18th Rencontres du Vietnam

Where are we now? Where are we going?

Neutrino 2022

Sunny Seo, IBS

Neutrino Physics July 22, 2022

2022 Quy Nohn

"Neutrino 2022"

Organized by IBS, KIAS & KPS

May 30 (M) – June 4 (Sat) 6 days 6 am – 23 pm (KST)

2nd Online meeting using Zoom (fee: 70 Euro)

- > 1,382 people registered (44 countries)
- 84 talks (23 sessions)
- 661 posters (8 sessions w/ Virtual Reality)

Successfully finished !

Milestones of ν History

The last 90 years of v history has been amazingly great !

What problems are still remained & important ?

ν in the 2022 and beyond

□ Neutrino oscillation: precision, MO, CPV

 \Box # of neutrinos: sterile v ?

 \Box Abs. mass of v: KATRIN, Project-8 etc.

Dirac vs. Majorana: $0\nu\beta\beta$

□ Neutrino interaction: CEvNS, v x-section measurements

 \Box Astrophysical v: solar, Supernova, extra galactic v etc.

Neutrino oscillation: precision, MO, CPV

 \Box # of neutrinos: sterile v ?

 \Box Abs. mass of v: KATRIN, Ptolemy, etc.

Dirac vs. Majorana: $0v\beta\beta$

□ Neutrino interaction: CEvNS, v x-section measurements

Astrophysical v: solar, Supernova, extra galactic v etc.

First θ_{13} measurements in 2012

~ 10 years ago

	Double Chooz	Daya Bay	RENO
Publication	PRL 108, 131801 (Mar. 30, 2012)	PRL 108, 171803 (Apr.27, 2012)	PRL 108, 191802 (May 11, 2012)
$sin^2(2\theta_{13})$	0.086	0.092	0.113
Stat. error	0.041 (101 days)	0.016 (49 days)	0.013 (220 days)
Syst. error	0.030 (flux uncert.)	0.005 (MC driven)	0.019 (data driven)
Significance	1.7 σ	5.2 σ	4.9 σ
	Publication sin ² (20 ₁₃) Stat. error Syst. error Significance	Double ChoozPublicationPRL 108, 131801 (Mar. 30, 2012)sin²(2θ13)0.086Stat. error0.041 (101 days)Syst. error0.030 (flux uncert.)Significance1.7 σ	Double Chooz Daya Bay Publication PRL 108, 131801 (Mar. 30, 2012) PRL 108, 171803 (Apr.27, 2012) sin²(2θ ₁₃) 0.086 0.092 Stat. error 0.041 (101 days) 0.016 (49 days) Syst. error 0.030 (flux uncert.) 0.005 (MC driven) Significance 1.7 σ 5.2 σ

sin²(2 θ_{13}) precision in 2012: 18%

Precise θ_{13} measurements in 2022

	Double Chooz	Daya Bay	RENO
Publication	Neutrino 2020	Neutrino 2022	Neutrino 2022
$sin^2(2\theta_{13})$	0.102	0.0853	0.0892
Stat. error	0.004 (F:1350/N:790 d)	 (3158 cal.days)	0.0044 (2900 live days)
Syst. error Total err:	0.011 Total: 0.012	 Total: 0.0024	0.0045 Total: 0.0063
Precision:	11.5% <mark>(</mark> 8.7σ)	<mark>2.8%</mark> (36σ)	7% (14 σ)

> Expected final precision on θ_{13} : 2.7% (Daya Bay) 6.4% (RENO)

Sunny Seo @ IBS

Kam-Biu Luk @Nu2022

 Δm_{32}^2 (NO)

 $\sin^2 2\theta_{13}$

• Hypothesis of no reactor \overline{v}_e with $E_v > 10$ MeV is ruled out at 6.2 σ

Kam-Biu Luk @Nu2022

> Neutrinos w/ E_v > 10 MeV can come from high-Q β -decay of short-lived isotopes, e.g. 88,90Br, 94,96,98Rb

Atm. v: Super-K

Linyan Wan @Nu2022 SK-I ~ SK-V (1996-2020)

+ Expanded FV (+20%) **Oscillation Measurements (SK only)** SK atmospheric 20 SK I-V Expanded FV data fit SK I-V Expanded FV data fit MC expectation at data best-fit neutrino data MC expectation at data best-fit 3.5 Inverted Inverted 15 Preliminary Preliminary favors: Normal Normal $\Delta m_{32}^2 [eV^2]$ ΔX^2 10 maximal mixing 2.5 5 $\delta_{\mathrm{CP}} \approx$ -• NO ($\Delta \chi^2 = 5.8$) 0 $-\pi/2$ $\pi/2$ 0.4 0.5 $-\pi$ π 0.6 $\sin^2\theta_{23}$ δ *Results on MO and χ^2 $\sin^2\theta_{23}$ Δm_{23}^2 930 bins $\delta_{\rm CP}$ δ_{CP} exceed sensitivity. $2.4 \times 10^{-3} \text{ eV}^2$ 1000.42 SK NO 4.71 0.49 $2.4 \times 10^{-3} \text{ eV}^2$ SK IO 1006.19 4.71 0.49 $\sin^2 \theta_{13} = 0.0220 \pm 0.0007$

<u>Atm. v: Super-K</u>

Oscillation Measurements (SK+T2K)

50

40

30

20

10

0

 $\Delta \chi^2$

Linyan Wan @Nu2022

✤ SK-I ~ SK-V (1996-2020)

- Gd loading started in 2020.
- At SK-6, the Gd concentration is 0.011%, corresponding to ~50% neutron tagging efficiency.
- More Gd being loaded NOW!

 With 577 days of data in SK-6, the data quality is as expected in MC, and event rate is consistent with pure water phase.

Linyan Wan @Nu2022

Atm. v: IceCube

Tom Stuttart @Nu2022

v_{μ} disappearance: Latest results

- New measurement of v_{μ} disappearance with 8 years of IceCube data
 - Uses a "golden" sub-sample of ~23,000 track-like events
 - Clean events with low levels of photon scattering \rightarrow robust to ice modelling

Atm. v: KM3NeT

Aart Heijboer @Nu2022

future improvement

soon

- More data 355 -> 540 days
- Better selection & particle identification
- Neutrino Sample increased by a factor 4
- Unblind in next months

later

 Completed ORCA detector will reach unprecedented sensitivity

The JUNO Experiment

77 institutions 607 collaborators

Jiangmen Underground Neutrino Observatory, a multiple-purpose neutrino experiment, approved in Feb. 2013, 300 M\$, online in 2024?

(75+3)% photo coverage

20k 20" PMT 25.6k 3" PMT

- 20 kton LS detector
- 700 m underground
- ~3% energy resolution
- Rich physics possibilities
 - Reactor neutrino for Mass ordering and precision measurement of oscillation parameters
 - Supernova neutrino
 - Geo-neutrino
 - Solar neutrino
 - Atmospheric neutrino
 - Proton decay
 - Exotic searches

JUNO: Precision Measurements

Only JUNO can do! +BG +1% b2b +1%

	Statistics	EScale +1% EnonL
$\sin^2 \theta_{12}$	0.54%	0.67%
Δm ² ₂₁	0.24%	0.59%
Δm ² _{ee}	0.27%	0.44%

MO: ~3 σ (6 yrs data)

2018 precision	Δm_{21}^2	$ \Delta m_{31}^2 $	$\sin^2 \theta_{12}$	$\sin^2 heta_{13}$	$\sin^2 \theta_{23}$	δ
Dominant Exps.	KamLAND	T2K	SNO+SK	Daya Bay	$NO\nu A$	T2K
Individual 1σ	2.4%	2.6%	4.5%	3.4%	5.2%	70%
Nu-FIT 4.0	2.4%	1.3%	4.0%	2.9%	3.8%	16%

Probing the unitarity of U_{PMNS} to 1%, New physics?

JUNO Numbers and Sensitivity Changes

Jie Zhao @Nu2022

	Design (J. Phys. G 43:030401 (2016))	Now (2022)
Thermal Power	36 GW _{th}	26.6 GW _{th} (26%↓)
Overburden	~700 m	~650 m
Muon flux in LS	3 Hz	<mark>4 Hz (33%</mark> î)
Muon veto efficiency	83%	93% (12% ↑)
Signal rate	60 /day	47.1 /day (22%↓)
Backgrounds	3.75 /day	4.11 /day (10%↑)
Energy resolution	3% @ 1 MeV	2.9% @ 1 MeV (3%↑)
Shape uncertainty	1%	JUNO+TAO
3σ NMO sensitivity exposure	< 6 yrs $ imes$ 35.8 GW _{th}	~ 6 yrs \times 26.6 GW _{th}

Phyiscs	Sensitivity
Mass Ordering	3σ (~1 σ) in 6 yrs by reactor (atm.) v
Osc. Parameters	Solar params & $ \Delta m^2_{32} < 0.5\%$ in 6 yrs
SN Burst @10kpc	~5k IBD, ~300 eES, ~2k pES of all-falvor ν
DSNB	3σ in 3 yrs
Solar v	Measure Be7, pep, CNO simultaneously, Measure B8 flux independently
Nucleon decays (p $\rightarrow vK^+$)	8.3x10^33 yrs (90% CL) in 10 yrs
Geo v	~400/yr, 5% measurement in 10 yrs

Current & Future Longbaseline v experiments

23

Current & Future Longbaseline v experiments

	Т2К	NOvA	DUNE	Hyper-K	Τ2ΗΚΚ/ΚΝΟ
Beam	J-PARC	NuMi	NuMi	J-PARC	J-PARC
Beam power	515 kW (in 2020)	700 kW	1.2 →2.4 MW	1.3 MW	1.3 MW
v energy	< 2 GeV		< 8 GeV	< 2 GeV	< 2 GeV
Baselines	280m/295km	1km/810km	1300 km	280m/295km	280m/1100km
Off-axis angle	2.5 ⁰	0.8 ⁰	on-axis	2.5 ⁰	1~3 ⁰
Near Det.	ND280 (on-axis)		DUNE-Prism (on-/off-axis)	ND280 (on-axis)	ND280 (on-axis)
		0.3 kt			
Far Det.	Water Cherenkov	segmented sciintillator	LAr-TPC	Water Cherenkov	Water Cherenkov
	SK (50 kt)	14 kt	4 x 17 kt	260 kt	260 kt
Sunny Seo @ IBS operating		erating	Constr	uction phase	IWC detector for I (off-axis)

24

Sunny Seo @ IBS

Statistical error dominant !

NOvA 2020

Sunny Seo @ IBS

Jeff Hartnell @Nu2022

- New 3-flavor oscillation results:
 - $-\Delta m_{32}^2 = (2.41 \pm 0.07) \times 10^{-3} \text{ eV}^2$
 - $-\sin^2\theta_{23} = 0.57^{+0.04}_{-0.03}$
 - exclude IH, $\delta = \pi/2$ at > 3 σ ,
 - disfavor NH, $\delta = 3\pi/2$ at $\sim 2\sigma$.
- Significant progress on joint fit with T2K
 – coming this year (2022)

Three flavour oscillation parameters

global analysis NuFIT 5.1 results www.nu-fit.org

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

		Normal Ore	dering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 7.0)$
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$
ata	$\theta_{12}/^{\circ}$	$33.45_{-0.75}^{+0.77}$	$31.27 \rightarrow 35.87$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$
ric d	$\sin^2 \theta_{23}$	$0.450\substack{+0.019\\-0.016}$	$0.408 \rightarrow 0.603$	$0.570^{+0.016}_{-0.022}$	$0.410 \rightarrow 0.613$
sphe	$\theta_{23}/^{\circ}$	$42.1^{+1.1}_{-0.9}$	$39.7 \rightarrow 50.9$	$49.0^{+0.9}_{-1.3}$	$39.8 \rightarrow 51.6$
utmo	$\sin^2 \theta_{13}$	$0.02246\substack{+0.00062\\-0.00062}$	$0.02060 \to 0.02435$	$0.02241\substack{+0.00074\\-0.00062}$	$0.02055 \rightarrow 0.02457$
SK a	$\theta_{13}/^{\circ}$	$8.62^{+0.12}_{-0.12}$	$8.25 \rightarrow 8.98$	$8.61\substack{+0.14 \\ -0.12}$	$8.24 \rightarrow 9.02$
with	$\delta_{ m CP}/^{\circ}$	230^{+36}_{-25}	$144 \rightarrow 350$	278^{+22}_{-30}	$194 \to 345$
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.510\substack{+0.027\\-0.027}$	$+2.430 \rightarrow +2.593$	$-2.490\substack{+0.026\\-0.028}$	$-2.574 \rightarrow -2.410$

comparable results:

Bari: e.g. Capozzi et al., 2107.00532 **Valencia:** e.g. deSalas et al., 2006.11237

Th. Schwetz - Neutrino 2022 — 1. 6. 2022

Evolution of global 3 flavour fit

	2012	2014	2016	2018	2021	
	NuFIT 1.0	NuFIT 2.0	NuFIT 3.0	NuFIT 4.0	NuFIT 5.1	
θ_{12}	15%	14%	14%	14%	14%	
$ heta_{13}$	30%	15%	11%	8.9%	9.0%	
θ_{23}	43%	32%	32%	27%	27%	
Δm_{21}^2	14%	14%	14%	16%	16%	
$\left \Delta m_{3\ell}^2\right $	17%	11%	9%	7.8%	6.7% [6.5%]	
$\delta_{ m CP}$	100%	100%	100%	100% [92%]	100% [83%]	1
$\Delta \chi^2_{ m IO-NO}$	± 0.5	-0.97	+0.83	+4.7[+9.3]	+2.6[+7.0]	
				w/o [w]	SK atm data	•

relat. precision at
$$3\sigma: \frac{2(x^+ - x^-)}{(x^+ + x^-)}$$

improvement factor from 2012 to 2021

Thomas Schwetz @Nu2022

3 v Global Fit

Thomas Schwetz @Nu2022

- results from global 3-flavour oscillation fit
 - robust determination of Δm^2_{21} , $|\Delta m^2_{31}|$, θ_{12} , θ_{13}
 - determination of mass-ordering, θ_{23} -octant, CP phase depends on sub-leading three-flavour effects not yet statistically significant
 - interplay of accelerator / reactor / atmospheric data

NuFit 5.1

	best fit MO	$\Delta \chi^2$ (MO)	best fit $\delta_{ m CP}$	$\Delta \chi^2$ (CPC)	oct. $ heta_{23}$	$\Delta \chi^2$ (oct.)
accelerator	Ю	1.5	275°	2.0	2nd	2.2
+ reactors	NO	2.7	195°	0.4	2nd	0.5
+ atmospheric	NO	7.1	230°	4.0	1st	3.2

Neutrino Oscillation Physics in < 2040

	HK: JD Beam v	HK: JD + KD Beam v	HK: JD + KD Beam+ atm. v	DUNE Beam v
Baseline	295 km	295 km + ~ 1100 km	295 km + ~ 1100 km	1300 km
Detector Fiducial Vol.	190 kton water	2 x 190 kton water	2 x 190 kton water	40 kton LAr
POT (run time, v:v)	2.7 x 10 ²² (10 yrs, 1:3)	2.7 x 10 ²² (10 yrs, 1:3)	2.7 x 10 ²² (10 yrs, 1:3)	556/ kt.MW.yr (10 yrs, 1:1)
δ _{CP} = π /2, 3π/2 (known N.O.)	~8σ	> 8 o	> 8 o	[7 σ, 8 σ]
$δ_{CP}$ precision @ $δ_{CP} = \pi/2, 3\pi/2$	22°	13~14°	~11°	~9°
δ _{cP} coverage (known NO)	~76 % at 3 σ	> 76 % at 3 σ	> 76 % at 3 σ	65 % at 3 σ
MO (true: NO)	> 1 σ for all δ_{CP}	> 6 σ for all δ_{CP}	> 7.5 σ for all δ_{CP}	>8σ for all δ _{CP}

□ > 99 % reactor neutrinos are from 4 isotopes: ^{235}U , ^{239}Pu , ^{238}U , ^{241}Pu

> Which isotope(s) is responsible for the 5 MeV excess?

Commercial reactors: Low Enriched ²³⁵U (LEU) 3-5 % ²³⁵U

Cf. Natural Uranium: 0.7% ²³⁵U

Sunny Seo @ IBS

5 MeV excess of ²³⁵**U and** ²³⁹**Pu** @RENO

- 5 MeV excess :
- $-^{235}U = (2.5 \pm 0.7)$ % of the observed total flux (3.9σ)
- $-^{239}$ Pu = (0.9 ± 1.7) % to the observed total flux (0.6 σ)

	Area	Shape normalization
	normalization	(outside the excess)
5 MeV excess of 235 U	0.15 ± 0.05	0.24 ± 0.07
$(\mathrm{cm}^2/\mathrm{fission})$	$(~2.5\pm 0.7\%~)$	$(~4.0~\pm~1.2~\%~)$
5MeV excess of ²³⁹ Pu	0.04 ± 0.07	0.05 ± 0.11
$(\mathrm{cm}^2/\mathrm{fission})$	($0.9\pm1.7\%$)	$(\;1.3\pm2.5\%\;)$

Poster presentation **#599** Seok-Gyeong Yoon, "Reactor Antineutrino Flux and Spectrum at RENO"

> KKJoo @Nu2022

□ Neutrino oscillation: precision, MO, CPV

\Box # of neutrinos: sterile v ?

 \Box Abs. mass of v: KATRIN, Ptolemy, etc.

Dirac vs. Majorana: $0v\beta\beta$

□ Neutrino interaction: CEvNS, v x-section measurements

Astrophysical v: solar, Supernova, extra galactic v etc.

Smoking Guns of Sterile Neutrinos at ~eV?

Reactor v "Flux" Anomaly

RAA = **R**eactor **A**ntineutrino **A**nomaly

(3+1) v RAA best fit: $\Delta m_{41}^2 = 2.4 \text{ eV}^2$, $\sin^2(2\theta_{14}) = 0.14$

→ 5~6% deficit @Near detector data

> Daya Bay and RENO results suggest that v from ²³⁵U is less by ~3 σ than HM model.

 \rightarrow Also need HEU reactors (20-90% ²³⁵U), i.e., research reactors to thoroughly test this.

Daya Bay IBD Yields arXiv:1704.01082

y₂₃₉ = 4.27 ± 0.26 [10⁻⁴³cm²/fission]
 → consistent w/ HM

HM model

- $y_{235} = 6.69 \pm 0.15 [10^{-43} \text{cm}^2/\text{fission}]$
- y₂₃₉ = 4.36 ± 0.11 [10⁻⁴³cm²/fission]

NEOS-II (2018 -- 2020)

- Refurbished detector from NEOS-I.
- Took full fuel cycle (500 cal. days) + 2 OFF periods
- Time evolution of reactor v flux/shape
- spectral decomposition (²³⁵U, ²³⁹Pu)
- Rate+Shape analysis

 Hanbit Reactor & Tendon Gallery

NEOS-II New Results

Jinyu Kim @Nu2022

Preliminary

• Detection efficiency: $45 \pm 1.3\%$ (not finalized yet.)

•
$$y_{235}/y_{239} = 1.36 \pm 0.06$$

- $y_{235} = 6.32 \pm 0.18 \ [10^{-43} \text{cm}^2/\text{fission}]$
- $y_{239} = 4.66 \pm 0.26 [10^{-43} \text{cm}^2/\text{fission}]$

²³⁵U, ²³⁹Pu Spectral Decomposition

NEOS-II @Nu2022

RENO @Nu2022

Daya Bay

VSBL Reactor ν **Experiments**

Experiment	Thermal power [MW _{th}]	Baseline [m]	Target Mass, Vol	Target material	Segment
NEOS **	2800	24	~1 m³	GdLS	None
DANSS **	3000	10-12	1 m ³	PS(Gd layer)	2D
Neutrino-4	100	6-12	1.8 ton	GdLS	2D
PROSPECT	85	7-12	4 ton	⁶ LiLS	2D
SoLid	72	6-9	1.6 ton	PS(⁶ Li layer)	3D
STEREO	57	9-11	2.4 m ³	GdLS	1D
NuLat	Moving ν lab	any	0.9 ton	⁶ LiPS	3D
Chandler	Moving v lab	any	?	PS(⁶ Li layer)	3D

Current VSBL Reactor (3+1) v Limits

46

Baksan Experiment on Sterile Transition

FIG. 8. Allowed regions for two GALLEX, two SAGE and two BEST results. The best-fit point is $\sin^2 2\theta = 0.33$, $\Delta m^2 = 1.25$ eV² and is indicated by a point.

Possible alternative explanation was not identified.

- Cross Section
- Source Strength
- Extraction Efficiencies
- Counting Efficiencies
- Average Path Length

Possible Future Plan

⁶⁵Zn Source (PRD 97 (2018) 073001)

- Higher energy source (1.35 MeV vs. 0.75 MeV).
- Almost twice the cross section.
 - But adds a couple additional excited states.
- 13-14 kg of 95% enriched ⁶⁴Zn to produce 0.5 MCi.
- About 9x longer half life (244 d), many more events even with lower activity.

RAA = **R**eactor **A**ntineutrino **A**nomaly

(3+1) v RAA best fit: $\Delta m_{41}^2 = 2.4 \text{ eV}^2$, $\sin^2(2\theta_{14}) = 0.14$

Neutrino-4:
$$\Delta m_{41}^2 = 7.3 \text{ eV}^2$$
, $\sin^2(2\theta_{14}) = 0.36$

GALLEX+SAGE+BEST:
$$\Delta m_{41}^2 = 1.25 \text{ eV}^2$$
, $\sin^2(2\theta_{14}) = 0.33$

These best fit values are exclued by several VSBL experiments.

MiniBooNE Results in 2020

- Total 17 years of data
- \blacktriangleright Total ~36 x 10²⁰ POT roughly 1.66 : 1 in v : \overline{v}

Neutrino+Anti-neutrino modes excess : 4.80

MicroBooNE

LArTPC

- LAr: 150 ton (80 ton active)
 - TPC: 3 wire planes (2.5 x 2.3 x 10.4 m³) total 8256 wires

> MicroBooNE can distinguish e^{-} and γ .

•

 Mismodeled/unknown process producing photons. e.g. NC Δ resonance radiative decay?

arXiv:2110.14054

6.86 x 10²⁰ POT

(50% data)

MicroBooNE eLEE Search Result

Hanyu Wei @Nu2022

- Observed ν_e candidate rates are statistically consistent with the predicted background rates in the LEE region

(6

ICARUS	
600 m <i>,</i> 476 to	on)

- Detector installation: July '18 '19
- Detector commissioning: 2020
- 1st Physics data: June 2021
- Calibration campaign in process
- Preparing to start its physics run

SBN Sensitivities

- Reach of full program
 - SBND/ICARUS (6.6e20 POT ~ 3 years)
 - MicroBooNE (13.2e20 POT ~ 6 years)

v_e appearance

Appearance and disappearance tested in one program

v_µ disappearance

Sunny Seo @ IBS

Sterile v search w/ IsoDAR@Yemilab

Future Sterile v Sensitivities in $v_e \rightarrow v_e$

Daniel Winkleihner @Nu2022

• On timescales from 2-5 years there are good prospects to cover the most important regions in parameter space

- 2y: PROSPECT-II → high ∆m2
- 3y: JUNO-TAO \rightarrow low Δ m2
- 5y: IsoDAR@Yemilab → full coverage

Sterile v Search w/ IsoDAR@Yemilab

→ IsoDAR@Yemilab can well distinguish different new physics models.

• The (<u>3+1)+decay model</u> significantly reduces the tension between appearance and disappearance experiments, improving the global-data goodness-of-fit.

1910.13456

JSNS² @J-PARC

Direct tests for LSND

Experiment	ν -source	Energy E_{ν}	Distance L	Signal
LSND [1]	π DAR	$40 { m MeV}$	30 m	$\bar{ u}_{\mu} ightarrow \bar{ u}_{e}$
MiniBooNE [2]	π DIF	$800 { m MeV}$	600 m	$ u_{\mu} \rightarrow \nu_{e} \ / \ \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} $
FNAL SB program [7]	π DIF	$800 { m MeV}$	110 m / 470 m / 600 m	$ u_{\mu} \rightarrow \nu_{e} \ / \ \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} $
$JSNS^2$ [6]	π DAR	$40 { m MeV}$	24 m	$\bar{ u}_{\mu} ightarrow \bar{ u}_{e}$

- 17 ton GdLS target (cf. LSND = 167 ton LS)
- Better E resolution than LSND (2.4 % vs 7% at 45 MeV)

keV Sterile v Searches

keV sterile v \rightarrow good candidate of warm DM If purely keV sterile v DM \rightarrow m_v > 0.4 keV

"Light" keV Searches (1 – 10 keV) – Hints?

- Few keV mass neutrinos are strong WDM candidates
- Deep-field X-ray measurements of galactic clusters hint at a 3.5 keV line

R. Adhikari et al., JCAP 25 (2017)

7.1 keV neutrino?

N. Cappellutiet al., Astrophys. J **854**, 179 (2018) F.A. Aharonian et al., Astrophys. J **837**, L15 (2017) A. Boyarsky et al., Phys. Rev. Lett. **113**, 251301 (2014)

Or something else? Dessert *et al.*, Science **367**, 1465–1467 (2020)

Kyle Leech @Nu2022

Image Courtesy: HITOMI/NASA

These measurements provide intriguing hints of new physics, BUT we need model independent measurements across a wide mass range for definitive searches....

Here is where the power of beta decay plays a major role!

keV Sterile v Searches

Kyle Leech @Nu2022

\Box In Particle Phys. keV sterile v are searched in beta decays (³H, ²⁴¹Pu, etc) or EC

keV Sterile v Searches: Conclusion & Outlook

Kyle Leech @Nu2022

- Nuclear decay provides a powerful, modelindependent probe in the keV – MeV mass range
- Significant progress in measurements over the past 3 years – enabled by quantum sensing
- Experiments poised to increase sensitivity by 5+ orders of magnitude in the next decade

Cosmological Limits on N_{eff}

PDG 2021

	Model	95%CL	Ref.
CMB alone			
Pl18[TT,TE,EE+lowE]	$\Lambda { m CDM}{+}N_{ m eff}$	$2.92\substack{+0.36 \\ -0.37}$	[22]
$\overline{\text{CMB} + \text{background evolution} + \text{LSS}}$			
$\overline{\text{Pl18}[\text{TT}, \text{TE}, \text{EE}+\text{lowE}+\text{lensing}] + \text{BAO}}$	$\Lambda { m CDM}{+}N_{ m eff}$	$2.99\substack{+0.34\\-0.33}$	[22]
" $+$ BAO $+$ R21	$\Lambda { m CDM}{+}N_{ m eff}$	$3.34 \pm 0.14 \ (68\% CL)$	[11]
	" $+5$ -params.	$2.85 \pm 0.23~(68\% { m CL})$	[23]

[11] N. Schöneberg et al. (2021), [arXiv:2107.10291.

- [22] N. Aghanim et al. (Planck) (2018), [arXiv:1807.06209].
- [23] E. Di Valentino, A. Melchiorri and J. Silk, JCAP 01, 013 (2020), [arXiv:1908.01391]

□ Neutrino oscillation: precision, MO, CPV

 \Box # of neutrinos: sterile v

\Box Abs. mass of v: KATRIN, Project-8, etc.

Dirac vs. Majorana: $0v\beta\beta$

□ Neutrino interaction: CEvNS, v x-section measurements

Astrophysical v: solar, Supernova, extra galactic v etc.

KATRIN v Mass Measurement

>70e6 e⁻ registered

Abs. v Mass Sensitivity

Cyclotron Radiation Emission Spectroscopy (CRES) technique

Cosmological Limits on $M_{\nu} = \sum_{i} m_{i}$

PDG 2021	Model	95% CL (eV)	Ref.
	$\Lambda { m CDM} {+} {\sum} m_{ u}$	< 0.54	[22]
	$\Lambda { m CDM}{+}{\sum}m_{ u}$	< 0.26	[22]
volution			
Pl18[TT+lowE] + BAO		< 0.13	[43]
Pl18[TT,TE,EE+lowE]+BAO $\Lambda CDM + \sum m_{\nu} + 5$ params.		< 0.515	[23]
	$\Lambda { m CDM} {+} {\sum} m_{ u}$	< 0.44	[22]
Pl18[TT,TE,EE+lowE+lensing]		< 0.24	[22]
$\overline{\text{CMB} + \text{probes of background evolution} + \text{LSS}}$			
SD	$\Lambda { m CDM} {+} {\sum} m_{ u}$	< 0.10	[43]
$-\lambda$ yman- α	$\Lambda { m CDM}{+}{\sum}m_{ u}$	< 0.087	[44]
SD + Pantheon	$h + DES \Lambda CDM + \sum m_{\nu}$	< 0.13	[45]
	PDG 2021 volution volution + LS SD Jyman- α SD + Pantheon	PDG 2021Model $\Lambda CDM + \sum m_{\nu}$ $\Lambda CDM + \sum m_{\nu}$ volution $\Lambda CDM + \sum m_{\nu} + 5$ params. $\Lambda CDM + \sum m_{\nu} + 5$ params. $\Lambda CDM + \sum m_{\nu}$ $\Lambda CDM + \sum m_{\nu}$ volution + LSSSD $\Lambda CDM + \sum m_{\nu}$ $\Lambda CDM + \sum m_{\nu}$ SD $\Lambda CDM + \sum m_{\nu}$ $\Lambda CDM + \sum m_{\nu}$ SD + Pantheon + DES $\Lambda CDM + \sum m_{\nu}$	PDG 2021Model95% CL (eV) $\Lambda CDM + \sum m_{\nu}$ < 0.54

[22] N. Aghanim et al. (Planck) (2018), [arXiv:1807.06209].

- [23] E. Di Valentino, A. Melchiorri and J. Silk, JCAP 01, 013 (2020), [arXiv:1908.01391]
- [43] S. Alam et al. (eBOSS), Phys. Rev. D 103, 8, 083533 (2021), [arXiv:2007.08991].
- [44] N. Palanque-Delabrouille et al., JCAP 04, 038 (2020), [arXiv:1911.09073].
- [45] T. M. C. Abbott et al. (DES) (2021), [arXiv:2105.13549

Dirac vs Majorana v

 $0\nu\beta\beta \rightarrow Majorana \nu$, LNV, absolute ν mass (m_{$\beta\beta$})

ββ Emission Isotopes

Better

Experimental Sensitivity of $T_{1/2}$ (0v $\beta\beta$)

Sunny Seo, IBS

Energy Resolution of 100-kg class $0\nu\beta\beta$ Experiments

Fedor Simkovic @Nu2022

- Resolution better than 2% FWHM to fully reject 2vββ mode
- Solar v is not an issue for 100 kg-class 0vββ experiments

Current $0\nu\beta\beta$ Limits at 90% C.L.

Fedor Simkovic @Nu2022

Experiment	Isotope	Exposure	$T^{0\nu}{}_{1/2}[10^{25} m yr]$	m _{ββ} [meV]
		[kg yr]		
Gerda	⁷⁶ Ge	127.2	18	79-180
Majorana	⁷⁶ Ge	26	2.7	200-433
CUPID-0	⁸² Se	5.29	0.47	276-570
NEMO3	¹⁰⁰ Mo	34.3	0.15	620-1000
CUPID-Mo	¹⁰⁰ Mo	2.71	0.18	280-490
Amore	¹⁰⁰ Mo	111	0.095	1200-2100
CUORE	¹³⁰ Te	1038.4	2.2	90-305
EXO-200	¹³⁶ Xe	234.1	3.5	93-286
KamLAND-Zen	¹³⁶ Xe	970	23	36-156

Isotope masses, efficiencies, sensitive background & exposure and backgrounds

Sensitive background and exposure for recent & future Exp.

Future prospect of JUNO

After the completion of the primary physics goals, JUNO can be upgraded by loading 0vββ isotope into LS, for searching for 0vββ (~2030)

The most sensitive to probe the Majorana nature of neutrinos, aiming at a sensitivity level of $|m_{ββ}|^{\sim}$ meV

Zhao et al., CPC 41 (2017) 053001
~10² tons of 0vββ target;
best LS shielding;
excellent energy
resolution (3%/VE);
ultra-low background

	Isotope	mass (ton)	<m<sub>ββ>, meV</m<sub>
KamLAND-Zen	¹³⁶ Xe	1	61-165
EXO	¹³⁶ Xe	0.2	93-286
nEXO	¹³⁶ Xe	5	7-22
GERDA	⁷⁶ Ge	1	10-40
Majorana	⁷⁶ Ge	1	10-40
SNO+	¹³⁰ Te	8	19-46
JUNO-ββ	¹³⁶ Xe	50	4-12
	¹³⁰ Te	100-200	2-6 ?

Liangian Wen @WIN 2021 □ Neutrino oscillation: precision, MO, CPV

 \Box # of neutrinos: sterile v

 \Box Abs. mass of v: KATRIN, Ptolemy, etc.

Dirac vs. Majorana: $0v\beta\beta$

Neutrino interaction: CEvNS, v x-section measurements

Astrophysical v: solar, Supernova, extra galactic v etc.

Coherent Elastic v-Nucleus Scattering

$$\frac{d\sigma}{dT} \approx \frac{G_F^2 M}{4\pi} Q_W^2 \left(1 - \frac{MT}{E_v^2} + \left(1 - \frac{T}{E_v} \right)^2 \right)$$
$$Q_W = (1 - 4\sin^2 \theta_W) ZF_Z(Q^2) - NF_N(Q^2)$$

Predicted in 1974 (Freedman)

Coherent up to ~ 50 MeV

COHERENT @ Oak Ridge SNS

✓ 2017: > 6 σ (CsI) discovery
 ✓ 2019: 4.9 σ (LAr)
 ✓ 2020: > 11 σ (CsI) w/ > x2 stat.

$$169^{+30}_{-26} imes 10^{-40}
m \, cm^2$$

14.6 kg Csl crystal

CEvNS Detections and Future Prospects

Physics with CEvNS

- Weak mixing angle (θ_W) \rightarrow probe dark Z at low q²
- Sterile neutrino search
- Neutrino magnetic moment
- NSI, DM, etc.

CEvNS Prospects

- □ COHERENT is comissioning two detectors in 2021.
 → 16 kg <u>Ge</u> PPC, ton-scale <u>Nal</u> scintillator crystal
- □ The <u>2nd target station</u> is planned at SNS at Oak Ridge.
 → Very large detectors, new detector ideas could be realized.
- Many CEvNS experiments at reactor sites are expected to obtain new results in the near future.
- CEvNS: good test ground for BSM physics.
- "Magnificent CEvNS" workshop is held yearly basis.

v X-section Measurements

WHAT'S NEXT

Laura Fields @Nu2022

- Neutrino-electron scattering will reduce flux uncertainties
- **Testbeam measurements** will reduce detector systematics
- Big focus on ratios (e.g.
 v/v
 µ, ve/vµ)
- Improved reconstruction -> exclusive measurements

- New Wagasci/Babymind detectors
- ND280 upgrade will bring larger angular acceptance, lower tracking threshold, neutron sensitivity
- Improved statistics

- Multi-differential cross sections
- Doubled statistics, better reconstruction
- Special variables (e.g. TKI)

- Completed data taking in 2019, but 30+ active analyses ongoing
- A-dependence of 0pi, I-pi
- Deep and shallow inelastic scattering
- Data preservation project

36

□ Neutrino oscillation: precision, MO, CPV

 \Box # of neutrinos: sterile v

 \Box Abs. mass of v: KATRIN, Ptolemy, etc.

Dirac vs. Majorana: $0v\beta\beta$

□ Neutrino interaction: CEvNS, v x-section measurements

Astrophysical v: solar, Supernova, extra galactic v etc.

Borexino

- Operation: 2007 2021 @LNGS
- 300 ton LS (~2200 PMTs, ~6% @1MeV)
- Very low radioactive BKG

Isotope	2007-2010	2012-2020
238 U	$1.6 \pm 0.1 \ 10^{-17} \text{ g/g}$	$< 9.4 \ 10^{-20} \ g/g$
²³² Th	5.1 ± 1 10 ⁻¹⁸ g/g	$< 5.7 10^{-19} g/g$
⁸⁵ Kr	~ 30 cpd/100 t	~ 5 cpd/100 t
210 Bi	~ 40 cpd/100 t	~ 10 cpd/100 t

DETECTION RATE IN BOREXINO

93

****** Notable achievements of Borexino

Source	Count Rate [cpd/100t/d]	Comments on detection	First detection in BX
⁷ Be	~ 48	Clear signature on the shoulder	2007
8 B	<1	Small, but high energy, low background	2010
рер	~ 3	Weak signature on top of ¹¹ C	2012
рр	~ 140	Low energy, partially covered by ¹⁴ C	2014
CNO	~ 5	Small signal, migrating background (see talk)	2020
hep	Not measurable today	Signal too low, mostly covered by ⁸ B	never

94

Borexino CNO v Measurement

Barbara Caccianiga @Nu2022

CNO neutrinos: tagging ²¹⁰Bi with ²¹⁰Po

²¹⁰Pb \rightarrow ²¹⁰Bi + β^{-} (τ =33y) ²¹⁰Bi \rightarrow ²¹⁰Po + β^{-} (τ =7d) ²¹⁰Po \rightarrow ²⁰⁶Pb + α (τ =200d) At secular equilibrium, rate(²¹⁰Po) = rate(²¹⁰Bi);

Borexino CNO Update in 2022

- Increased exposure by ~33%
- Cleaner data set
- More stable temperature
- \rightarrow More stringent limit on ²¹⁰Bi

R (²¹⁰Bi) < 10.8+/- 1.0 counts/day/100t

Results (including sys errors) Rate(CNO)= 6.7 ^{+2.0} _{-0.8} cpd/100t φ(CNO)= 6.6 ^{+2.0} _{-0.9} x 10⁸ ν cm ⁻² s ⁻¹

 \rightarrow CNO-null hypothesis is excluded at ~ 7 σ .

Barbara

Caccianiga

@Nu2022

Borexino New Results

 \Box CNO-null hypothesis excluded at ~ 7 σ

- First measurement of N_{NC} in the Sun with solar neutrinos
- N_{NC} in good agreement with HZ photospheric measurements;
 ~2σ tension with the LZ photospheric measurements;
- CNO+7Be+8B neutrino flux results from BX disfavor SSM-LZ at 3.1σ (when compared to HZ-SSM)

LSC @Yemilab, Korea

Yemilab: new underground lab in Korea (1 km overburden)

Broad Physics Program @Yemilab

IceCube

- Operation: 2005 present @S. Pole
- 86 strings (60 DOMs/string) in $1 \text{km}^3 \rightarrow \text{completion}$: 2011

=== Notable achievements ===

- Discovery of astrophysical v events in 2013
 → more events w/o source identification
- Identification of astrophysical v source in 2018
 Blazar TXS 0506+056: IC-170922A v
 - \rightarrow open up multi-messenger astronomy
- Glashow resonance event at 6.3 PeV in 2016 data

 $\mathsf{E}_{\mathsf{vis}}$: 2.6 PeV (ν_{μ} : > 10 PeV, ν_{τ} : ~100 PeV)

 E_v : 1.14 PeV

Gen2 Goals:

- -- Identification of more astro. v sources
- -- Precise measurement of astro. v spectral power law index & flavor ratio
- -- Multi-messenger v astronomy etc.

O(10) PeV neutrinos/year

Baikal-GVD construction status and schedule Status 2022: 10 clusters, 5 laser stations, experimental strings

Zhan Dzhikibayev @Nu2022

Year	Number of clusters	Number of OMs
2016	1	288
2017	2	576
2018	3	864
2019	5	1440
2020	7	2016
2021	8	2304
2022	10	2880
2023	12	3456
2024	14	4032
2025	16	4608
2026	18	5184

Baikal-GVD

Zhan Dzhikibayev @Nu2022

Baikal-GVD is now the largest neutrino telescope in the Northern Hemisphere and growing

Modular structure of GVD design allows a search for HE neutrinos and multimessenger studies at the early phases of array construction.

>Observations of atmospheric neutrinos by Baikal-GVD agree with expectations

Up-going events + down-going HE cascade events (2018-2021: 5522 live days in terms of one cluster)

First 25 astrophysics neutrino candidate events have been selected -Baikal-GVD confirms IceCube observation of astrophysical diffuse neutrino

> 16 events are expected from IceCube E^(-2.46) diffuse astrophysical v flux

Plan

flux at 3σ level

 > 2025/2026 – ~ 1km³ GVD with total of 16-18 clusters
 > 2022-2024 – "Conceptual Design Report" for next generation neutrino telescope in Lake Baikal

KM3NeT

IceCube
 GVD, Russia
 KM3NeT, Sicily
 ONC, Canada
 Galactic center/plane
 TXS 0506+056
 H15°
 -180°
 -180°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 -19°
 <li

- ARCA (Astronomy) @French sea
- -- 115 strings, 18 DOMs / string
- -- 31 PMTs/DOM (Total: 64k*3" PMTs)
- ORCA @Italian sea
 - -- NMO+ v properties

Antares & ARCA 6

Aart Heijboer @Nu2022

KM3NeT

P0173

Cosmic neutrinos

Antares data fully compatible with comic flux

- Data: 50 events (27 tracks + 23 showers)
- Background : 36.1 ± 8.7

ARCA 6, 101 days

- Sample dominated by muon,
- No high-E excess due to neutrinos
- Results compatible with background

Neutrino 2022 Group Photo

Hope v continues !

Nu1972

Feynman & Pontecorvo planting twin-oak trees

Twin-oak trees in 2021

Nu2072

?