SuperNEMO

Demonstrator Commissioning Status Update

Malak HOBALLAH On Behalf of the SuperNEMO Collaboration

July 15, 2022

Laboratoire de Physique des 2 Infinis supernemo

collaboration

Neutrinoless Double Beta Decay: A Hypothetical Radioactive Process

SuperNEMO: Tracker-Calorimeter Detection Principle

 $\begin{array}{l} 6.23 \text{ kg }^{82} \text{Se} \\ Q_{\beta\beta} = 2.998 \text{ MeV} \\ \text{NEMO-3}: T_{1/2}{}^{2\nu} = 9.4 \text{ x } 10^{19} \text{ y} \end{array}$

3D reconstruction of charged particle tracks

Measure individual particle energies

Exposure 17.5 kg.y

 $T_{1/2}^{0v} > 4 * 10^{24} y$ <m_v> < (260 - 500) meV (90% CL)

Ultra low Background < 10⁻⁴ events/keV/kg.yr

Where is SuperNEMO?

SuperNEMO: The Missing Picture

SuperNEMO: Searching and Setting Constraints

The Calorimeter

supernemo

The Tracker

2034 drift cells operating in Geiger mode

3D reconstruction of charged particle tracks (μ^{\pm} , e^{\pm} , α)

Hardware Status

Detector Commissioning and Calibration

Energy Calibration: First Approach Method – Background Fitting

Optical corrections were taken into account:

Non-Linear Effects with Energy:

Birks EffectCherenkov Effect

Geometrical Corrections:

- Interaction point

 $\rightarrow\,$ Obtain amplitude gain that will be used to adjust HV for each PM

No shielding installed yet ; Tracker was not commissioned 12

Energy Calibration: Intended Method \rightarrow **To be Done**

Time Characterization of Optical Modules Using $\pmb{Y}s$

σ_t (¥ @ 1 MeV)= 0.614 ± 0.002 (stat) + 0.064 (sys) [ns]

M:0.19.11	M:0.18.11	м:0.17.11	M:0.16.11	м:0.15.11	M:0.14.11	M:0.13.11	M:0.12.11	M:0.11.11	м:0.10.11	м:0.9.11	м:0.8.11	м:0.7.11	м:0.6.11	м:0.5.11	м:0.4.11	м:0.3.11	м:0.2.11	м:0.1.11	м:0.0.11
	0.42	0.51	0.69	0.60	0.60	0.67	0.61	0.63	0.55	0.53	0.56	0.61	0.56	0.70	0.63	0.66	0.45	0.58	0.66
M:0.19.10	M:0.18.10	M:0.17.10	M:0.16.10	M:0.15.10	M:0.14.10	M:0.13.10	M:0.12.10	м:0.11.10	м:0.10.10	м:0.9.10	м:0.8.10	м:0.7.10	м:0.6.10	м:0.5.10	м:0.4.10	м:0.3.10	м:0.2.10	м:0.1.10	м:0.0.10
0.70	0.60	0.52	0.69	0.62		0.72	0.62	0.56	0.67	0.60	0.68	0.55	0.73	0.58	0.64	0.64	0.59	0.53	0.54
м:0.19.9 0.61	м:0.18.9 0.63	м:0.17.9 0.57	M:0.16.9 0.69	м:0.15.9 0.70	м:0.14.9 0.60	м:0.13.9 0.71	м:0.12.9 0.46	м:0.11.9 0.55	м:0.10.9 0.53	м:0.9.9 0.46	м:0.8.9 0.66	м:0.7.9 0.64	M:0.6.9 0.65	M:0.5.9	м:0.4.9 0.68	м:0.3.9 0.55	м:0.2.9 0.49	м:0.1.9 0.49	M:0.0.9
м:0.19.8	M:0.18.8	м:0.17.8	M:0.16.8	M:0.15.8	м:0.14.8	м:0.13.8	M:0.12.8	M:0.11.8	м:0.10.8	м:0.9.8	м:0.8.8	м:0.7.8	M:0.6.8	M:0.5.8	м:0.4.8	M:0.3.8	M:0.2.8	м:0.1.8	M:0.0.8
0.62	0.86	0.61	0.69	0.66	0.56	0.51	0.65	0.58	0.51	0.63	0.61	0.57	0.66	0.66	0.63	0.68		0.40	0.52
м:0.19.7	м:0.18.7	м:0.17.7	M:0.16.7	м:0.15.7	м:0.14.7	м:0.13.7	M:0.12.7	м:0.11.7	м:0.10.7	м:0.9.7	м:0.8.7	M:0.7.7	м:0.6.7	M:0.5.7	м:0.4.7	м:0.3.7	M:0.2.7	м:0.1.7	м:0.0.7
0.52	0.56	0.50	0.50	0.59	0.50	0.73	0.63	0.54	0.58	0.60	0.51		0.51	0.63	0.64	0.62	0.69	0.57	0.56
м:0.19.6	м:0.18.6	м:0.17.6	M:0.16.6	м:0.15.6	м:0.14.6	M:0.13.6	M:0.12.6	M:0.11.6	M:0.10.6	м:0.9.6	M:0.8.6	M:0.7.6	M:0.6.6	M:0.5.6	м:0.4.6	м:0.3.6	M:0.2.6	м:0.1.6	M:0.0.6
0.51	0.54	0.57	0.64	0.53	0.62	0.66	0.65	0.56		0.55	0.66	0.62	0.57	0.64	0.63	0.65	0.66	0.60	0.59
м:0.19.5	м:0.18.5	м:0.17.5	M:0.16.5	M:0.15.5	м:0.14.5	M:0.13.5	M:0.12.5	M:0.11.5	м:0.10.5	м:0.9.5	м:0.8.5	M:0.7.5	M:0.6.5	M:0.5.5	м:0.4.5	м:0.3.5	м:0.2.5	м:0.1.5	м:0.0.5
0.63	0.57	0.72	0.62	0.66	0.60	0.55	0.62	0.53	0.47	0.55	0.51	0.63	0.62	0.53	0.67	0.61	0.51	0.55	0.44
м:0.19.4	м:0.18.4	м:0.17.4	M:0.16.4	м:0.15.4	м:0.14.4	M:0.13.4	M:0.12.4	M:0.11.4	м:0.10.4	м:0.9.4	M:0.8.4	M:0.7.4	M:0.6.4	M:0.5.4	м:0.4.4	м:0.3.4	M:0.2.4	м:0.1.4	M:0.0.4
0.75	0.67	0.61	0.56	0.60	0.61	0.64	0.58	0.67	0.68	0.66	0.67	0.58	0.55	0.60	0.79	0.58	0.58	0.39	0.60
м:0.19.3	M:0.18.3	м:0.17.3	M:0.16.3	м:0.15.3	м:0.14.3	M:0.13.3	M:0.12.3	M:0.11.3	м:0.10.3	м:0.9.3	м:0.8.3	M:0.7.3	M:0.6.3	M:0.5.3	м:0.4.3	м:0.3.3	м:0.2.3	м:0.1.3	M:0.0.3
0.74	0.72	0.37	0.43	0.57	0.52	0.64	0.68		0.64	0.54	0.59	0.63	0.64	0.48	0.59	0.67	0.43	0.48	0.64
м:0.19.2 0.55	м:0.18.2 0.67	м:0.17.2 0.54	M:0.16.2 0.74	м:0.15.2 0.58	м:0.14.2 0.62	м:0.13.2 0.51	м:0.12.2 0.56	M:0.11.2 0.64	м:0.10.2 0.64	M:0.9.2	M:0.8.2 0.67	м:0.7.2 0.64	M:0.6.2	м:0.5.2 0.53	м:0.4.2 0.65	м:0.3.2 0.64	м:0.2.2 0.56	м:0.1.2 0.60	M:0.0.2 0.58
м:0.19.1	м:0.18.1	м:0.17.1	м:0.16.1	м:0.15.1	м:0.14.1	м:0.13.1	м:0.12.1	м:0.11.1	м:0.10.1	м:0.9.1	м:0.8.1	м:0.7.1	м:0.6.1	м:0.5.1	м:0.4.1	м:0.3.1	м:0.2.1	м:0.1.1	M:0.0.1
0.52	0.66	0.50	0.67	0.68	0.56	0.46	0.62	0.62	0.55	0.58	0.62	0.61	0.69	0.66	0.65	0.55	0.62	0.73	0.69

Using e⁻ s from ²⁰⁷Bi calibration sources

Color: Time resolution [ns]

Time Calibration of Optical Modules Using **y**s

The time calibration performed using \s achieved < 0.2 [ns] precision on timing after applying the calibration.

Enough to reject background using time of flight measurements.

Scintillator blocks

Malak HOBALLAH , Jul 15, 2022

No shielding installed yet ; Tracker was not commissioned 16

COLLEGACIONE PARISACLAY

time scheme of a passing muon

run 553 - time scheme of a passing muon

No time calibration applied

Time calibration applied

time scheme of a passing muon

Color: Time [ns]

Tracker Cells Gain Optimization

ANODE GG:0/23/*

Tracker Cells Plasma Drift Time

Cell

SuperNEMO: Constraining the Quenching Value of g_A

g_A Quenching : SSD and HSD – Two Nuclear Models

Single State Dominance

Higher State Dominance

HSD and SSD; ⁸²Se : Difference in Energy Distributions

Shell Model calculations by Javier Menendez

In Summary ...

SuperNEMO

- Is a unique tracker-calorimeter detector for 2ν and 0ν double beta studies; using ⁸²Se
- \bullet Demonstrator is in the commissioning phase: \P Calorimeter fully calibrated and studied
 - \mathbf{v} Tracker commissioned and data are being analyzed
- Can constrain the quenched axial-vector coupling constant value
 - Can exclude nuclear models describing the decay process

Complete demonstrator in spring 2023 !