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-> Axion, Dilaton etc.

-> Theory interacts with Experiment: How Dark Matter 
interacts with Standard Model Particles, Optimise Signal

-> Reduce Noise, Fundamental Limit is Quantum Noise    

-> Surpass Quantum Limit: Quantum Metrology
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(2) ORGAN
(4) LCR Circuits

(3) UPLOAD

(6) SCALAR DARK MATTER
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Measure

c2Massaxion = hfphoton



Axion is predicted to be produced in the early Universe
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https://cajohare.github.io/AxionLimits/docs/ap.html

• This is a QCD axion that 
was created before 
inflation. 


• GUT-scale axion clear 
proof of new physics at 
this scale.


• Expanded Higgs sector or 
additional quarks.


• Connected to CMB 
signatures.

Consequence of Discovery:











2) ORGAN: Oscillating Resonant Group AxioN Experiment @ UWA

• High frequency wrt Others.                 

(>15 GHz) axion haloscope


• High frequency parameter space is 
largely un-probed and ripe for 
exploration 


• SMASH model predicts axion mass (ma) 
between 50 and 200 μeV
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Limits

• The most sensitive limits in this region: Predicted signals from Lattice QCD 
and SMASH



ORGAN: Axion Detection
• Critical research areas to improve scan rate and axion model sensitivity:

• Tuneable sensitive resonators
• Low noise amplification
• Data acquisition and analysis

● Haloscope scan rate:

● Three aspects to this:

− Magnet/dilution fridge: Look to purchasing larger magnet with larger bore

− Resonator design: Dielectric, with novel tuning

− Amplifier noise temperature: Single photon counter



● Dedicated dilution refrigerator (Nov 2019), BF-XLD1000

● Equipped with 12.5 T magnet

ORGAN Dilution Refrigerator and Magnet



ORGAN Run Plan
• Phase 1: Narrow searches around 

15-16 GHz and 26-27 GHz


• Runs 1a/1b (dark green): HEMT-
based amplifiers and TM010 tuning 
rod resonators, form factor of 0.4. 


• Phase 2: Wider searches 
(15-50GHz) building on expertise 
gained in Phase 1


• Phase 2, dark red: Quantum limited 
linear amplifiers (2-4 cavities)


• Light red/green: Single photon 
counter



Cavity Characterisation

TM010

• By moving the rod radially 
the mode is perturbed, 
shifting the frequency


• Some difficulty tuning when 
cold

• Solution: ramp the 
magnet to 11T













Ea = gaγγaB0 = θaB0jeff  ⊃ gaγγ∂laB0 ≃ ωaθaB0
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Ea = gaγγaB0 = θaB0jeff  ⊃ gaγγ∂laB0 ≃ ωaθaB0

 identifying θa ∼ h
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Ultra-High Frequency GWs Motivation

A strong motivation to explore higher frequencies from the theoretical 
perspective is that there are 


no known astrophysical objects which are small and dense enough to emit at 

Any discovery of gravitational waves at higher frequencies would thus indicate new physics 
beyond the Standard Model of particle physics, linked e.g., to exotic astrophysical objects… or to 

cosmological events in the early Universe…

So with these experiments, we are looking into tests of fundamental physics
What do you think the chance of having ultra-high frequency GWs in the 

universe?



BAW resonators

Gravitation Wave Instrument Sensitivity



HFGW GW Sources



ADMX and ORGAN (purple) with current tuning locus (blue); 

0.6-1.2 GHz for ADMX and 15.2 to 16.2 GHz for ORGAN 



 identifying θa ∼ h
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High Frequency Gravitational Waves?

Appl. Phys. Lett. 105, 153505 (2014)



Recent Experiment: First Detection, unlikely! Or not?

Excluded sources:

LIGO/VIRGO event catalogue, weather perturbations, earthquakes, 
meteor events / cosmic showers, FRBs

Possible sources:

Internal solid state processes, internal radioactive events, cosmic ray 
events, HFGW sources, domain walls, WIMPs, dark matter


  

Q
Quantum Technologies and Dark Matter Research Lab
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https://arxiv.org/abs/2102.05859


Recent Experiment
Control and Signal Processing Cryogenic Part

Two standalone lockin amplifiers
Two Signal generators
Locked to an H-maser
Temperature controller

SQUID control
Python data logging

3.4K cryocooler
SQUID electronics

digital downconversion



Recent Experiment ?153 days of observation

153 days of observation
Q

Quantum Technologies and Dark Matter Research Lab

D
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Introducing: the Multimode Acoustic Gravitational wave Experiment (MAGE)

• MAGE main goals / features:
• Two identical quartz BAW detectors, maybe more? (funding application)
• Multi-mode Multi-Detector monitoring with FPGA DAQ 
• High number of modes 8-10 modes (5-15 MHz range) per crystal
• Wider bandwidth SQUID; 5 – 200 MHz + 
• Cosmic particle veto system. Potentially cryogenic ?
• Sub-Kelvin operation -> quantum limited, higher Qs, Quantum Metrology
• Larger mass quartz resonators? Optimize size and mode for sensitivity?

• Current status, waiting for second FPGA DAQ
• Collected one week of data monitoring 8 modes for BAW 1
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