

Direct detection from the GeV to the eV scale:

Migdal effect to superfluids

Peter Cox The University of Melbourne

Dark matter landscape

Dark matter landscape

Dark matter landscape

Direct detection regimes

Detection strategy depends on coherence length of dark matter

Peter Cox - University of Melbourne – Rencontres du Vietnam

Current status: nuclear recoils (SI) Figure: C. O'Hare 10^{-37} RES 10^{-38} $\begin{bmatrix} 2 \\ 10^{-39} \\ 10^{-40} \\ 10^{-41} \\ 10^{-42} \\ 10^{-42} \\ 10^{-43} \\ 10^{-43} \\ 10^{-45} \\ 10^{-47} \\ 10^{-47} \\ 10^{-48} \end{bmatrix}$ DAMA XENON1T (Migdal) 10^{-40} **CDMSlite** DM DM DarkSide 10^{-41} 10^{-43} 10^{-45} 10^{-46} Neutrino fog Ν Ν 10^{-47} 10^{-48} 10^{-49} 10^{-50} 1 1 1 1 1 1 1 10^{0} 10^{3} 10^{-1} 10^{1} 10^{2} 10^{4} DM mass $[\text{GeV}/c^2]$

Peter Cox - University of Melbourne – Rencontres du Vietnam

Ionisation & Bremsstrahlung

Vergados & Ejiri '04 Kouvaris & Pradler '17 Ibe+ '17

(Inelastic) electromagnetic processes can accompany a nuclear recoil

- Ionisation (Migdal effect)
- Bremsstrahlung

Figure: XENON collaboration

Ionisation & Bremsstrahlung

Vergados & Ejiri '04 Kouvaris & Pradler '17 Ibe+ '17

(Inelastic) electromagnetic processes can accompany a nuclear recoil

- Ionisation (Migdal effect)
- Bremsstrahlung

Elastic nuclear recoil:

$$E_{NR}^{\max} = \underline{0.1 \,\mathrm{keV}} \left(\frac{131}{A}\right) \left(\frac{m_{\chi}}{\mathrm{GeV}}\right)^2$$

Inelastic scattering:

$$\omega_{\rm max} = \frac{1}{2} m_{\chi} v_{\chi}^2 \sim \underline{3 \, \rm keV} \left(\frac{m_{\chi}}{\rm GeV} \right)$$

Figure: XENON collaboration

Migdal effect

Ionisation/excitation due to displacement of nucleus after nuclear recoil

Migdal effect

Ionisation/excitation due to displacement of nucleus after nuclear recoil

- Observed in α , β^{\pm} decays
- Not yet observed in neutron scattering important to validate theory for dark matter searches

Calculating the Migdal rate

Migdal 1939

In rest frame of nucleus, wavefunction of moving electron cloud obtained by Galilean boost:

$$\left|\Psi'\right\rangle = U(\boldsymbol{v})\left|\Psi
ight
angle = e^{-im_{e}\sum_{k}\boldsymbol{v}\cdot\boldsymbol{r}_{k}}\left|\Psi
ight
angle$$

Calculating the Migdal rate

Migdal 1939

In rest frame of nucleus, wavefunction of moving electron cloud obtained by Galilean boost:

$$\left|\Psi'\right\rangle = U(\boldsymbol{v})\left|\Psi
ight
angle = e^{-im_{e}\sum_{k}\boldsymbol{v}\cdot\boldsymbol{r}_{k}}\left|\Psi
ight
angle$$

Transition probability:

$$p_{v} \left(\Psi_{i} \to \Psi_{f}\right) = \left|\left\langle \Psi_{f} \middle| \exp\left(im_{e} \boldsymbol{v} \cdot \sum_{k=1}^{N} \boldsymbol{r}_{k}\right) \middle| \Psi_{i} \right\rangle\right|^{2}$$

electronic wavefunctions at $v = 0$

Calculating the Migdal rate

In rest frame of nucleus, wavefunction of moving electron cloud obtained by Galilean boost:

$$\left|\Psi'\right\rangle = U(\boldsymbol{v})\left|\Psi\right\rangle = e^{-im_{e}\sum_{k}\boldsymbol{v}\cdot\boldsymbol{r}_{k}}\left|\Psi\right\rangle$$

Migdal 1939

Transition probability:

$$p_{v} \left(\Psi_{i} \to \Psi_{f} \right) = \left| \left\langle \Psi_{f} \right| \exp \left(i m_{e} \boldsymbol{v} \cdot \sum_{k=1}^{N} \boldsymbol{r}_{k} \right) \left| \Psi_{i} \right\rangle \right|^{2}$$

electronic wavefunctions at $v = 0$

Migdal effect also studied in

- Molecules (Blanco+ '22)
- Semiconductors (e.g. Knapen+ '20; Liang+ '22)

Migdal ionisation probabilities

- Inner shells dominate rate at high e^- energies
 - Additional x-ray / auger electrons from de-excitation

 Valence electrons dominate at very low energies

Migdal rate in DM scattering

Migdal rate in DM scattering

- Good agreement with earlier dipole approximation results (*lbe+'17*)
- Differences due to orbital energies & atomic potential

Current limits: sub-GeV dark matter

Migdal effect provides world-leading limit for $m_{DM} \leq 1 \text{GeV}$

Important to calibrate Migdal effect and validate theory

- Observe Migdal effect in neutron scattering using optical TPC
- Phase 1: CF_4 Phase 2: CF_4 + noble gases

Electron recoil energy E_e

Neutron scattering (MIGDAL experiment)

PC, Dolan, McCabe, Quiney '21

- At high recoil velocities, observable rate dominated by
 - 1 hard (keV) e^- + soft electrons

Neutron scattering (MIGDAL experiment)

PC, Dolan, McCabe, Quiney '21

- At high recoil velocities, observable rate dominated by
 - 1 hard (keV) e^- + soft electrons

• *Must* include multiple ionisation processes to obtain accurate predictions

Direct detection with superfluid He

Peter Cox - University of Melbourne – Rencontres du Vietnam

Why Helium?

- Low atomic mass good kinematics for light DM
- Superfluid at cryogenic temperatures
- Readily obtainable and naturally radiopure
- Multiple detectable signals

Nuclear recoils in superfluid He

Nuclear recoils in liquid Helium can produce a variety of signals:

Figure: D. McKinsey

Bulk superfluid He detector

Lanou, Maris & Seidel '87 Guo & McKinsey '13 Ito & Seidel '13 Hertel+ '18

Adsorption onto surface amplifies signal

Bulk superfluid He detector

Hertel+ '18

*see also *DELight* proposal (magnetic readout)

Superfluids for sub-MeV dark matter

Sub-MeV dark matter can only excite collective modes

Superfluids for sub-MeV dark matter

Sub-MeV dark matter can only excite collective modes

How to detect phonons with energies \leq meV ?

Superfluid optomechanics

superfluid filled optical cavity

Sound waves in superfluid modify refractive index

→ coupling between optical and phonon modes

Superfluid optomechanics

superfluid filled optical cavity

photons phonon

$$\int \int d^{\dagger} d^{\dagger} d^{\dagger} d^{\dagger} d^{\dagger} a_{\gamma_2} b_m + a^{\dagger}_{\gamma_1} a_{\gamma_2} b_m^{\dagger})$$

$$H_{\rm OM} = -g(a_{\gamma_1}a_{\gamma_2}^{\dagger}b_m + a_{\gamma_1}^{\dagger}a_{\gamma_2}b_m^{\dagger})$$

Superfluid optomechanics

superfluid filled optical cavity

Single phonon detector for μeV phonons!

Baker, Bowen, PC, Dolan, Goryachev, Harris (work in progress)

Baker, Bowen, PC, Dolan, Goryachev, Harris (work in progress)

- Can achieve extremely low energy thresholds
- *BUT*: narrow-band detectors (single phonon energy)
 - → Small scattering rate due to restricted phase space

Baker, Bowen, PC, Dolan, Goryachev, Harris (work in progress)

- Can achieve extremely low energy thresholds
- *BUT*: narrow-band detectors (single phonon energy)
 - → Small scattering rate due to restricted phase space

- Solution: two phonon processes with phonon lasing
 - → rate proportional to phonon occupation number

Also optomechanical axion detection *Murgui, Wang, Zurek '22*

Baker, Bowen, PC, Dolan, Goryachev, Harris (work in progress)

Outlook

- Direct detection can probe a wide-range of dark matter masses, including outside traditional WIMP window
- Migdal effect extends reach of existing experiments to lower masses
- Superfluid He is a promising detector material for sub-GeV dark matter
- Optomechanical systems can probe sub-keV masses (ongoing R&D and design work)

