A critical review of the origin gravitational wave sources Tomek Bulik

Astronomical Observatory, University of Warsaw and Astrocent, CAMK

Current status of detections

- What can be measured:
 - Chirp mass
 - Mass and mass ratio
 - Effective spin
 - Effective precession
 - Statistical proporties

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}.$$

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Primary mass

Peaks in the stellar mass region

Long tail to high masses

Spin distribution

Slight tendency toward positive values

Spins are small

Rates vs redshift

 $\mathcal{L}(U)$

Challenges in formation

- Black hole masses and spins
 - Not a real problem...
- Orbital separation
 - Need to work a little...
- Rate
 - There is quite a lot of them...

What models do we have?

- Stellar models
 - Binary evolution (filed, chemically homogenous, etc.)
 - Cluster evolution (including nuclear cluster
 - AGN disk model
- Primordial BHs

Isolated binary evolution

- Masses
 - must come from stellar evolution
 - PPS mass maximum
 ~ 60-70 Msun
- Effective spins
 - should be aligned at least partially
 - Small or large?
- Rates
 - Should follow SFR

Fig. 1. An example evolutionary scenario leading to formation of a double black hole binary. For details see the text.

Cluster evolution

- Masses
 - Can be much larger (hierarchical mergers)
- Spins
 - Random not aligned
 - Small, large (2nd generation)
- Rates
 - Should peak at higher redshift (peak of GC formation)

Mapelli, 21

AGN disk model

- BH born in stellar evolution
- BBH formed in multi-body interaction in AGN disks similar to planet formation
- Mergers in disk
- Spins isotropic
- Rate small

Primordial binaries

- Masses
 - Correspond to phase transitions in the Early universe (can be below 3Msun)
- Spins
 - Random, small
- Rates
 - Do not have to follow SFR

Comparison with observations

The merger rate densities

- BBH estimate $R = 17 45 \text{Gpc}^{-3} \text{yr}^{-1}$
- BNS estimate $R = 13 1900 \text{Gpc}^{-3} \text{yr}^{-1}$
- BHNS estimate $R = 7.4 320 \text{Gpc}^{-3} \text{yr}^{-1}$
- The local supernova rate ~ $10^5 {\rm Gpc}^{-3} {\rm yr}^{-1}$
- The BH formation rate is ~ $10^4 {\rm Gpc}^{-3} {\rm yr}^{-1}$
- About 1 black hole in a 100-1000 ends up in a merging binary
- Similarly NS: 1 in 100-1000 is in a merging binary!

Basic rate arguments

- Formation scenario must be generic
- Exceptional environments must produce BBH and BNS with very high efficiency
- Dense regions are not favored, but do contribute
- I am skeptical about exotic models

Binary evolution

- Masses –we see too heavy BHs
- Spins
 - slightly positive
 - are small spins a problem?
- Rates increase with z

Small spins

- BH spins measured in accreting binaries are large
- But:
 - Spins of young pulsars
 - Supernova vs GRB rate \rightarrow spins

Cluster evolution

- Masses extend above PPSN gap
- Spins
 - why positive?, consistent with an isotropic subpopulation
 - In hierachical merges should be ~ 0.7
- Rates
 - increase but follow SFR
 - Is there a peak at z=2-3?

AGN model of formation

- GW190521 quasar flare after 35 days.
- Possibility of forming eccentric binaries
- Rates very low... (in my opinion)

Primordial

- Distribution of masses, lack of BHs below the stellar limit.
- Spins positive
 - But a sub-population possible
- Why do the rates follow SFR?
 - Rate conspiracy?

How does it look

Model	Masses	Spins	Rates
Binary			
Cluster			
Primordial			

My conclusion is that we may need more than one scenario to explain observations.

Things I have overlooked

- A hint of three eccentric binaries
 - triple interaction in dense systems if true
- Delay time distribution from studies of GRBs
 - does not fit pop synthesis