

NEW IDEAS IN DARK MATTER DETECTION

Kathryn M. Zurek

- WIMP paradigm: a good place to start looking
- Reason: weak forces have the right scale, for detection, abundance, and cosmology

$$\sigma_{wk} \simeq \frac{g_{wk}^4 \mu_{XT}^2}{4\pi m_Z^4} \simeq 10^{-34} \text{ cm}^2 \left(\frac{100 \text{ GeV}}{M}\right)^2$$

- WIMP paradigm: a good place to start looking
- Reason: weak forces have the right scale, for detection, abundance, and cosmology

$$\sigma_{wk} v_{fo} \simeq \frac{g_{wk}^4 \mu_{XT}^2}{4\pi m_Z^4} \frac{c}{3} \simeq 10^{-24} \frac{\text{cm}^3}{\text{s}} \left(\frac{100 \text{ GeV}}{M}\right)^2$$

- WIMP paradigm: a good place to start looking
- Cross-sections are too small to have relevant impacts on structure formation

$$\sigma_{SIDM} \lesssim 10^{-24} \ \mathrm{cm}^2/\mathrm{GeV}$$

DETECTABLE INTERACTION RATES

WIMP: not dead but continually pressured

Z-boson interacting dark matter: ruled out

Higgs interacting dark matter: active target

$$\sigma_{wk} v_{fo} \simeq \frac{g_{wk}^4 \mu_{XT}^2}{4\pi m_Z^4} \frac{c}{3} \simeq 10^{-24} \frac{\text{cm}^3}{\text{s}} \left(\frac{100 \text{ GeV}}{M}\right)^2$$

- Heavier dark matter: setting relic abundance through interactions with Standard Model is challenging (NB: exceptions)
- At heavier masses, detection through Standard Model interactions is (generally) not motivated by abundance

- Look for gravitational means to detect structure
- Above $10^{-13} M_{\odot}$ Pulsar timing, interferometers can be effective
- Project of the (far) future to use laboratory clocks to detect small gravitational redshift effects

- Ultralight dark matter: dark matter behaves like a wave rather than an individual particle, e.g. axion
- Detection techniques focus on utilizing this coherence
- Cavities, AMO techniques

- Focus on an intermediate range where observation via particle interactions with SM is still highly motivated though not detectable with traditional WIMP experiments
- Arise generically in top-down constructions

- Dark sector dynamics are complex and astrophysically relevant. $\sigma_{str} \simeq \frac{4\pi\alpha_s^2}{M^2} \simeq 10^{-24} \text{ cm}^2 \left(\frac{1 \text{ GeV}}{M}\right)^2$
- Abundance may still be set by (thermal) population from SM sector

$$\sigma_{wk} v_{fo} \simeq \frac{g_{wk}^4 \mu_{XT}^2}{4\pi m_Z^4} \frac{c}{3} \simeq 10^{-24} \frac{\text{cm}^3}{\text{s}} \left(\frac{100 \text{ GeV}}{M}\right)^2$$

TOWARDS HIDDEN SECTOR DARK MATTER

Developments in condensed matter make this possible

???

PARADIGM SHIFT

Our thinking has shifted

From a single, stable very weakly interacting particle (WIMP, axion)

> Models: Light DM sectors, Secluded WIMPs, Dark Forces, Asymmetric DM Production: freeze-in, freeze-out and decay, asymmetric abundance, non-thermal mechanisms

...to a hidden sector / valley with multiple states, new interactions

 $M_p \sim 1 \text{ GeV}$

Standard Model

Inaccessibility

TOWARDS HIDDEN SECTOR DARK MATTER

Experimental Panorama

DM ABUNDANCE AS A GUIDE

If DM abundance is related to its coupling to the SM in

COMPLEMENTARITY TO ACCELERATOR SEARCHES

• High energy accelerators probe particles with mass at high energy scale of the collider with *large* couplings to SM

Direct detection experiments are "intensity" experiments
 — they probe light mediators with *small* couplings to SM

LOOKING BEYOND BILLIARD BALLS

 Nuclear recoil experiments; basis of enormous progress in direct detection

 $v \sim 300 \text{ km/s} \sim 10^{-3} c \implies E_D \sim 100 \text{ keV}$

$$E_D = \frac{q^2}{2m_N} \qquad \qquad q_{\max} = 2m_X v$$

LIGHTER TARGETS FOR LIGHTER DARK MATTER

EXCITING COLLECTIVE MODES

- Once DM drops below an MeV, its deBroglie wavelength is longer than the inter particle spacing in typical materials
- Therefore, coupling to collective excitations in materials makes sense!
- Collective excitations = phonon modes
- Can be applied to just about any material
- (partial) calculations exist for superfluid helium, semiconductors, superconductors, polar materials
- Details depend on
 - 1) nature of collective modes in target material
 - 2) nature of DM couplings to target

NATURE OF COLLECTIVE OSCILLATIONS OF IONS — PHONONS

- Number of collective modes:
 3 x number of ions in unit
 cell
- 3 of those modes describe in phase oscillation — acoustic phonons — and have a translation symmetry implying gapless dispersion
- The remaining modes are gapped

NATURE OF COLLECTIVE MODES

- Some materials have an abundance of these modes
- When these gapped modes result from oscillations of more than one type of ion, it sets up an oscillating dipole
- Polar Materials

KINEMATICS OF COLLECTIVE MODES

First element to enter is the kinematics

Better coupling to gapped modes

DIRECTIONALITY IN ANISOTROPIC MATERIALS!

Knapen, Lin, Pyle, KZ 1712.06598 Griffin, Knapen, Lin, KZ 1807.10291

- Crystal Lattice is not Isotropic
- Especially pronounced in sapphire

OPTICAL PHONONS IN POLAR MATERIALS

Griffing, Inzani, Trickle, Zhang, KZ, 1910.10716

OPTICAL PHONONS IN POLAR MATERIALS

Griffing, Inzani, Trickle, Zhang, KZ, 1910.10716

COUPLING TO TARGET, AND IMPORTANCE OF TARGET DIVERSITY

- Why? Dark matter interaction is sensitive to material type
- Dirac materials versus ordinary metals
- Consider dark photon mediated dark matter:

Polarization tensor characterizes in-medium optical response

Metals have very strong optical response, and hence weak coupling to dark photons

OPTICAL RESPONSE OF "SEMI-METALS

- Band structure can be "quantum engineered"
- Instead of a spherical Fermi surface as in a metal, the electrons have a cone structure
- Linear dispersion implies a Dirac equation, like QED
- In QED, gauge invariance protects photon from obtaining a mass

 $|\mathbf{q}| \ll \omega$

COMPARISON OF METAL AND SEMI-METAL

Yonit Hochberg,^{1,2,*} Yonatan Kahn,^{3,†} Mariangela Lisanti,^{3,‡} Kathryn M. Zurek,^{4,5,§} Adolfo Grushin,^{6,7,¶} Roni Ilan,^{8,**} Zhenfei Liu,⁹ Sinead Griffin,⁹ Sophie Weber,⁹ and Jeffrey Neaton⁹ 1708.08929 Some types of particle interactions have dominant interactions with spin

Magnetic dipole DM	$\mathcal{L} = \frac{g_{\chi}}{\Lambda_{\chi}} \bar{\chi} \sigma^{\mu\nu} \chi V_{\mu\nu} + g_e \bar{e} \gamma^{\mu} e V_{\mu}$
Anapole DM	$\mathcal{L} = \frac{g_{\chi}}{\Lambda_{\chi}^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \partial^{\nu} V_{\mu\nu} + g_e \bar{e} \gamma^{\mu} e V_{\mu}$

Collective (electron) spin-waves = magnons

Magneticall
$$\begin{pmatrix} \hat{a}_{j,k} \\ \hat{a}_{j,-k}^{\dagger} \end{pmatrix} = T_{k} \begin{pmatrix} \hat{b}_{\nu,k} \\ \hat{b}_{\nu,-k}^{\dagger} \end{pmatrix}$$
 where $T_{k} \begin{pmatrix} \mathbb{1}_{n} & \mathbb{0}_{n} \\ \mathbb{0}_{n} & -\mathbb{1}_{n} \end{pmatrix} T_{k}^{\dagger} = \begin{pmatrix} \mathbb{1}_{n} & \mathbb{0}_{n} \\ \mathbb{0}_{n} & -\mathbb{1}_{n} \end{pmatrix}$ ignets)

TOWARDS HIDDEN SECTOR DARK MATTER

Experimental Panorama

SEARCHING FOR AXIONS AND OTHER ULTRALIGHT PARTICLES

- Rather than depositing kinetic energy, entire mass energy can be deposited
- Typically requires inelastic processes on the lattice to absorb momentum

DARK MATTER NEW INITIATIVES

A number of experimental proposals available both for small project development and R&D

EXPERIMENTAL PROGRESS

Results with small detectors already published

SENSEI Collaboration, 1901.10478

SuperCDMS 1804.10697

BACKGROUNDS AND A SOLAR NEUTRINO DETECTOR

- Radiogenic backgrounds improve with better energy resolution detectors — not a problem
- p+p solar neutrinos become important with kg-year exp

Recoil Energy Range [eV]	Integrated Scattering Rate $[\text{recoils } (\text{kg·yr})^{-1}]$			
	Ge	Si	Не	
< 0.01	72	16	1.0	
0.01 – 0.1	34	13	0.5	
0.1 - 1	16	5	0.013	
1 - 10	0.8	0.9	1.6×10^{-4}	
>10	0.10	0.012	0.012	

Coherent Photon Scattering Need good photon veto

THE CHALLENGE

- Now is not the time for narrowing our search for dark matter; the playing field is still wide open
- Moving beyond nuclear recoils into phases of matter crucial to access broader areas of DM parameter space
- Target diversity essential. graphene, superconductors, semiconductors, helium, polar crystals, Dirac or Weyl materials
- Leverage progress in materials and condensed matter physics
- Realizing program 5-10+ years into the future

THE OUTLOOK

• We are not without tools!

- The universe is dominated by invisibles!
- " WIMP or (axion)
 - How to be ready for anything? Hidden Sectors
 - How do I search for these things?