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Probes of strong gravity using Advanced LIGO and Virgo

Detection of GW signals that are broadly consistent with GR predictions!



Probes of strong gravity using Advanced LIGO and Virgo

Detection of GW signals that are broadly consistent with GR predictions!

In the absence of reliable predictions from alternative theories, the current

ohilosophy Is to
black holes in G

test the degree of consistency of the data with GR (and

R).

Signal consistency tests, GW generation & propagation, nature of GW
polarizations, probes of horizons, etc.



Signal consistency tests: Testing residuals
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Signal consistency tests: Inspiral-merger-ringdown consistency

® TJest the consistency of mass & spin of the . [LVC+ PRL 116, 221101 (2016)]
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Signal consistency tests: Inspiral-merger-ringdown consistency
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lests of waveform generation: Parameterized tests

® |ntroduce deviations in the coefficients

describing the GR Wrm’s phase
Coefficients are unique
~ functions of the intrinsic
pPi — (1 + 5]?,) Pi parameters
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Analogous to binary pulsar tests using the post-Keplerian formalism



lests of waveform generation: Parameterized tests

® |ntroduce deviations in the coefficients

describing the GR Wrm’s phase

pi = (1 +0pi) p;

® Estimate posteriors on deviation
parameters along with the parameters

in GR Arun et al 2006, Yunes & Pretorius
2009, Liet al 2011, Sennett et al|
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lests of waveform generation: Parameterized tests

® |ntroduce deviations in the coefficients LVC+ PRL 123, 011102 (2019)
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Tests of GW propagation: Modified dispersion relation

® |n GR, GWs propagate at the speed ot

light and are
One can cons
dispersion re
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Tests of GW propagation: Modified dispersion relation

ILVC+ PRD 100, 104036 (2019)]
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® Special case Massive graviton (A > 0,

o = 0) [wil 1998]. Current constraint ?
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Tests of GW propagation: EM-GW comparison

® Arrival time difference between GWs & y-rays.

Speed of GWs. A
p | . 3 x 10715 < =
Test ot the equivalence principle. VEM

Ap) 848:L13, 27 (2017)]

< 47 x 10716

Tests of Lorentz violation.
Fractional difference between speed of

6Ws & light

Tight constraints on f(R)/scalar-tensor theories from the speed of GW measurement.



Tests of GW propagation: EM-GW comparison

® Arrival time difference between GWs & y-rays. (Ap) 848:L13, 27 (2017)

< 47 x 10716
VEM

|[Ezquiaga & Zumalacarrequi, PRL 119, 251304 (2017)]
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Tests of GW propagation: EM-GW comparison

® Comparison of distance estimates from GW & EM observations.

f non-compact extra dimensions exist, GWs could leak into them, producing a systematic bias in the
uminosity distance estimated from GW observations.

[Pardo et al JCAP 2018]
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Nature of GW polarizations

® (seneric metric theories of gravity a

GW polarizations. Only two tensor
permitted in GR.

low up to six
odes are

Tensor
modes

Scalar
modes

Vector
modes

[Will, Living Rev (2014)]
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Nature of GW polarizations

® (seneric metric theories of gravity a

GW polarizations. Only two tensor
permitted in GR.

low up to six
odes are

Current tests using CBC signals: A tensor-only model
is preterred over scalar-only or vector-only model.

Similar possible constraints from CWs [Isi et al 2014]

and stochastic background [Nishizawa

2009]

Future Better constraints with 5-

detector advanced network!

Tensor
modes

Scalar
modes

Vector
modes




Evidence of quasi-normal modes

® | ate stages of the post-merger signal from a
BBH coalescence should be described by a
QNM spectrum.

|Buonanno et al 2000]|
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Evidence of quasi-normal modes

® | ate stages O

3

3

H coalesce

' the post-merger signal from a

nce should be described by a

QNM spectrum.

® Data following the peak of GW150914
consistent with the least-damped QNM
inferred from the mass & spin of the
remnant BH.
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Evidence of quasi-normal modes

® | ate stages of the post-merger signal from a
BBH coalescence should be described by a
QNM spectrum.

® Data following the peak of GW150914
consistent with the least-damped QNM
inferred from the mass & spin of the
remnant BH.

® (laims of a confident QNM detection
considering multiple “overtones.”

Future lests of no-hair theorem based on the

consistency of multiple QNMSs [Dreyer et al 2003,
Carullo et al 2018].




Evidence of (lack of) horizons: Echoes

® For an ultra compact object, BH horizon is replaced by a partly outgoing boundary condition.

«— horizon
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Evidence of (lack of) horizons: Echoes

® For an ultra compact object, BH horizon is replaced by a partly outgoing boundary condition.

Modes (semi) trapped between the photon ring and the boundary can reach the outside observer,
producing a series of echoes.
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Evidence of (lack of) horizons: Echoes

® For an ultra compact object, BH horizon is replaced by a partly outgoing boundary condition.

Modes (semi) trapped between the photon ring and the boundary can reach the outside observer,
producing a series of echoes.

® (laims of weak evidence in LIGO-Virgo
events [Abedi et al 2016, Conklin et al 2017].

Contested by other groups [Westerweck et
al 2018, Nielsen et al 2019

[Cardoso & Pani (2017)]
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Exotic compact objects: Tidal/spin-induced deformations

® Possible imprints of black-hole mimickers

Tidal deformability /A: Ratio of the induced quadruple

moment to the external tidal field. [Cardoso et al 2017, Sennett et al
2017, Johnson-McDaniel et al 2017]

KQij = —A&ij
" =0forblack holes

Spin-induced quadruple moment [Krishnendu et al 2017]

O = —k m’ )*
;

k =1 for Kerr BHs. For other
objects, depends on the EoS
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Accurate modeling of GW signals in alternative theories

® |f accurate GW signal predictions are available in
alternative theories, straightforward to do Bayesian

model selection.

P(Z ;| d)
P(Z gr|d)

® Several challenges (e.g. well-posedness of the initia
value problem). Interesting new approaches in solving
the problem, e.q., [Okounkova et al 2017]




Summary

® (W observations have enabled the first tests of GR in the highly relativistic, strong-field
regime.

® |n the absence of accurate signals predictions in alternative theories, current tests only
orobe the consistency of the data with GR.

® |nteresting theoretical work in predicting GW signals from alternative theories and exotic
objects.

® (Considerable reduction statistical errors can be expected in near future. Soon, we will
reach a regime where the error budget is dominated by systematic errors!




