T2K latest results on neutrinonucleus cross sections

 $18^{\rm th}$ Rencontres du Vietnam Conference

Caspar Schloesser on behalf of the T2K Collaboration

University of Geneva July 18th, 2022

The T2K Experiment

- Long-baseline neutrino oscillation experiment
- High intensity $\nu_{\mu}\,/\,\overline{\nu}_{\mu}$ beam produced at J-PARC
- Near Detectors
 - Measure unoscillated spectrum
- Far Detector
 - Measure oscillated spectrum

UNIVERSITÉ DE GENÈVE

280 m from ν source

The T2K Beamline

- 30 GeV proton beam produced at J-PARC
- Incident on carbon target producing π^\pm, K^\pm
- Pions/Kaons are focused by 3 electromagnetic focusing horns
 - Run in $\nu\,/\,\overline{\nu}$ mode by switching horn polarity
- Then decay to muons and neutrinos in 100 m long decay volume
- Pions/muons stopped and monitored in beam dump
- Neutrinos continue to near/far detectors

UNIVERSITÉ DE GENÈVE

The T2K Near Detectors

Motivation for Neutrino-Nucleus Cross Sections

• We don't measure the ν flux, we measure event rates:

• Different flux, target and acceptance for near and far detectors

Motivation for Neutrino-Nucleus Cross Sections

- Neutrino physics is entering the precision era
- Cross section effects must be disentangled from oscillation probability
- Cross sections are leading source of systematic uncertainty
- Insights into nuclear effects

	1-Ring μ			1-Ring e		
Error source	FHC	RHC	FHC	RHC	$_{ m FHC}$ 1 d.e.	$_{\rm FHC}/_{\rm RHC}$
Flux and (ND unconstrained)	14.3	11.8	15.1	12.2	12.0	1.2
cross-section (ND constrained)	3.3	2.9	3.2	3.1	4.1	2.7
SK Detector	2.4	2.0	2.8	3.8	13.2	1.5
SK FSI + SI + PN	2.2	2.0	3.0	2.3	11.4	1.6
Nucleon Removal Energy	2.4	1.7	7.1	3.7	3.0	3.6
$\sigma(u_e)/\sigma(\overline{ u}_e)$	0.0	0.0	2.6	1.5	2.6	3.0
$ m NC1\gamma$	0.0	0.0	1.1	2.6	0.3	1.5
NC Other	0.3	0.3	0.2	0.3	1.0	0.2
$\sin^2 \theta_{23}$ and Δm_{21}^2	0.0	0.0	0.5	0.3	0.5	2.0
$\sin^2 \theta_{13}$ PDG2018	0.0	0.0	2.6	2.4	2.6	1.1
All Systematics	5.1	4.5	8.8	7.1	18.4	6.0

Fractional uncertainty on event rate in %

PRD 103, 112008 (2021)

Neutrino Interactions at T2K

Cross Section Measurements

Cross Section Measurements

The T2K ND280 Near Detector

- 2.5 degrees off-axis \rightarrow 0.6 GeV peak energy
- Large dipole magnet produces 0.2 T
- Magnet instrumented with side muon range detectors (SMRD)
- π^0 Detector (P0D) measures pions
- 3 gas argon Time Projection Chambers (TPCs) reconstruct particle momentum and charge
- 2 Fine-Grain Detectors (FGDs) act as detector targets, provide vertex info and consist of xy layers of
 - CH bars (FGD1)
 - CH bars alternated with H2O layers (FGD2)
- Electromagnetic Calorimeter (ECAL) surrounds these elements
 - Distinguish tracks from showers

Latest Cross Section Results

- 2.5° off-axis
 - ν_{μ} CC-1 π^+Np Transverse Kinematic Imbalance
 - $\nu_e CC \& \overline{\nu}_e CC$ Cross Sections
 - Joint ν_{μ} Carbon+Oxygen CC0 π Cross Section
- 1.5° off-axis
 - $\overline{\nu}_{\mu}$ & $\overline{\nu}_{\mu} + \nu_{\mu}$ CC0 π 0p Cross Section on Hydrocarbon and Water
- $0^{\circ} + 2.5^{\circ}$ joint analysis
 - Sneak Peek

v_{μ} CC-1 π^+Np Transverse Kinematic Imbalance $N \ge 1$ PRD 103, 112009 (2021)

- $\nu_{\mu} + A \rightarrow \mu^- + \pi^+ + p + A'$
- Interactions in FGD1 (CH target)
- TKI calculated between outgoing muon, pion and highest momentum proton
 - Lepton-hadron correlations in transverse plane to ν direction
- Sensitive to initial nuclear state and final state interactions (FSI)
- Jointly fit signal and control regions to constrain background

Signal sample 366 events	$\begin{array}{c} \text{CC1}\pi^+1\pi^- \text{ enriched} \\ 174 \text{ events} \end{array}$	$\begin{array}{c} \mathrm{CC1}\pi^+\mathrm{X}\pi^0 \text{ enriched} \\ 404 \text{ events} \end{array}$	$\begin{array}{c} \text{CC-other-X}\pi^0 \text{ enriched} \\ 311 \text{ events} \end{array}$	$\begin{array}{c} \text{CC-other-}0\pi^0 \text{ enriched} \\ 114 \text{ events} \end{array}$	
ECAL	ECAL	ECAL \mathbf{x}^{π^0}	ECAL π^0	ECAL	
FGD μ^- TPC π^+ p	FGD μ^- TPC π^+	FGD π^+ TPC	FGD π^+ TPC π^\pm p	FGD μ^{-} TPC π^{\pm} π^{\pm} p	
ECAL	ECAL	ECAL	ECAL	ECAL	
$\mu^-, \pi^+, p \text{ in TPC}$	Extra π^- in FGD/TPC	Extra π^0 in ECAL	Extra π^{\pm} in FGD/TPC, π^{0} in ECAL	Extra π^{\pm} in FGD/TPC, except single π^{-}	

v_{μ} CC-1 π^+Np Transverse Kinematic Imbalance

 $N \geq 1$

PRD 103, 112009 (2021)

(a) $\delta p_{TT} = p_{TT}^{\pi} + p_{TT}^{\mathrm{p}}$.

źтт

- Transverse boosting angle $\delta \alpha_T$ sensitive to FSI
 - Indicates if proton has been accelerated or decelerated

• $\delta p_{TT} = p_{TT}^{\pi} + p_{TT}^{p}$

- Would be zero with no nuclear effects
- Distribution is broadened by initial fermi motion and FSI

• $p_N = \sqrt{\delta p_T^2 + p_L^2}$

- Probes Fermi motion similar to δp_{TT}
- Peak shifted by FSI + long tail

v_{μ} CC-1 π^+Np Transverse Kinematic Imbalance

- Simple Fermi gas models (RFG & LFG) show larger disagreement with data
 - Fermi motion might not be well modelled
- Limited sensitivity for $\delta \alpha_T$ due to phase space constraints
- Overall, the data slightly prefers the GIBUU model
 - Includes more realistic nuclear ground state and more complete FSI modeling
- We are still statistically limited
- ND280 upgrade will increase statistics and extend the phase space at low energy and high angles

PRD 103, 112009 (2021)

 $N \geq 1$

v_e CC & \overline{v}_e CC Cross Sections

- T2K beam has intrinsic irreducible $\nu_e\,/\,\overline{\nu}_e$ contamination from K^\pm,μ^\pm decays
- Major uncertainty in δ_{CP} measurements
- 3 signal samples:

IINIVFRSITF

DE GENÈVE

- ν -mode: $CC\nu_e$
- $\overline{\nu}$ -mode: $CC\nu_e$ & $CC\overline{\nu}_e$
- Major γ background from π^0 production
 - Constrained with dedicated control sample

v_e CC & \overline{v}_e CC Cross Sections

- Challenging signal sample
- Data agrees best with NEUT and GENIE models
- Limited detector acceptance
 - $p_e > 0.3 \text{ GeV}$
 - $\theta_e < 45 \deg$
- Results are statistically limited
- Irreducible background in δ_{CP} measurements
 - $\nu_{\mu} \rightarrow \nu_{e}$
 - $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$
- First $CC\overline{\nu}_e$ result since Gargamelle measurement in 1979
- Increased statistics and reduction of γ background with ND280 upgrade

JHEP10 (2020) 114

Generator	Generator $p - \cos(\theta) \chi^2$		$\cos(\theta)$ -only χ^2	
	(ndof = 13)	(ndof = 7)	(ndof = 6)	
NEUT 5.4.0	14.63	5.82	5.34	
GENIE 2.12.10	16.32	4.16	4.55	
NuWro 19.02	32.08	4.52	5.08	

Joint v_{μ} Carbon+Oxygen CC0 π Cross Section

- FGD1 (C) and FGD2 (C+O) samples used
- 5 signal samples based on muon & proton directions
- 2 control samples to constrain backgrounds
- \bullet C & O double differential cross sections extracted simultaneously in joint fit
 - Exploit correlations in detector, flux and interaction systematics

PRD 101, 112004 (2020)

Joint v_{μ} Carbon+Oxygen CC0 π Cross Section

PRD 101, 112004 (2020)

- Measure C, O and C/O cross sections
- Simple CCQE Fermi gas model (LFG) preferred over more involved spectral functions or mean field models in forward bins
 - Highest contribution to χ^2 due to high statistics
 - Relatively poorly understood 2p2h and FSI effects are largest in this region relative to CCQE prediction
- In other regions all tested models give predictions compatible with data
- Model discrimination should improve by including hadron kinematics and extending analysis to $\overline{\nu}_{\mu}$

The WAGASCI Near Detector

- 1.5 degrees off axis \rightarrow 0.86 GeV peak energy
- 2 detectors with different targets
 - Proton module: CH
 - WAGASCI: H_20
- Downstream INGRID module is used as muon tracker
- No ν / $\overline{\nu}$ separation

DE GENÉVE

$\overline{\nu_{\mu}} \& \overline{\nu_{\mu}} + \nu_{\mu} CC0\pi0p$ Cross Section on Hydrocarbon and Water

PTEP 4 (2021) 043C01

- Signal is single muon track with no pions or protons
- Phase space limited to regions with good efficiency
 - $\theta_{\mu} < 30 \text{ deg}$

INIVFRSITF

DE GENÈVE

- $p_{\mu} > 0.4 \text{ GeV}$
- Significant ν_{μ} background
- Use Proton module as hydrocarbon target, WAGASCI as water target

$\overline{\nu_{\mu}} \& \overline{\nu_{\mu}} + \nu_{\mu} CC0\pi0p$ Cross Section on Hydrocarbon and Water

PTEP 4 (2021) 043C01

- Good agreement between data and NEUT model
- First cross section measurement with WAGASCI detector at 1.5 degrees off-axis

χ^2	$\overline{ u}_{\mu}$ cross-section			$\overline{\nu}_{\mu} + \nu_{\mu}$ cross-section			
	$\sigma_{ m H_2O}$	$\sigma_{ m CH}$	$\sigma_{ m H_2O}/\sigma_{ m CH}$	$\sigma_{ m H_2O}$	$\sigma_{ m CH}$	$\sigma_{ m H_2O}/\sigma_{ m CH}$	
NEUT	0.74	0.16	0.81	5.93	0.33	5.76	
GENIE	0.72	0.54	0.89	5.98	0.57	6.35	

DE GENÈVE

0-5 deg 5-10deg 10-15deg 15-20deg 20-25deg 25-30deg 21

Sneak Peek: Joint on-/off-axis CC0 π cross section

• First T2K multi-detector cross section measurement

2.5°

- Direct probe of E_ν dependence

р

UNIVERSITÉ DE GENÈVE

Neutrino

Beamline

- Exploits correlations between the systematic uncertainties of the samples
 - Allows for their efficient cancellation

Summary and Outlook

- T2K continues to produce valuable cross section measurements of neutrino-nucleus interactions
- Minimal model dependency by performing measurements based on final observed topology
- Novel joint measurements in the pipeline stay tuned!
- ND280 upgrade currently in progress huge potential for new measurements

See Dung Thi Nguyen's talk on the T2K near detector upgrade

May 2022 dual site collaboration meeting

Recent Publications

- Measurements of antinumu and antinumu+numu charged-current cross-sections without detected pions or protons on water and hydrocarbon at a mean anti-neutrino energy of 0.86 GeV, Prog. Theor. Exp. Phys. 043C01 (2021)
- First T2K measurement of transverse kinematic imbalance in the muon-neutrino charged-current single- π^+ production channel containing at least one proton, PRD 103, 112009 (2021)
- Measurement of the charged-current electron (anti-)neutrino inclusive cross-sections at the T2K off-axis near detector ND280, JHEP10(2020)114
- First measurement of the charged current anti-muon neutrino double differential cross section on a water target without pions in the final state, PRD 102, 012007 (2020)
- Simultaneous measurement of the muon neutrino charged-current cross section on oxygen and carbon without pions in the final state at T2K, PRD 101, 112004 (2020)
- First combined measurement of the muon neutrino and antineutrino charged-current cross section without pions in the final state at T2K, PRD 101, 112001 (2020)

