Status and perspectives of the DarkSide experimental program

Claudio Savarese on behalf of the DarkSide-20k Collaboration Princeton University

18th Rencontres du Vietnam — Neutrino Physics Quy Nhon, Vietnam - July 21st 2022

1.Direct detection trivia 2. DarkSide status and perspectives

- The experimental program
- DarkSide-20k overview
- Detector design
- Argon target procurement

3.Detecting CCSN neutrinos with LAr detectors

- CCSN signal in LAr TPCs
- Backgrounds
- Discovery

<u>OVERVEW</u>

Dark Matter and direct detection trivia

The physics case

Galactic clusters

CMB

Thermal anisotropies multipole expansion

Galaxies

Galaxy velocities Gravitational lensing (Bullet)

Rotation curves Gravitational lensing

Convincing evidence at all scales

Where should we look?

~70 orders of magnitude and a zoo of theoretical models!

The WINP realm

The WIMP miracle

Weak X-section Mass at EW scale Observed DM abundance

Sun motion \Rightarrow directional signature CDM preferred by halo simulations Maxwell velocity distribution Earth orbit \Rightarrow annual modulation

Milky Way model

WIND Spectra

- Non relativistic regime (v << c)
- Signal: nuclear recoils (NR)
- Coherent scattering enhancement (A²)
- High energy suppression (F²)
- Rate exponential in obs. energy
- σ_{WN} and ρ_{DM} degenerate

Radiogenic and cosmogenic backgrounds

From above

- keV] [2 **10**[.] Events 10^{2} 10 10 500 1000
- Excessive muon rate at surface
- Radioactive isotopes activated
- Neutron generation
- Go underground!

- Material assay and selection
- Particle identification: ER/NR
- Fiducialization: surface events

From below

• Natural radioactive isotopes: U and Th chains, non-actinides

- Onion-like structure: lacksquare
 - 1. Muon veto
 - 2. Neutron veto
 - 3. WIMP detector

- Solar ⁸B at low energies
- Coherent scattering on nuclei
- Atmospheric v at high energies
- CC interactions with ⁴⁰Ar

- Different energy thresholds
- Envelope forms the neutrino floor

Neutinos

Background-free sensitivity for exposures reaching 1 event

Neutrino floor/fog

- Limit on experimental sensitivity for any detector
- How to go beyond?
 - Modulation
 - Directionality

Search with liquefied noble elements

- High density
 - Self screening
 - Good scalability
- Easy(-ish) purification, also online
- Scintillation: good light yield
- Ionisation
- ER rejection 🖌
- NR quenching at low energies X

		LAr	LKr	LXe
	Atomic number	18	36	54
Physical	Boiling point at 1 bar, T_{b} (K)	87.3	119.8	165.0
properties	Density at $T_b (g/cm^3)$	1.40	2.41	2.94
	$W(eV)^1$	23.6	20.5	15.6
Ionisation	Fano factor	0.11	~0.06	0.041
	Drift velocity $(cm/\mu s)$ at 3 kV/cm	0.30	0.33	0.26
	Transversal diffusion coefficient			
	at 1 kV/cm (cm ² /s)	~20		~80
	Decay time ² , fast (ns)	5	2.1	2.2
	slow (ns)	1000	80	27/45
Scintillation	Emission peak (nm)	127	150	175
	Light yield ² (phot./Mev)	40000	25000	42000
	Radiation length (cm)	14	4.7	2.8
	Moliere radius (cm)	10.0	6.6	5.7

Excellent discrimination power!

ER rejection in LAr

DarkSide-50

 β,γ rejection better than 1.5x10⁷

DEAP-3600

 β,γ rejection better than 10⁸

- ³⁹Ar is a cosmogenic isotope
- β -decay with 565 keV endpoint and ~269y of half life
- ~1Bq/kg in atmospheric Ar
- Rejection possible with PSD, but there's pile-up!

LAT CHAIGENCESE 39

- No activation in Ar from deep gas reservoirs (UAr)
- Suppression factor ~1400 demonstrated in DS-50
- Possibly higher depletion factor

3D position reconstruction

The DarkSide program

A multi-stage approach

2012

2013 - 2018

DarkSide-10

DarkSide-50

- First prototype
- Helped to refine TPC design
- Demonstrated a light yield >9PE/keVee

- Science detector
- Demonstrated the use of UAr
- First background-free results
- Best limits for low mass WIMP searches

2025 - 2035

DarkSide-20k @ LNGS

Novel technologies

• First peek into the neutrino fog

• Nominal exposure: 200 t y

2030s - ...

Argo @ SNOLAB

- Ultimate LAr DM detector
- Push well into the neutrino fog
- Nominal exposure: 3000 t y

DarkSide-50 @ LNGS

MiniClean @ Snolab

ArDM @ Canfranc

DEAP @ Snolab

>400 scientists, >100 institutions distributed across 13 countries

Host aboratory: LNGS

- Below ~1400m of rock (3400 m.w.e)
- Muon flux reduction factor ~10⁶
- 3 main experimental halls (20x100x18 m³)

DarkSide-20k in Hall C @ LNGS

DarkSide-20k overview

Nested detectors structure:

ProtoDUNE-like cryostat (8x8x8m³) - Muon veto Ti vessel separating AAr from underground UAr. Neutrons and y veto WIMP detector: dual-phase TPC hosting 50t of LAr Fiducial mass: 20 tonnes

Multiple detection channels for bkg supression:

- Neutron after cuts: < 0.1 in 10 y
- β and γ after cuts: < 0.1 in 10 y

Position reconstruction resolution:

- ~ 1 cm in XY
- $\sim 1 \text{ mm in Z}$

Backgrounds and Mitigation Strategies

Electron Recoils (ER)

³⁹Ar β decays \rightarrow Use of UAr, PSD γ decays from U,Th chains + non actinides (⁴⁰K, ⁶⁰Co, ¹³⁷Cs) → Material selection, PSD

Surface events Position reconstruction Radon progeny — Surface cleaning Rn abatement

Nuclear Recoils (NR)

Radiogenic neutrons, mainly from (α, n) reactions.

Material selection, Neutron Veto Cosmogenic neutrons, from materials activation Atmospheric neutrinos Irreducible

Integration of TPC and VETO in a single object

• **TPC Vessel**:

- top and bottom: transparent pure acrylic
- lateral walls: Gd-loaded acrylic + reflector + WLS
- anode, cathode and field cage made with conductive paint (Clevios)
- **TPC readout:** 21m² cryogenic SiPMs

• Veto:

- TPC surrounded by a single phase (S1 only) detector in UAr
- TPC lateral walls + additional top&bottom planes in Gd loaded acrylic (PMMA) to thermalize n (acrylic is rich in Hydrogen) \circ neutron capture releases high energy γ
- Veto readout: 5 m² cryogenic SiPMs

nner celector

99 t UAr held in Ti vessel

TPC planes area: ~21m² Organized in 525 PDUs 100% coverage of TPC top and bottom

Photo-detection system

- 16 tiles arranged in 4 readout channels
 - SiPM bias distribution
 - cryogenic pre-amplifiers bias
 - Signal transmission
 - Channels switch-on/off

- Photosensor Array of 24 SiPMs
- Signal pre-amplification

The journey of UAr: extraction

• CO₂ well in Cortez, CO, USA;

- Industrial scale extraction plant;
- Plant ready to be shipped;
- Civil work ongoing;
- Expected argon purity at outlet: 99.99%;
- UAr extraction rate: 250-330 kg/day;

Picture of the extraction plant used to procure DS50 UAr target (<0.5kg/d)

The journey of UAr assaying

DArT : Measurement of the activity of the ³⁹Ar

- LSC, Canfranc, Spain
- Single-phase inner detector for 1.42 kg of liquid UAr
- Will be installed inside ArDM detector, acting as an active veto.
- ³⁹Ar depletion factor sensitivity: U.L. 90% CL. 6×10^4 (2020 JINST 15 P02024).

26

DarkSide-20k physics reach

- Sensitivity: 6.3×10^{-48} cm² for a 1 TeV/ c^2 WIMP (90% C.L.)
- •(5 σ) discovery: $2.1 \times 10^{-47} \text{ cm}^2$
- •Nominal exposure: (20×10) t yr
- •Instrumental Background: 0.1 events in 200 t yr
- Expected neutrinos: 3.2 events in 200 t yr

Exclusion 90% C.L.

SuperNova neutrinos in DS-20k and Argo

JCAP03(2021)043

Core Collapse SN neutrinos

Cooling

- All v $\overline{\mathbf{v}}_{\mathrm{u}} + \overline{\mathbf{v}}_{\mathrm{t}}$ 10 t[s] 1
- Hydrodynamical spherically symmetric simulations by Garching group. Two progenitors are simulated: 11M_o and 27M_☉ (here shown) at 10kpc.
- Core Collapse Supernova phases:
 - 1. neutronization burst (~30ms),
 - 2. accretion phase (~0.02-1s),
 - 3. cooling (~1-10s).

[MeV] < ∠ ∧ ∧ ∨

JCAP03(2021)043

- 99% of the total energy of a core collapse SN $(\sim 10^{53} \text{ erg})$ is emitted through the neutrino channel.
- $\langle E_{v} \rangle$ maxes out in the accretion phase (15MeV) and drops to ~5MeV after ~10s.

What could we measure/learn?

- Total energy of the explosion
- Observe a second collapse due to a nuclear matter phase transition
- Observe a black-hole formation during the first 10s
- Observe the shock stall and the duration of the accretion phase
- Observe Standing Accretion Shock Instability (SASI)
- Probe BSM physics from deviations of the neutrino spectra from SM physics
- Observe motion of shock through the progenitor mantle
- Determine the sphericity of the core collapse
- Determine the angular momentum of the Proto-Neutron-Star (PNS)
- Determine <u>neutrino mass ordering</u> How? Survival probability for neutralization burst v_e: $p = \sin^2 \theta_{13} = 0.02$ for NMO, $p = \sin^2 \theta_{12} \cos^2 \theta_{13} = 0.30$ for IMO

- Water Cherenkov IBD $\bar{\nu}_{\rho} + p \rightarrow e^+ + n$: SuperK (32 kton) and HyperK (374 kton)
- Liquid Scintillators IBD: KamLAND (1 kton), LVD (1 kton) and JUNO (20 kton)
- LAr: CC $\bar{\nu}_{e}$ + ⁴⁰Ar $\rightarrow e^{-}$ + ⁴⁰K*:DUNE (40 kton)
- LAr: CEvNS ν + ⁴⁰Ar \rightarrow ν + ⁴⁰Ar: DarkSide-20k (47.1 tonnes) and Argo (362.7 tonnes)

CEvNS high cross section (~ $x50\sigma_{CC}$) compensates for the "low" target mass.

CASN CELECIOIS

Need to lower the energy threshold \Rightarrow Look at the S2 only events S2 >> S1 (23ph/e⁻ in DS50)

Pros:

• Low energy threshold:

• 100% Trigger eff. > ~30PE

Cons: No S1

- No position reconstruction in z
- No PSD \Rightarrow No ER rejection
- Poor timing reconstruction, limited to the TPC drift time

- 70% (50%) of the recoils is <10keV_{nr} (5keV_{nr}).
- DS50 performance:
 - S2 identification: 100% >30PE
 - Trigger efficiency: ~100% >30-40PE
 - NR deposits detection is 100% >0.46keVnr.

Detector response to CEUNS

From DS50 low-mass analysis

86% of SN CEvNS would be detected

- [N] • Internal background: ³⁹Ar, dominant > 1ke V_{nr} . Expected rate for N_e<100: 0.5Hz (DS20k) and 4.2Hz (Argo). ⁸⁵Kr will be removed by ARIA distillation column.
- External background: γ from SiPMs and cryostat. Expected rate for N_e<100: 0.3Hz (DS20k) and 1.3Hz (Argo). After fiducial cut: 0.2Hz (DS20k) and 1.1Hz (Argo).
- Single electron background: unknown origin, part due to impurities (observed time correlation with S2 events). Scaled rate from DS-50 for $N_e>3$: 1.8mHz/tonne, 0.085Hz (DS20k) and 0.65Hz (Argo). 35

Backgrounds

Expected signal and background in 8s for a SN burst at a distance of 10kpc

	DarkSide-20k	Argo
$11-M_{\odot}$ SN- νs	181.4	1396.6
$27\text{-}\mathrm{M}_{\odot}~\mathrm{SN}\text{-}\nu\mathrm{s}$	336.5	2591.6
³⁹ Ar	4.3	33.8
external background	1.8	8.8
single-electrons	0.7	5.1

- SNR~10² during neutronization and accretion (1s). SNR~10 during cooling (>1s)
- Overall SNR~24(45) for $11M_{\odot}$ (27M $_{\odot}$)
- Sensitivity $>5\sigma$ up to the Milky Way edge for DS-20k and the Small Magellanic Cloud for Argo.

36

Not only a counting experiment

- neutrinos from a SN burst. Spectra are fitted excluding the neutronization burst.

• DS-20k and Argo energy and time resolution allow to reconstruct the mean and total energy of

• Total neutrino energy reconstruction at 3σ level with 11% (32%) accuracy in Argo (DS-20k). • Mean neutrino energy reconstruction at 3σ level with 5% (13%) accuracy in Argo (DS-20k)

Contacts: <u>claudios@princeton.edu</u> Physics Department, 373 Jadwin Hall (609) 933-8160

Thanks

