16th Recontres du Vietnam: TMEX 2020 – Jan 6-11th 2020

Multi-messenger opportunities from core-collapse supernovae

Shunsaku Horiuchi

Virginia Tech

Image credit: NASA/ESA

SN1987A

Observation: Type II supernova progenitors are massive stars

Observation: 10 - 40 MeV neutrino signal lasting ~ 10 s

SN1987A

Theory: massive star

undergoes collapse,

emits neutrinos,

launches shock,

causes supernova

Time [sec]

Observation: Type II supernova progenitors are massive stars

Great confirmations!

- Progenitor of supernovae
- Dominance of neutrinos

[MeV]

02 Solution 15

0.1

- v thermalization
- Limits on new particles
- And many more

Observation: 10 – 40 MeV neutrino signal lasting ~10 s

But also much left unknown:

- Explosion mechanism
- GW counterpart
- NS and BH remnants
- Neutrino mixing effects
- Equation of state
- And many more

10

The next Galactic supernova (20XX)

Core collapse to explosion

Explosion mechanism

- Needs energy reservoir and transfer.
- Prevalent mechanism is the turbulenceenhanced neutrino energy deposition
- Complex numerical problem

Core collapse to explosion

Explosion mechanism

- Needs energy reservoir and transfer.
- Prevalent mechanism is the turbulenceenhanced neutrino energy deposition
- Complex numerical problem

→ Need neutrino <u>and</u> progenitor information

VS

Neutrino confidence

Reveal IF to look: number statistics expected from a Galactic event

Detector	Type	Mass (kt)	Location	Events	Flavors
Super-Kamiokande	H_2O	32	Japan	7,000	$\bar{ u}_e$
LVD	$C_n H_{2n}$	1	Italy	300	$\bar{ u}_e$
KamLAND	$C_n H_{2n}$	1	Japan	300	$\bar{ u}_e$
Borexino	$C_n H_{2n}$	0.3	Italy	100	$\bar{ u}_e$
IceCube	Long string	(600)	South Pole	(10^{6})	$\bar{ u}_e$
Baksan	$C_n H_{2n}$	0.33	Russia	50	$\bar{ u}_e$
$MiniBooNE^*$	$C_n H_{2n}$	0.7	USA	200	$\bar{ u}_e$
HALO	\mathbf{Pb}	0.08	Canada	30	$ u_e, u_x$
Daya Bay	$C_n H_{2n}$	0.33	\mathbf{China}	100	$\bar{ u}_e$
$NO\nu A^*$	$C_n H_{2n}$	15	USA	4,000	$\bar{ u}_e$
SNO+	$C_n H_{2n}$	0.8	Canada	300	$\bar{ u}_e$
$MicroBooNE^*$	\mathbf{Ar}	0.17	USA	17	$ u_e$
DUNE	Ar	34	USA	3,000	$ u_e$
Hyper-Kamiokande	H_2O	560	Japan	110,000	$ar{ u}_e$
JUNO	$C_n H_{2n}$	20	\mathbf{China}	6000	$\bar{ u}_e$
RENO-50	$C_n H_{2n}$	18	Korea	5400	$ar{ u}_e$
LENA	$C_n H_{2n}$	50	Europe	15,000	$\bar{ u}_e$
PINGU	Long string	(600)	South Pole	(10^{6})	$\bar{ u}_e$

Not shown: direct dark matter detectors

Mirizzi et al (2015); Scholberg (2012)

Running

Neutrino heating mechanisms

Neutrino heating needs turbulence-enhanced neutrino energy deposition

<figure></figure>	For mass (15 Msun)	<figure></figure>
Readily explodes by neutrino heating, even in spherical symmetry.	Explodes in axisymmetric and full 3D via convection	Explodes in axisymmetric and full 3D with SASI

Imprints of hydrodynamical instabilities

Signatures:

1000

800

600

400

200

0

100

Rate [ms⁻¹]

- SASI's time variations (\sim 10-20 ms) get imprinted on the neutrino luminosity and energy.
- Can be measured with large volume detectors

only convection

Multiple SASI episodes + convection

200

Shunsaku Horiuchi (Virginia Tech) Tamborra et al (2013, 2014), based on Hanke et al (2013) see also Lund et al (2010, 2012) 10

+ convection

Alerting the community

Neutrinos: rapid sharing of core collapse occurrence

- Individual detectors
 - EGADS: automated alert within \sim 1 s
 - Super-K: alert within ~ 0.5-1 hour of neutrino burst (info: time, duration, total events, pointing)
 Email, IAU, Atel, GCN

e.g., Adams et al (2013)

Multi-messenger: electromagnetic

Shock breakout (SBO):

- First radiation to leak out when supernova shock reaches photosphere
- Helps reveal stellar radius, circumstellar environment, recent mass-loss, envelop mass, and so on...

Timescales

- For RSG (=type IIP): 1000 Rsun, 10 Msun
 - \rightarrow duration $\delta t \sim hours$
 - \rightarrow delay $\Delta t \sim \underline{days}$

Nakamura, Horiuchi et al (2016)

Multi-messenger: electromagnetic

Shock breakout (SBO) timescales:

- For WR (=type lbc): 1 Rsun, 1-10 Msun
- \rightarrow delay *minutes*, duration *seconds*
- Approx 25% of cases in nearby volume-limited sample

Pointing

Reveals WHERE to look

Use e^{-} scattering in the forward cone: \sim 300 events at SK

$$\nu + e^- \rightarrow \nu + e^-$$

Background mostly due to IBD

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

Beacom & Vogel (1999), Tomas et al (2003)

Pointing with Gadolinium

Reveals WHERE to look

Use e⁻ scattering in the forward cone: ~300 events at SK

$$\nu + e^- \rightarrow \nu + e^-$$

Background to be reduced by neutron tagging with Gd (~90% efficiency):

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

Remaining background is the $\sim 10\%$ of IBD and ve absorption on 16 O ($\sim 20-80$ events)

→ Pointing accuracy of several degrees

	Super-K	Hyper-K
Water only	~6 deg	\sim 1.4 deg
Water + Gd (90% tag)	~3 deg	\sim 0.6 deg

Beacom & Vogel (1999), Tomas et al (2003)

SNEWS2.0: Triangulation

α

Coordinated pointing: Automate triangulation into upgraded SNEWS2.0 alerts

HK+JUNO+DUNE +IceCube 45° 30° 15° -150° -120° 120° 150° .9ñ -601 -30 300 602 90. 10 O* -15° -30° -45° -60 -75° α

Linzer & Scholberg (2019); See also, Brdar et al (2018), Beacom & Vogel (1999), Mhlbeier et al (2013),

-60°

-75°

Multi-messenger: electromagnetic

Important WHERE supernova occurs:

The Milky Way puts severe attenuation in the optical regime (not so much in IR)

Multi-messenger: electromagnetic

Important WHERE supernova occurs:

 ${\sim}25\%$ of CCSNe are hard to reach optically

Multi-messenger: gravitational waves

Shunsaku Horiuchi (Virginia Tech)

Core collapse: possible channels

Both should occur

Imprints of black hole formation

Moment of black hole formation

Neutrinos light curve can reveal the moment of black hole formation

Time of black hole formation depends on mechanism & progenitor & EOS

Failed explosion may not be so rare

Supernova diversity: explosion / implosions in the neutrino mechanism

1D: O'Connor & Ott (2011), Erlt et al (2015), Pejcha & Thompson (2015), Sukhbold et al (2016) 1D continued: Mueller et al (2016), Warren et al (2019)

Shunsaku Horiuchi (Virginia Tech)

2D: Horiuchi et al (2014), Summa et al (2016)

Supernova progenitors

Pre-imaging: Limited to nearby Known red-supergiants (@MW, LMC) **Observed progenitors** SNe, but very successful for Type II 30 5.5 SN 2008bk 25 20 5.0 16 -og L/Lsun 4.5 12 $D \sim 4 Mpc$ 10 4.0 pre-image by HST 8 $m_{\rm max} = 16.5^{+2.}_{-2}$ 3.5 3.9 3.8 3.7 3.6 3.5 4.0 3.4 log T_{eff} 1" (45 pc)

Why: most luminosity missing from progenitor sample?

Smartt (2009), Smartt (2015)

Searching for disappearing stars

"Survey of nothing"

In 7 years running

- 6 luminous supernovae (09dh, 11dh, 12fh, 13ej, 03em, 14bc)
- 1 candidate failed supernova: NGC6946-BH1 (@~6Mpc); SED well fit by 25Msun RSG

-> Failed fraction
$$f = 0.14^{+0.33}_{-0.10}$$
 (90%CL)

Kochanek et al (2008), Gerke et al (2015), Shunsaku Horiuchi (Virginia Tech) Adams et al (2016)

Explosions & implosions

→ Failed explosion may not be rare. Fraction can be 10–40% of all core collapse

Reach to our neighbors

Detecting nearby neutrinos

Two approaches :

- Rate: one every several years due to over density
- Detection: probabilities possibly out to a few Mpc

1. Neutrino trigger: look for <u>doublets</u> or higher <u>multiplets</u> (e.g., doublets in 10 sec occurs once per ~10 years scaling from SK-II)

2. EM trigger: use SBO or early SN light curve to model the bounce time (e.g., background rate in signal region is $\sim 0.8 / day / 0.56 M ton$ scaling from SK-II) \rightarrow maybe even <u>singles</u>

Nakamura, Horiuchi, et al (2016); based on Ando et al (2005)

Average core-collapse neutrino flux

Average neutrino emission

- Use 100+ simulations to characterize neutrino's progenitor dependence
- Use initial mass function to distribute stars
- Include collapse to black holes (parameterized)

Imprints of black hole formation

Shunsaku Horiuchi (Virginia Tech)Lien et al (2010); also Lunardini (2009), Moller et al (2018), others Horiuchi et al (2018) 29

High-energy phenomena

IceCube neutrinos

Strongly constrained by stacking studies of GRBs, but choked jets still possible

Tamborra & Ando (2016), Denton & Tamborra (2018), Esmaili & Murase (2018)

Ultra-high energy cosmic rays Possible sites for sourcing nuclei UHECR.

Simple loading + propagation can describe the Auger spectrum & composition measurements

> Murase et al (2008), Metzger et al (2011), Horiuchi et al (2012), Zhang et al (2018)

Concluding remarks

Supernova is an inherently multi-messenger phenomenon Photons, neutrinos, gravitational waves, cosmic rays

Rich multi-messenger opportunities

- Neutrinos will reveal IF, WHEN, and WHERE to look – and RAPIDLY alert the community
- Multi-messengers will test explosion models, black hole formation, GRB connection, and many more...

Make sure we don't miss these opportunities!

Thanks!

