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Direct detection regimes
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Detection strategy depends on coherence length of dark matter
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Current status: nuclear recoils (SI)
Figure: C. O’Hare
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Ionisation & Bremsstrahlung
Vergados & Ejiri ’04

Kouvaris & Pradler ’17
Ibe+ ‘17

(Inelastic) electromagnetic processes can accompany a nuclear recoil

• Ionisation (Migdal effect)

• Bremsstrahlung

Figure: XENON collaboration
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Ionisation & Bremsstrahlung
Vergados & Ejiri ’04

Kouvaris & Pradler ’17
Ibe+ ‘17

(Inelastic) electromagnetic processes can accompany a nuclear recoil

• Ionisation (Migdal effect)

• Bremsstrahlung

Elastic nuclear recoil:

Inelastic scattering:

Figure: XENON collaboration
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Migdal effect
Migdal 1939

Ionisation/excitation due to displacement of nucleus after nuclear recoil
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Migdal effect
Migdal 1939

Ionisation/excitation due to displacement of nucleus after nuclear recoil

• Observed in 𝛼𝛼,𝛽𝛽± decays

• Not yet observed in neutron scattering – important to validate theory for dark matter searches



In rest frame of nucleus, wavefunction of moving electron cloud 
obtained by Galilean boost:
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Calculating the Migdal rate
Migdal 1939
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Calculating the Migdal rate
Migdal 1939

Transition probability:

electronic wavefunctions at

In rest frame of nucleus, wavefunction of moving electron cloud 
obtained by Galilean boost:
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Calculating the Migdal rate
Migdal 1939

Migdal effect also studied in 

• Molecules (Blanco+ ‘22)

• Semiconductors (e.g. Knapen+ ’20; Liang+ ‘22)

Transition probability:

electronic wavefunctions at

In rest frame of nucleus, wavefunction of moving electron cloud 
obtained by Galilean boost:
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Migdal ionisation probabilities

PC, Dolan, McCabe, Quiney ‘21

• Inner shells dominate rate at high 𝑒𝑒− energies

Additional x-ray / auger electrons from 
de-excitation

• Valence electrons dominate at very low 
energies



Migdal 
ionisation probability
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Migdal rate in DM scattering
PC, Dolan, McCabe, Quiney ‘21



Peter Cox - University of Melbourne – Rencontres du Vietnam

Migdal rate in DM scattering

• Good agreement with earlier dipole 
approximation results (Ibe+ ’17)

• Differences due to orbital energies 
& atomic potential

Comparison with Ibe+ ‘17

Migdal 
ionisation probability

PC, Dolan, McCabe, Quiney ‘21
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Current limits: sub-GeV dark matter

Important to calibrate Migdal effect and validate theory

XENON1T ‘19

Migdal effect provides world-leading limit for 𝑚𝑚𝐷𝐷𝐷𝐷 ≲ 1GeV
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Araujo+ ‘22

• Observe Migdal effect in neutron scattering using optical TPC

• Phase 1: CF4
Phase 2: CF4 + noble gases
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Neutron scattering (MIGDAL experiment)
PC, Dolan, McCabe, Quiney ‘21

• At high recoil velocities, observable rate 
dominated by 

1 hard (keV) 𝑒𝑒− + soft electrons
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Neutron scattering (MIGDAL experiment)
PC, Dolan, McCabe, Quiney ‘21

• At high recoil velocities, observable rate 
dominated by 

1 hard (keV) 𝑒𝑒− + soft electrons

• Must include multiple ionisation 
processes to obtain accurate predictions 
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Direct detection with superfluid He
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Why Helium?

• Low atomic mass – good kinematics for light DM

• Superfluid at cryogenic temperatures

• Readily obtainable and naturally radiopure

• Multiple detectable signals
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Nuclear recoils in superfluid He

Nuclear recoils in liquid Helium can produce a variety of signals:

Figure: D. McKinsey
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Bulk superfluid He detector
Lanou, Maris & Seidel ’87

Guo & McKinsey ’13
Ito & Seidel ’13

Hertel+ ‘18

Adsorption onto surface amplifies signal

Figure: D. McKinsey

Figure: Hertel+ ‘18
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Bulk superfluid He detector
HeRALD (TESSERACT)

*see also DELight proposal (magnetic readout)

Figure: Hertel+ ‘18

Hertel+ ‘18
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Superfluids for sub-MeV dark matter
Sub-MeV dark matter can only excite collective modes 

Figure: arXiv:2108.07275
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Superfluids for sub-MeV dark matter
Sub-MeV dark matter can only excite collective modes 

Figure: arXiv:2108.07275

How to detect phonons with energies ≲ meV ?
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Superfluid optomechanics

superfluid filled optical cavity

Sound waves in superfluid modify refractive index

coupling between optical and phonon modes
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Superfluid optomechanics

photons phonon

superfluid filled optical cavity



Peter Cox - University of Melbourne – Rencontres du Vietnam

Superfluid optomechanics

pump laser

Single phonon detector for 𝜇𝜇eV phonons!

superfluid filled optical cavity

laser

𝜔𝜔𝑚𝑚photons phonon
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Superfluid optomechanics for DM
Baker, Bowen, PC, Dolan, Goryachev, Harris

(work in progress)

(∼ 𝜇𝜇eV )
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Superfluid optomechanics for DM

• Can achieve extremely low energy thresholds

• BUT: narrow-band detectors (single phonon energy)

Small scattering rate due to restricted phase space

Baker, Bowen, PC, Dolan, Goryachev, Harris
(work in progress)
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Superfluid optomechanics for DM

• Can achieve extremely low energy thresholds

• BUT: narrow-band detectors (single phonon energy)

Small scattering rate due to restricted phase space

• Solution: two phonon processes with phonon lasing

rate proportional to phonon occupation number

Baker, Bowen, PC, Dolan, Goryachev, Harris
(work in progress)

Also optomechanical axion detection Murgui, Wang, Zurek ‘22

DM DM

detected 
phonon

pumped 
phonon

+
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Superfluid optomechanics for DM

Preliminary

Baker, Bowen, PC, Dolan, Goryachev, Harris
(work in progress)
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Outlook

• Direct detection can probe a wide-range of dark matter masses, 
including outside traditional WIMP window

• Migdal effect extends reach of existing experiments to lower masses

• Superfluid He is a promising detector material for sub-GeV dark matter

• Optomechanical systems can probe sub-keV masses 
(ongoing R&D and design work) 
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