Resolving the kpc jet of Centaurus A in TeV γ-rays

M. de Naurois for the H.E.S.S. collaboration

Centaurus A

- Lenticular or elliptical galaxy at a distance of ~3.7 Mpc
 - Fifth brightest in optical
 - Contains a SMBH of ~ 55 × 10⁶ M_o
 - Dust bar resulting from inclined disk component
 - Intense star formation rate in edges of dense dust disk, possibly linked to recent merger (UV observations) (started 50 Myrs ago)

Centaurus A - Radio

 Radio galaxy (NGC 5128) of FRI type (midly relativistic jets, moderate beaming effect)

Giant lobes covering ~ 8 degrees

П.Е.Э.Э.

Radio structure of Centaurus A

arXiv:1001.0059

Centaurus A – Gamma

- Large scale emission observed by Fermi-LAT (pink) on top of core emission
- Correlates well with giant lobes, represents > 50% of total γ-ray output
- γ-ray output ~ 10 × radio, attributed to IC scattering of electrons on CMB
- radio/ γ ratio constrains magnetic field to ~ 0.9 μ G in lobes

H.E.S.

requires electrons up to ~ 1 TeV, accelerated in situ or efficiently transported

Centaurus A & UHECRs?

Small scale anisotropies of UHECRs indicates possible correlation with Cen A region (or starburst galaxies) at ~ 3.9σ (post-trials)

High Energy Stereoscopic System (H.E.S.S.)

- Array of 4+1 Cherenkov telescopes located on Khomas Highland, Namibia (1800 m)
 - H.E.S.S. phase 1 (09-2002):
 - 4 telescopes: Ø 12 m,107 m²
 - Stereoscopic reconstruction
 - 960 PMTs/camera, Field of view : 5°
 - Observations : ~1000h/year
 - Source position : ~ 10"

H.E.S.S

- H.E.S.S. phase 2 (09-2012):
- a 5th telescope, Ø 28 m, 600 m² (largest IACT in the world)
- 2048 PMTs, Field of view : 3.5°
 - \rightarrow Energy threshold (zenith) ~ 30 GeV

Advanced framework for simulations

More realistic simulation approach (ICRC 2017)

- Simulating each observation run of a data set
- Using actual observation and instrument conditions

<u>Array-wise</u>

- Telescope Tracking
- Source Position
- Atmospheric Transparency

Telescope-wise

- Camera focus
- Trigger Settings
- Live-Time fraction
- Average reflectivity

Pixel-wise

- Broken Pixels
- PMT Gain
- HI-Lo ratio
- Flatfield Coeffient
- NSB (star field, ...)

Outcome: Morphology of Point-Like Sources

- PKS 2155-304
 - Detection significance: 125σ
 - S/B ratio: 6.9
 - Consistent with point-like
 - Extension upper limits (2D Gaussian width):
 - 13.7" (1σ) ,
 - 23" (3σ)
- Markarian 421
 - Detection significance: 196σ
 - S/B ratio: 35
 - No hints of systematics despite extremely large zenith angle
 - Extension upper limits (2D Gaussian width):
 - 23.4" (1σ)
 - 33.5" (3σ)

Outcome: New capabilities in morphology studies

H.E.S.S. Re-analysis of the H.E.S.S. phase I data

- Deep H.E.S.S. Observations from 2004 to 2013
 - 202 hours of live time
 - Change in hardware state, observation conditions
- Detection significance: 13.1σ
- S/B ratio: 0.5
- Challenging data set
 - Long exposure over several years
 - Different hardware states
 - Different obs. conditions
 - Low S/B ratio

1D-projection of the raw event map

16th Rencontres du Vietnam. 2020

2D study of the Cen A data set

Extended VHE emission along the kpc-scale jet in Cen A?

Chandra X-ray image of the first kpc of Cen A's jet.

(Credit: Schwartz 2010, Hardcastle et al. 2003)

Emitting particles ?

- VLA radio (8.4 GHz) emission (contours) correlates with X-rays.
- X-rays are continuously emitted throughout jet.
- If X-rays are due to synchrotron, electrons need to be accelerated everywhere (short cooling timescale for $\chi \sim 10^8$)

Extended VHE emission along the kpc-scale jet in Cen A?

Source of soft photon fields

(Credit : ESO/WFI)

- External soft photon fields:
 - dust (peaking @ $v_p \sim 3 \times 10^{12}$ Hz): $v_{VHE} \sim \gamma^2 v_p$ (Thomson) $\Box \gamma \sim 10^7$
 - host starlight (v_p ~ 5 × 10¹⁴ Hz): v_{VHE} ~ γ m_ec² (KN) ⇒ γ ~ 10⁶
- CMB and SSC contribution negligible

SED

- IC on dust dominant component
- Synchrotron emission in 23 µG field explains X-ray emission
- GeV emission arising from the core, explains spectral hardnening
 @ 3GeV

H.E.S

Conclusions

- Centaurus A emission is not point-like at TeV
- First extragalactic extended source at VHE
- Morphology of Cen A:
 - Elliptical shape :
 - Gaussian width of semi-major axis:
 - 0.044 ° ± 0.012° (1.8 kpc)
 - Point-Like in the transverse direction
 - Aligned with radio jets
- Implies continuous acceleration along the jets
- Paper submitted to Nature

