The T2K near detector upgrade

on behalt of T2K collaboration Neutrinos Physics, 17-23 July 2022, Quy Nhon, Vietnam

ung Nguyen Thi, VNU-HUS, Hanoi, Vietnam 🧏

July 20, 2022 •

¹Email: nguyenthidung.hus@vnu.edu.vn

Dung Nguyen (VNU-HUS)

T2K

ND280 upgrade

Content

Physics Motivation

2 T2K Experiment

3 T2K Near Detector Upgrade status

Brief Neutrino History

Credit to APS for v oscillations The Growing Excitement T2K observe $\nu_{\mu} \rightarrow \nu_{e}$ appearance of Neutrino Physics Daya Bay observe theta 13 at 5 sigma K2K confirms atmospheric 1930: On-paper appearance as "desperate" remedy by W. Pauli ∻ oscillations KamLAND confirms 1956: $\bar{\nu}_e$ first experimentally discovered by Reines and Cowan ∻ solar oscillations Nobel Prize for 1962: ν_{μ} existence confirmed by Lederman *et al*. neutrino astroparticle SNO shows solar ∻ 1998: Atmospheric neutrino oscillations discovered by Super-K oscillation to active flavor 2000: ν_{τ} first evidence reported by DONUT experiment ∻ Super K confirms solar deficit and "images" sun Super K sees evidence ♦ 2001: Solar neutrino oscillations detected by SNO (KamLAND 2002) of atmospheric neutrino oscillations \diamond 2011: $\nu_{\mu} \rightarrow \nu_{\tau}$ transitions observed by OPERA Nobel Prize for v discoverv! LSND sees possible indication ∻ 2011-13: $u_{\mu} ightarrow u_e$ by T2K, $ar{ u}_e ightarrow ar{ u}_e$ deficit observed by Daya Bay(2012), of oscillation signal Nobel Prize for discovery of distinct flavors! 2015: Nobel prizes for ν oscillations, Breakthrough prize (2016) ∻ Kamioka II and IMB see supernova neutrinos Kamioka II and IMB see atmospheric Pauli Fermi's neutrino anomaly predicts theory Reines & 2 distinct SAGE and Gallex see the solar deficit the of weak Cowan discover flavors Davis discovers LEP shows 3 active flavors (anti)neutrinos identified the solar deficit Neutrino interactions Kamioka II confirms solar deficit 2015 1930 1955 1980

Nobel & Breakthrough

Neutrino oscillations

• Neutrino have mass and mixings:

T2

Neutrino oscillations

Pontecovo - Maki - Nakagawa - Sakata (PMNS) matrix

Results are coming from the experiments

Physics Motivation

The T2K results: Nature (2020) 580 339 - 344

$$P(\nu_{\mu} \rightarrow \nu_{e}) \sim sin^{2}(2\theta_{13})sin^{2}(\theta_{23})sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$

$$\mp \frac{1.27\Delta m_{21}^{2}L}{E} 8J_{CP}sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \sim 1 - 4cos^{2}(\theta_{13})sin^{2}(\theta_{23}) \times [1 - cos^{2}(\theta_{13})sin^{2}(\theta_{23})] \times sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$

$$sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$

$$sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$

$$sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$

$$\Delta m_{32}^{2} = 2.45 \pm 0.07 \times 10^{-3} (\text{NO})$$

$$\Delta m_{13}^{2} = 2.43 \pm 0.07 \times 10^{-3} (\text{IO})$$

$$\delta_{CP} = -1.89^{+0.7}_{-0.58}(-1.38^{+0.48}_{-0.54})$$

T2K in s

> ۲ 1

٢ • 6 10

8

Content

T2K experiment

Main goals

- Discovered appearance of $u_{\mu} \rightarrow \nu_{e} \ \theta_{13}(2013), \ \delta_{CP}$
- Measurement of $u_{\mu}
 ightarrow
 u_{\mu} \ heta_{23}, \ \Delta m^2_{32}$

T2K upgrade \rightarrow 3 σ C.L on δ_{CP}

Long-baseline (295 km)

 ν experiment in Japan
 from J-PARC(Tokai) to
 Super-K (Kamioka)

p (30GeV) + graphite → μ+ ν_μ(≈ 600*MeV*) - high intensity
 The MR beam power: from 500kW to 700kW(2022) and 1.3 MW (2028), 30 × 10²⁰POT (Proton On Target/year)

Near Detector

Far Detector, Super - Kamiokande

• Super-K is 2.5° off the beam's axis to achieve narrow band beam peaked at oscillation maximum (0.6GeV)

• Muon and electron are well-separated \rightarrow identify $u_{\mu}/
u_{e}$ with high purity

T2K

Physics Processes vs Event Topologies

3 T2K Near Detector Upgrade status

Role of Near Detectors

- Near Detector complex is 280m downstream of neutrino production point (target).
- Measurement of the interaction rates before oscillation
- Measurement of neutrino nucleus cross-section in several channels
- Strongly constrain the expected rates at Super-K for precision oscillation analyses

good acceptance only for forward tracks

Limitation of current ND280

- Small acceptance
- Low efficiency to reconstruct the hadronic part (π, p) of the interactions

T2K

Motivation of T2K near detector upgrade

- \bullet Control the systematic uncertainties associated with the ν production and detection
 - \uparrow POT in T2K-II goal $\rightarrow \downarrow$ Stat. error
 - Current sys. error $\nu_e(\bar{\nu}_e)$ event candidates is 8.8 (7.1%)
 - Near future: Suppression of sys. error becomes more important

	1-R	$ling \mu$		1-R	ing e	
Error source	FHC	RHC	FHC	RHC	FHC 1 d.e.	$_{\rm FHC}/_{\rm RHC}$
Flux and (ND unconstrained)	14.3	11.8	15.1	12.2	12.0	1.2
cross-section (ND constrained)	3.3	2.9	3.2	3.1	4.1	2.7
SK Detector	2.4	2.0	2.8	3.8	13.2	1.5
SK FSI + SI + PN	2.2	2.0	3.0	2.3	11.4	1.6
Nucleon Removal Energy	2.4	1.7	7.1	3.7	3.0	3.6
$\sigma(\nu_e)/\sigma(\overline{\nu}_e)$	0.0	0.0	2.6	1.5	2.6	3.0
$NC1\gamma$	0.0	0.0	1.1	2.6	0.3	1.5
NC Other	0.3	0.3	0.2	0.3	1.0	0.2
$\sin^2 \theta_{23}$ and Δm_{21}^2	0.0	0.0	0.5	0.3	0.5	2.0
$\sin^2 \theta_{13}$ PDG2018	0.0	0.0	2.6	2.4	2.6	1.1
All Systematics	5.1	4.5	8.8	7.1	18.4	6.0

PRD 103, 112008 (2021)Fractional uncertainty on event rate in %

Dominant error is Flux (Detector upgrade) + Cross section \square (Interaction model) \rightarrow aiming to reduce overall error to 4%

T2K Upgrade plan

- T2K upgrade near detector: expected ↓ overall systematic uncertainty to 4%
- Goal of T2K upgrade is to accumulate enough POT \rightarrow to exclude $\sin \delta_{CP} = 0$ at 3σ

an installation is expected in the first half of 2023

T2K-II Target POT (Protons-On-Target)

ND280 upgrade

Dung Nguyen (VNU-HUS)

 $POD \rightarrow Super-FGD$, 2 HA-TPCs, 6 ToF planes

ND280 upgrade

Super-FGD

 \rightarrow improve the reconstruction hadronic part and low momentum leptons

2 HA-TPCs

 \rightarrow improve the reconstruction high angle leptons

6 ToF planes

 \rightarrow reduce background from the outside of SuperFGD

Efficiencies of ND280 upgrade

Efficiencies of ND280 upgrade:

 4π acceptance, high efficency of particle low momentum.

Efficiency to select CCOpi events

Event display in ND280 upgrade

CC1 π event: $\nu_{\mu} + N \rightarrow \pi^+ + p + \mu$

T2

SuperFGD

- 2 million cubes 1x1x1 cm³ plastic scintillator cubes with 3 holes
- Fully active target $(200 \times 180 \times 60 \text{ cm}^3)$
- Active mass 2.2 tons
- $\bullet \sim 60~000$ readout WLS and MPPC
- 3D reconstruction and high segmentation, 4π acceptance
- Good tracking, timing, PID

Scintillator cubes

Mechanical hox

T2K

Prototypes test

Two prototypes 125 and 9216 cubes were tested at CERN (2017, 2018)

Test shows the upgrade achieving requirement

Neutron test beam in LANL

 2 prototypes (Super-FGD and US-Japan) were tested in 2019 and 2020 in LANL

US-Japan

SuperFGD

- Neutron beam energy ranges from 0 to 800 MeV
- Access to neutron kinematic is crucial to understanding better anti-neutrino CCQE and 2p2h interactions

SuperFGD test beam events

T2K

High Angle - TPC

- Main difference with existing TPC: thin field cage, resistive Micromegas module
- Main purpose
 - High-resolution tracking (3D reconstruction) of charged particles
 - Particle identification (charge and momentum measurements)
- HA-TPC requirement:
 - To distinguish between μ/e at 3σ level ightarrow energy resolution \leq 10%
 - Momentum resolution \leq 10% at 1 GeV/c \rightarrow spatial resolution \leq 0.8 mm

High Angle - TPCs performance

• CERN 2018 (Nucl. Instrum. Meth.V. 957, (2020) Achieve requirements 1.5 m drift distance; MM0-DLC1 (HARP field cage); e, π, p (0.5-2GeV); Spatial resolution is 300 μm at 30 cm drift distance; dE/dx \sim 10% for a MIP for 35 cm track length

• DESY 2019 (arXiv:2106.12634) Distance [cm] Distance [cm

DESY 2021 test beam results

4 GeV e-; 1 m drift distance

In order to ensure that setup satisfies the ND280 upgrade requirements the test beam intended to:

- test the setup stability
- characterize the charge spreading and study resistive foil uniformity.
- measure spatial and energy resolution;

Horizontal track

Inclined track

Fullfill the requirements: dE/dx resolution < 10% and spatial resolution < 0.8mm

Time of Flight detectors

Goals: Identification of the direction of the track using time stamp \rightarrow veto the bkg from outside of SuperFGD

- 6 ToF modules will fully cover 2 HA- TPC and Super-FGD
- Each module 2.4 x 2.2 m² consists of 20 scintillator bars
- Readout of 8 MPPC/side (16 MPPC/bar) and total 236 readouts.

time resolution is 0.14 ns

ND280 upgrade physics studies

Upgrade \rightarrow access to reconstruct in hadronic part of the final state \rightarrow new, more powerful variables: $\delta p_T, \delta \alpha, E_{vis}$

- missing momentum $\delta p_T = |p_T^{\mu} p_T^{p(b)}|$
- Transverse boosting angle $\delta \alpha$
- Visible energy $E_{vis} = E_{\mu} + T_{p(n)}$ where $T_{p(n)}$ kinetic

Nuclear effects are the main source of E_{ν} uncertainty

Future OA for ND280 upgrade \rightarrow multidimensional fit μ + hadron kinematics

- δp_T: Fermi motion, 2p2h, seperate CCQE/non-CCQE
- $\delta \alpha$ shape sensitive to FSI
- *E*_{vis}: Nuclear removal energy

Dung Nguyen (VNU-HUS)

ND280 upgrade

July 20, 2022 30 / 43

Constraints by NDs on ν -N interaction model

Conclusion

- T2K upgrade goal is 3σ significance to CP violation
 - Beam power is expected to increase from 0.5 MW to 1.3 MW (30 \times $10^{20} \text{POT/year})$
- ND280 upgrade intended to reduce total systematics
 - ND280 upgrade is in the preparation stage, and an installation is expected in the first half of 2023
 - Super-FGD: more massive (2.2t), more statistics
 - Super-FGD and HA-TPCs performance was tested and simulation and reconstruction procedures are currently under development
 - ND280 upgrade program shows the impressive ability to constrain key systematic uncertainties.

T2K Near Detector Upgrade status

1					
	Shipeli ADRI (Elimenti Stationa)	Abumu Sucuki E Anne Long	Lotas Dems	Yoshinari Hayato Roshari Kujak	Yuna kavamuta Etimeteenee
aya	Not Roy	Chistophe Bro	د درمد	Lucio Ludovici	Dic D. Denner
	Dave Kind	1		Takuji Arihana	James HU
157	. @**	Takashi Horjo	18040	61	Atsuko kthikawa essentiawa
	E Nakadaira ().	Kenji Yasutome	_ Q '		Van Nguyen
	Yahui Nagashi Binin Naga	1	Robert Korjela S Robert Korjela		
			\$	19	
	Tratan Doyle Sitese Tayle	Kocki Nagal Bilinin Ingel		Hokulo Kobaya	
	M Nahada (Tatawa)	Holes, Areas (ST	Dung Nguyen Billing Nguyen	Torranz Wachola @ Torranz Nachola	
			and the second	olitin	Shinus:
				1	53
			6		4
				$\sim \Lambda$	1

THANK YOU

T2K collaboration

T2

HA-TPCs performance

• CERN November 2021

 μ beam; the same TPC as for DESY 2021 + TRK; no mag. field

CERN May 2022 (rescheduled for December) Test of the one-half of HA-TPF (final desgin)

Beam direction - Oscillation probability

T2K Near Detector Upgrade status

Flux, Spectrum and Intrinsic ν_e

Detectors at ND280

Precise measurement of neutrino-nucleus interactions

Dung Nguyen (VNU-HUS)

T2/

T2K Near Detector Upgrade status

Constraints by NDs in ν oscillation fit

Current ND280

FGD: ν target scintillator bar along XY to mesure interaction point
 TPC: to measure momentum & to identify particles from target

P0D Detector

T2K

FGD Detector

- Fine-grained active scintillator (CH) target
- Particle tracking for detection of vertex

- Plastic FGD (FGD1) with 15 XY modules
- Water FGD (FGD2) with 7 XY modules & 6 water layers (2.5cm)

T2

TPC Detector

- 3D tracking gas detector for charged particles
- Momentum measurement by trajectory & PID by energy deposit

T2