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• In a supernova explosion, GWs are generated in the inner core of the
source, so that this messenger carries direct information of the inner
mechanism.
• Although the phenomenon is among of the most energetic in the universe,
the amplitude of the gravitational wave impinging on a detector on the
Earth is extremely faint.
• For a CCSN in the center of the Milky way, a rare event, we could expect
amplitudes of the metric tensor perturbations ranging between 10−21 −
10−23.
• To increase the detection probability we should increase the volume of the
universe to be explored and this can be achieved both by decreasing the
detector noise and using better performing statistical algorithms.

Motivations



MeV Neutrinos from SN1987A



• Thermonuclear Supernovae: Type Ia
Ø Caused by runaway thermonuclear burning of 

white dwarf fuel to Nickel
Ø Roughly of 1051 ergs released
Ø Very bright, used as standard candles
Ø No remnant

• Core Collapse Supernovae: Type II, Ib, Ic
Ø Result from the collapse of an iron core in an 

evolved massive star (MZAMS >8-10 MSUN)
Ø Few x 1053 ergs released in gravitational collapse, 

most (99%) radiated in neutrinos
Ø Spread stellar evolution elemental products

throughout galaxy
Ø Neutron star or black hole remnant

Supernovae



Massive Stars: Burning stages



Massive Stars: End Stage



Onion shell structure of pre-collapse star

Convective burning can lead to large
scale velocity and density
perturbations in the oxygen and
silicon layers (as indicated for the O-
shell).

Shells of progressively heavier elements
contain the ashes of a sequence of
nuclear burning stages, which finally
build up a degenerate core of oxygen,
neon and magnesium or iron-group
elements at the center.

H.-Th Janka, arXiv:1702.08825



Dynamical phases of stellar core collapse and explosion
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A new gravitational wave signature from 
standing accretion shock instabilities in supernovae

T. Kuroda et al., Astrophys.J. 829 (2016) no.1, L14 



✓SASI activity higher for softer EOS (due to high growth rate, e.g., Foglizzo et al. (‘06)).

[Kuroda et al 2016, ApJL, 2014, PRD]

SFHx :softer TM1 :stiffer



Credit: Tomoya Takiwaki

Neutrino driven CCSNe

Bruenn et al. 2016. ApJ 818, 123

Burrows et al. 2007,       ApJ 664, 416

Different scenarios

Magneto-rotationally-driven CCSNe



Phenomenological Waveforms
• The aim of our phenomenological template is to mimic the raising arch
observed in core-collapse simulations.

• The idea is that at each time in the post-bounce evolution, the PNS is in
quasi-hydrostatic equilibrium and any perturbation will excite the
eigenmodes of the system, in particular g-modes.

• These modes are continually being excited by the hot bubble surrounding
the PNS, in particular by convective motions and SASI. At the same time
these excited modes are damped by the PNS conditions (e.g. by the
existence of convective layers that do not allow for buoyantly supported
waves) and by the presence of non-linearities and instabilities (e.g.
turbulence).

• The GW emission can be modelled as a damped harmonic oscillator with a
random forcing, in which the frequency varies with time.



Phenomenological Waveforms

Phys.Rev.D 103 (2021) 6, 063011

• New and more flexible parametrisation
for the frequency evolution.
• The distance is used as a parameter.



Gravitational Wave Observatories

KAGRA

LIGO, Livingston, LA LIGO, Hanford, WA Virgo, Cascina, Italy KAGRA, Gifu, Japan



• This data-driven filter learning provides a visual space decomposition which can be
regarded as a hierarchical matched filtering.

• Convolutional Neural Networks (CNN) are a biologically-inspired trainable
architecture that can learn multi-scale hierarchical features.

Convolutional Neural Network
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The eye: otpical system that creates an upside down image on the retina.
The retina: thin layer of tissue that receives and converts the light into neural signals, and send these signals
on to the brain for visual recognition.
The brain: elaborates the data from the retina and builds the final image.

Mimic the brain



Mimic the brain



Training, Test and Confusion Matrix
The process of achieving the minimisation of the loss function during the
training stage is the process whereby the machine is “learning”.

For the test stage, the CNN will be able to take in input in the form of new
data and its output will best represent the probability of that data belonging
to each of the trained classes.



Aim of our Convolutional  Neural Network

•We want to perform signal detection as an image
recognition task, classifying the images in two classes:
Real detector Noise and Signal+Real detector Noise.
• The input images are the RGB multi-detector scalograms.
• The aim is to build a pipeline for a data-driven weakly-
modelled robust search.
•Our RGB approach allows us to straightforwardly exploit
coincidences among different detectors.
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RGB time-frequency plane
Coincidences among detectors



RGB time-frequency plane
Coincidences among detectors



Architecture of the deep learning 
algorithm

• Mini Inception Resnet v1: reduced version of Inception-Resnet

• Keras framework, based on the TensorFlow backend

• Total number of parameters: 98997

• 30 times more complex than previous network

• The task is treated as a multi-class classification problem with
two classes: the event class and the noise class, by using the
binary cross entropy.
• The training and validation phase, performed in the real
detector noise, is done in 2 h and 21 min using a GPU Nvidia
Quadro P5000, while predicting the test set takes 3 ms for each
2 s long image.



Phys.Rev.D 103 (2021) 6, 063011

Gaussian noise
(Previous work) 

Real noise
(O2 – August 2017)

Previous set: 104 images for each value of Network SNR ∈ [8,40]

• Training set – phenomenological waveforms: 7 x 104 images 
for each distance ∈ [0.2, 3] kpc and random sky localisation.

• Blind set – phenomenological waveforms: 26 x 104 images with 
distances chosen in a uniform distribution ∈ [0.2, 15] kpc.      
NOT involved in the training or validation procedure.

• Test set - numerical simulations from the literature: 6.5 x 104
images with distances ∈ [0.1, 15] kpc 

Data: from Gaussian noise to real noise

In particular, we chose a stretch of real data even containing glitches, taken during August 2017, when
Virgo joined the run. The period includes about 15 days of coincidence time among the three detectors and
we used this data set to generate about 2 years of time-shifts data to train and test the neural network as
noise class.



Measuring and constraining the learning

Efficiency:

False Alarm Rate:

False Positive Rate: 

• The output of the network is a probability vector θ,
which contains the probabilities of the template
belonging to one class or another.

• The classification task is performed according to a
threshold θ*, the template will be classified as event
class only if its porbability overcomes θ*.

Confusion matrix



Phys.Rev. D 103 (2021) 6, 063011

Weighted binary cross-entropy:

w=1 correctly classify the noise
class or the event class is the
same

w=2 it is 2 times more
important to correctly classify
the noise class rather than the
event class.

Comparison with previous work in Gaussian noise
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Validation process in real detector noise
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Results in real detector noise
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Results in real detector noise
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Results in real detector noise



• We trained a newly developed Mini-Inception Resnet neural network
using time-frequency images corresponding to injections of simulated
phenomenological signals, which mimic the waveforms obtained in
3D numerical simulations of CCSNe.
• We computed the detection efficiency versus the source distance,
obtaining that, for signal to noise ratio higher than 15, the detection
efficiency is 70 % at a false alarm rate lower than 5%.
• In the case of O2 run, it would have been possible to detect signals
emitted at 1 kpc of distance, whilst lowering down the efficiency to
60%, the event distance reaches values up to 14 kpc.
• These results are very promising for future detections and the
algorithm has multiple possible extensions.

Conclusions






