

SubGeV Dark Matter Searches with EDELWEISS

The EDELWEISS SubGeV program

SIMPs search results

[PRD 99 082013 (2019)]

New: search results for light DM interacting with electrons

> J. Gascon UCB Lyon 1, CNRS/IN2P3/IP2I

Jan. 7th, 2020 TMEX2020 - Edelweiss SubGeV DM searches

A widening search domain

J. Billard, New Directions in the Search for Light Dark Matter Particles, Fermilab 2019

This talk

J. Billard, New Directions in the Search for Light Dark Matter Particles, Fermilab 2019

EDELWEISS-III detectors

TMEX2020 - Edelweiss SubGeV DM searches

EDELWEISS SubGeV program

- Current+future projects: background limited
- Event-by-event identification of nuclear recoils down to 1 GeV/c² (and reach 10⁻⁴³ cm² with kg-size array) requires

 $\sigma_{phonon} = 10 \text{ eV}$ and $\sigma_{ion} = 20 \text{ eV}_{ee}$

 Ionization resolution is key to particle identification + surface rejection :

Cold HEMT preamp + low capacitance (joint development with Ricochet)

- Reducing the **detector mass** from 860 to 33 g is key to meet these resolution goals
 1st milestone: EDELWEISS-Surf
- Keeping the ability to apply HV to amplify heat signal: low thresholds in ER searches & statistical NR/ER separation

1st milestone: Electron-DM results

Optimization of 33g FID design: large fiducial volume & low capacitance

Ricochet-CryoCube collaboration

Searching for low-mass dark matter particles with a massive Ge bolometer operated above-ground, Phys. Rev. D 99 (2019) 082003

ABOVE-GROUND SEARCHES WITH A 33G DETECTOR

Theory & experiment motivations for DM surface searches

Relevance of strong interactions of ~GeV DM particles

- Main focus of direct DM searches so far: DM-nucleon cross sections below 10⁻³¹ cm² → Shielding from Earth + atmosphere can be neglected, i.e. experiments are located in deep underground sites, to reduce cosmic-ray induced backgrounds
- O(10⁻²⁴) cm² DM-DM cross-section of ~GeV DM particles could actually help CDM problems at small-scale (DM halo, satellites...) [Spergel+Steinhardt PRL 84 3760 (2000)]
- Natural extension: test for O(10⁻²⁴) cm² DM-nucleon interactions [e.g. Chen et al, PRD 65 123515 (2002)]

Technological:

- First physics with prototype low-threshold 33g Ge detectors
- Detector development program based in surface laboratory
- Proof that relatively massive EDELWEISS-like detectors can be used in surface experiment, i.e. relevant for the study of the coherent elastic scattering of reactor neutrinos on nucleons (like Ricochet)

EDELWEISS-Surf Above-ground DM search

- Context: EDELWEISS and Ricochet common R&D for low-threshold detectors performed in easyaccess surface lab @ IPN-Lyon
- <1 m overburden: ideal for SIMP search (strongly interacting DM)</p>
- Dry cryostat (CryoConcept) with <30h cool-down (fast turnover ideal for detector R&D)
 [NIM A858 (2017) 73]
- < µg/√Hz vibration levels (spring-suspended tower).
 [JINST 13 (2018) №.8 T08009]
- RED20: **33g Ge** with NTD sensor, with no electrodes
 - No ER/NR discrimination, but no uncertainty due to ionization yield or charge trapping)
- 55Fe source for calibration

EDELWEISS-Surf data

Efficiency, signal prediction: pulse simulation

- Same technique used to evaluate response to WIMPs of given masses
 - Case 1: NR from standard WIMPs
 - Case 2: ER+NR including Migdal effect (ejection of n=3-shell e⁻ in WIMP-atom collision [cf Ibe et al, JHEP 03 (2018) 194])

Filling the gap between ground & space searches

- Shaded regions: with full Earth-Shielding (ES) calculation
- Lines: underground limits (w/o ES calculation, ~ok for <10⁻³¹ cm²)

Next step: going deep underground to reduce backgrounds New results:

UNDERGROUND SEARCH FOR ELECTRON-DM INTERACTIONS WITH A 33G GE DETECTOR

Theory + experiment motivation: searches for electron-DM interactions

- New class of light DM models where the interaction with normal matter comes from the coupling of a Dark Sector photon with the normal photon
- Preferred detection mode: DM-electron scattering
- Benchmark model predictions: complete coverage (10⁻⁴⁰ cm²) possible with ~1 kg.year exposure of a detector sensitive to the singleelectron in the absence of any background

Searching with semiconductors: Ge

- Semiconductors: small gap energy + small leakage current
- Challenges: leakage current (1 e-/kg/y ~ 10⁻²⁷ A/kg) and electrons from radioactivity (1 e-/kg/y ~ 10⁻⁸ Bq/kg)
- Interesting improvements in bkg levels already obtained in Si with ~g pixel CCD arrays (DAMIC, SENSEI) and <1g cryogenic detector (CDMS)
- Ge interesting alternative for a massive detectors : need to assess performance in terms of currents & backgrounds

HV mode of EDELWEISS-SubGeV program:

- A 33g EDELWEISS-surf detector (equipped with electrodes) operated at ~100 V should reach sub-electron resolution (<<3 eV)
- EDELWEISS has been able to obtain at LSM the lowest radioactive background levels below 10 keV in massive Ge detectors (~0.1 evt/kg/day/keV)

RED30 Detector

- Essentially: EDELWEISS-surf detector + with electrodes added
- Ge \u03c6 20 x H 20 mm² (33.6 g)
- 1 Ge-NTD sensor (1.6 mm³) glued directly on bottom Ge surface

- Electrodes on flat surface: lithographed Al grid (500 μm pitch, 4% coverage to reduce phonon trapping)
- Outer rings of the grid acts as separate guard electrodes (outer ~2 mm)
- No side electrodes on this prototype (mitigation of risk of leakage at HV)

Luke-Neganov amplification

Addition to heat signal due to drift of charges in applied electric field

$$E_{heat} = E_{recoil} + E_{Luke} = E_{recoil} + N_p \Delta V$$
$$E_{heat} = E_{recoil} (1 + \frac{\Delta V}{\epsilon}) \text{ particle-ID dependent}$$

- Amplification proportional to ionization signal and to bias :
 - Loss of discrimination as heat signal becomes a copy of the ionization signal
 - Gain in resolution by a factor (1+ $\Delta V/3$) for electron signals

EDELWEISS setup at LSM

LSM: Deepest site in Europe 4800 m.w.e., 5 μ/m²/day

- Clean room + deradonized air
 Radon monitoring down to few mBg/m³
- Active muon veto (>98% coverage) on mobile shield
- External (50 cm) + internal polyethylene shielding
 Thermal neutron monitoring with ³He detector
- Lead shielding (20 cm, including 2 cm Roman lead)
- Selection of radiopure material

Cryostat can host up to 40 kg detector at 18 mK

Performance of the EDELWEISS-III experiment for direct dark matter searches

[JINST 12 (2017) P08010]

Current EDELWEISS run at LSM

- Continuous running at ≤22 mK Jan-Dec 2019
- Eleven Ge detectors
 - Rest of cryostat used for joint physics run with CUPID-Mo
- Compare detector physics in 33g, 200g and 800g detectors
- Compare performance of NTD and NbSi-TES heat sensors
- Study of low-energy backgrounds in Ge detectors operated with large Luke-Neganov amplification
- Limits on Dark Matter using ER and NR spectra of detectors with large Luke-Neganov amplification
- Data taking to continue in 2020

Data at regulated 20 mK and 20.7 mK

Detector response measurement with ⁷¹**Ge**

- Extensive detector studies (calib., fid. volume, charge collection) using ⁷¹Ge 10.37 keV line from exposure to a AmBe neutron source prior to LSM installation
- April 1st-7th: DM search at highest stable bias (78V) with reduced (but still visible) ⁷¹Ge activation
- April 10th : in-situ re-activation to confirm the stability of the detector response and obtain reference sample of 10.37 keV events to be used in the data analysis of the DM search data
- May-December: AmBe calibration + further studies of properties of backgrounds at low energy, behavior at high bias, leakage currents, charge collection, etc..

- Ionization channel only used for detector studies, not for DM search
- Heat channel calibrated using ⁷¹Ge KLM lines (0.16, 1.30 and 10.37 keV) at different biases (0V to 81V)
- Tail due to incomplete charge collection on side surface (confirmed by ring guard signal analysis) is <25%: conservatively taken as a 25% loss of efficiency in the following analysis.

- Search data: 2.44 day (at 78V) blinded below 1 keV
 - Baseline resolution stabilizes around $\sigma=$ 42 eV (1.60 eV_{ee}) 4 days after the ramp to 78V
 - Constant resolution (from random trigger data) during these 2.44 days
- Reference sample: 1.3 days before/after search data

- Efficiency determined by injecting pulses at random time in the recorded data streams
- The injected pulses are actual ⁷¹Ge K-line events (from the activation that immediately followed the search), rescaled to the desired energy
- Some sensitivity to 1 electron-hole pair signal

Limit setting strategy

- No bkg subtraction: 90%CL Poisson upper limit on rate in fixed energy range
- Determine most sensitive range using 1.3 day sample non-blinded data (smoothed with KDE) recorded just before/after the search
- Signal calculation: QEdark [R. Essig et al., JHEP05 (2016) 046]
 - + charge quantization [as in SuperCDMS, PRL 121 (2018) 051301]
 - + pulse simulation

Limit setting strategy

- No bkg subtraction: 90%CL Poisson upper limit on rate in fixed energy range
- Determine most sensitive range using 1.3 day sample non-blinded data (smoothed with KDE) recorded just before/after the search
- Signal calculation: QEdark [R. Essig et al., JHEP05 (2016) 046]
 - + charge quantization [as in SuperCDMS, PRL 121 (2018) 051301]
 - + pulse simulation

Results

- Limits slightly better than the expectation from the nonblind sample, because of a slightly better resolution ($\sigma = 1.60 \text{ vs} 1.63 \text{ eV}_{ee}$)
- Sensitivity extends into the domain of sub-MeV DM particles: with
 σ = 0.53 e⁻-h pairs there is some sensitivity to single-e⁻ events
- Competitive with Si expts (that use smaller detectors: few g vs 33 g)

Heavy Dark Sector mediator case (F=1)

Light Dark Sector mediator case (F=1/q²)

Pursuing the study of the noise (& detector performance) that currently limits the sensitivity

- Gain in baseline resolution: x2 on NTD sensor sensitivity and x2 on bias had been obtained on other prototype detectors
- Study of leakage currents & release of trapped charges (using also the presently available ionization signals) + electrode design
- If events are not associated to charge: stress release in crystal?
- Noise related to similar rise at low energy in the spectra observed by other cryogenic detectors?

Conclusions

The EDELWEISS-SubGeV program aims at probing MeV-GeV particles via Electron Recoil and Nuclear Recoil signals, with a ~kg-size array

- Low-voltage objectives : $\sigma = 10 \text{ eV}$ (phonon), 20 eV_{ee} (ion.)
 - Particle identification and surface event rejection down to 50 eV
- High-voltage objectives : $\sigma = 10 \text{ eV} (\text{phonon}) + 100 \text{ V}$ bias
 - Single e-/h+ pair sensitivity on massive (~30 g) bolometers

First results with 33g prototypes:

- EDELWEISS-Surf: above-ground search with 18 eV phonon resolution
 - First Ge-based limit below 1.2 GeV, best above-ground limits down to 600 MeV, Migdal effect used to probe down to 45 MeV
- First results with 33g Ge detector with $\sigma = 0.6$ electron resolution
 - First use of Ge: currents + background competitive with Si
 - Limits below 1 MeV competitive with best results