Searches for VHE counterparts to Gravitational Waves

Fabian Schüssler (IRFU, CEA Paris-Saclay)

Sarah A. Brands, 2018

Major current VHE gamma-ray observatories

From the current IACTs to CTA

Overview: O1 + O2 + O3 + ...

B.P. Abbott et al., <u>arXiv:1304.0670</u> (v9, 2019-09-27)

See dedicated talks

VHE searches for GW counterparts during O1 + O2

- GW151226 (MAGIC): the second BBH merger
 - Exploratory searches with a few pointings mirroring optical observations
 - De Lotto et al. (MAGIC Collaboration), IAU Symposium 324 (2017)
- GW170104 (VERITAS):
 - 39 pointings (5min each) covering ~27% of the localization region
 - GCN #21153

M. Santander et al. (VERITAS), PoS 358, ICRC2019

VHE searches for GW counterparts during O1 + O2

- GW151226 (MAGIC): the second BBH merger
 - Exploratory searches with a few pointings mirroring optical observations
 - De Lotto et al. (MAGIC Collaboration), IAU Symposium 324 (2017)
- GW170104 (VERITAS):
 - 39 pointings (5min each) covering ~27% of the localization region
 - GCN #21153
- GW170814 (H.E.S.S.): the first GW event detected by 3 interferometers
 - First complete coverage of the localization region
 - H. Ashkar et al. (H.E.S.S.), 12th INTEGRAL conference, arXiv:1906.10426

Links to Gamma-Ray Bursts

Abbott, B.P. et al 2017 ApJL 848 L12

- NS-NS mergers are sources of (short) GRBs
- GRB180720B
- GRB190114C
- GRB190829A
- GRBs emit at VHE energies
- VHE emission is strong enough for current IACTs
- VHE emission is long-lasting (GRB180729B: >10h)
- Let's detect VHE emission from NS-NS (and NS-BH) mergers...

Links to Gamma-Ray Bursts

Fermi/GBN

Let s detect vite emission from NS-NS (and NS-BH) mergers...

NS-NS mergers are sources of

LIGO-Virgo Spectrogra

Virgo+Ligo+et al., ApJL 826:L13 (2016)

Scheduling and pointing strategy

Scheduling and pointing strategy

Scheduling and pointing strategy

- automatic selection of regions of interest
 - correlation with galaxy catalog(s) in 3 dimensions
 - dedicated algorithms for the different possibilities (e.g. BNS, BBH, bursts, etc.)

M. Seglar-Arroyo + FS (H.E.S.S.), Moriond VHEPU 2017, arXiv: 1705.10138

GW170817: TeV gamma-ray follow-up

H. Abdalla et al. (H.E.S.S.), ApJL 855:L22 (2017)

- First observations of a ground-based pointing instrument
 - 5.3 hours after GW170817 (5 minutes after GCN circular with Ligo+Virgo analysis)
 - first pointing containing SSS17a (AT 2017gfo)

H.E.S.S. observations of GW170817: prompt observations

- First observations of a ground-based pointing instrument
 Right Ascension (J2000)
 - 5.3 hours after GW170817
 - 5 minutes after the GCN circular announcing the Ligo+Virgo analysis
 - no significant signal: Φ (0.28 < E [TeV] < 2.31) < 3.9 x 10⁻¹² erg cm⁻² s⁻¹
 - monitoring campaign over 5 nights

H. Abdalla et al. (H.E.S.S.), ApJL 855:L22 (2017)

H.E.S.S. observations of GW170817: prompt observations

- e.g. K. Murase et al. (arXiv:1710.10575)
 - high-energy signatures from long-lasting central engines
 - inverse Compton: X-ray up-scattering by electrons in the jet
 - H.E.S.S. observations constrain on-axis emission
 - CTA will have access to off-axis emission

VHE observations of GW170817: prompt observations

VHE observations of GW170817: prompt observations

Longterm H.E.S.S. observations of GW170817

- Extensive H.E.S.S. follow-up during the peak of the X-ray+ radio emission
 - exploiting the link between synchrotron + SSC peaks to put limits on the B-field

19

S. Ohm, A. Taylor, H. Ashkar, FS, X. Rodriguez et al. (ICRC2019), paper submitted

Longterm H.E.S.S. observations of GW170817

Extensive H.E.S.S. follow-up during the peak of the X-ray+ radio emission

- exploiting the link between synchrotron + SSC peaks to put limits on the B-field
- isotropic, non-relativistic outflow: $B \gtrsim 210 \mu G$
- relativistic jet: B ≥ 24µG

S. Ohm, A. Taylor, H. Ashkar, FS, X. Rodriguez et al. (ICRC2019), paper submitted

First lessons learned from O3

- Number of GW detections matching/exceeding expectations (~1/week)
- New source classes (?): BH-NS mergers + mass gap events 3 < M_{\odot} <5
- Increased horizon enables detections further away
 - Low S/N events have larger localization uncertainties
 - No EM counterpart found so far

IACT searches during O3a

VERITAS

GW ID	Delay	Compact binary	Prob. covered	VERITAS obs.
	[hrs]	coalescence type		[hrs]
S190412m	24.1	BBH:> 99%	$\sim 50\%$	3.1
S190425z	1.3	BNS:> 99%	$\sim 2\%$	0.9
S190426c	17.6	NSBH:60%, MG: 25%, BNS:15%	$\sim 20\%$	2.5
S190707q	20.3	BBH:> 99%	$\sim 30\%$	3.0

M. Santander et al. (VERITAS), PoS 358, ICRC2019

MAGIC

- Commissioning automatized reaction to GW events
- D. Miceli et al. (MAGIC), ICRC2019, arXiv: 1909.03971

H.E.S.S.

- S190512at: well localized BBH
- S190728q: well localized BBH (H.E.S.S.: ~80% coverage, <u>GCN #25237</u>)
- M. Seglar-Arroyo et al. (H.E.S.S.), ICRC2019, arXiv: 1908.06705

Searches with air shower arrays

- HAWC + LHAASO (+ SWGO, ALTO, ALPACA, etc.)
- Large FoV + high duty-cycle
 - Smaller instantaneous sensitivity + higher Ethreshold
- HAWC: automatized searches for excess at several timescales (0.3s - 100s)

GW170817 @ Cherenkov Telescope Array

H. Abdalla et al. (H.E.S.S.), ApJL 855:L22 (2017)

FS (CTA consortium), preliminary

- detailed studies ongoing
- extending work from
 - all current IACTs
 - I.Bartos et al., MNRAS 477 (2018) 639-647
 - B. Patricelli et al., JCAP 05 (2018) 056

GW follow-up with CTA: real-time analyses

Searches for VHE emission associated to GWs

- detection of VHE emission from GRBs boosting GW follow-up searches
 - Iong-lasting VHE emission possible (also for short GRBs ?)
 - waiting for the next well-localized BNS merger ;-)
- deep MWL observations can provide interesting results on the remnant
 - e.g. constrains on the B-field
- GW follow-up programs are an integral part of all current IACTs
 - significant discovery space
 - lessons learned providing input for the Cherenkov Telescope Array
- Large uncertainty regions and archival searches are prime targets for air shower arrays
 - LHAASO may become a major player

