UB)Z

» The background is estimated by minimising the MLE of a

parametrisation

» Smearing according to the energy resolution of CTA is

included!

10.0
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Is there a signal in the Fermi data?
with M. Meyer

A small (10) preference for ALPs in a new Fermi analysis of the

quasar CTA102 Davies, Meyer & Cot

Jay [GeV~1]

95% excl.

L 3C454.3
CTA 102
3C279

m Total

T T
10t 10? 10%

Jay [GeV~1]

ter (2022):

10-1°

10-11

ms [neVvl]
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Is there a signal in the Fermi data?

with M. Meyer

A small (10) preference for ALPs in a new Fermi analysis of the
quasar CTA102 Davies, Meyer & Cotter (2022):

10-10

o 95% excl.
L 3C454.3
CTA 102
3C279
m Total

T T T
10t 102 10%
ma [neV]

Jay [GeV~1]

10-1°

10-11

10-12

The Fermi tools gtobssim and gtselect makes it easy to look for

ALP wiggles!



CTA, Emin=1000 MeV
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0.04 1:

—0.064:

—— data
—— Simulation (example)

Statistical std
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COMMENT ON THE MODELING
OF THE MAGNETIC FIELD



Simplified magnetic field models are often
used

» In previous plots, the turbulent magnetic field was described as
a Gaussian turbulent field

» In the literature, a domain-like field is oftentimes used
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The opacity depend on the modeling

1077

Average

Gaussian turbulence
=== Domain-like turbulence

Single realisation (Gaussian turb. )
& Cascade without axions
®  No cascade with axions
®  (Cascade with axions

lolll IOIIZ
E[eV]
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Convergence of conversion probability

1 Lt ° @v’
Single realisations i i ‘b:ﬁ\’}}\’&'
0.25F . ! 'S el .
------------ Domain-like i Q)=
----- Gaussian : "’f_,-gap'ss'l_a_&
0.20
i 0.15
L
0.10
0.05 ‘
0.00 60 80

20 40
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Test-statistic example

Gaussian N =10 0.02F " Domain-like field |
0.02 Le=10Mpc 1
= =
S S
I |
= =
O L i ©
= == With axions 001" With axions il
—— Without axions ~ 7 |[—— Without axions |
0 2 k4 6 0 2 k4 6

The lack of variation may lead to a bias in the modeled spectra!
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A positive view of the world

Adapted from
P. Carenza et al. ]
[2208.04333]

0.0 0.2 0.4 0. 0.8
4P,y /gay® (x1024GeVv?)

We might be lucky with the magnetic fields in our Universe!
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Summary

» ALPs are interesting particles

» Photon-ALP oscillations will make characteristic wiggles in
photon spectra with a known energy dependence

» Axion wiggles can be detected using the discrete power
spectrum

» Care should be taken when interpreting results based on
simplified models of the magnetic field

» The variation in realistic magnetic field models might increase
the sensitivity for photon-ALP oscillations

27



BACKUP



Axionic dark matter

» Very light, m, < eV

= Thermal production gives hot dark A Comoving density
matter... %“’e
» Misalignment mechanism @‘0%
(Preskill, Wise, Wilczek 1983, ++) ez
— The axion field oscillates coherently % 1/Temperature

and looses energy by producing
physical axions

Large T

2 oo

T~f,

28

Upq(1) symmetry breaking



The ALP parameter space
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