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To whom it may concern: 

Recommendation letter supporting the postdoc application of Shasvath J Kapadia 

Dear colleagues, 

I am writing to express my strongest support for the postdoc application of Shasvath J Kapadia. 
Shasvath is a highly motivated, ambitious and hardworking young researcher, and is one of the 
strongest candidates in his peer group in gravitational-wave (GW) physics and astronomy. 

I have known Shasvath for the last three years. I met him in 2012 at a conference in KITP Santa 
Barbara where he was presenting an interesting poster on floating orbits in extreme-mass-ratio 
inspirals. He asked whether he could with me on a project related to LIGO’s science. Although, I 
tried to brush him aside citing the difficulty of long-distance collaboration (I was moving to 
India at that time), he persisted. After a year or so we actually started working together which 
turned out to be a very fruitful collaboration. I will be basing my letter on the aspect of his work 
that I know the best. However, his PhD work is quite diverse, covering problems related to the 
computation of orbits of extreme-mass-ratio inspirals, use of machine learning algorithms to 
distinguish between real GW triggers and spurious noise-generated triggers in the search for 
GWs from compact binaries using LIGO, etc. I hope that his other referees will elaborate on these 
aspects. 

The project (arXiv:1509.06366) that Shasvath worked with myself and Nathan Johnson-McDaniel 
was on computing the effective higher order terms in the post-Newtonian (PN) expansions of the 
gravitational binding energy and GW energy flux from inspiralling compact binaries. In the 
adiabatic PN approximation, the phase evolution of GWs from inspiralling compact binaries is 
computed by equating the change in binding energy with the GW flux. This energy balance 
equation can be solved in different ways, which result in multiple “approximants” of the PN 
waveforms. Due to the poor convergence of the PN expansion, these approximants tend to differ 
from each other during the late inspiral. Which of these approximants should be chosen as 
templates for GW detection and parameter estimation is not obvious. We computed some 
effective higher order (beyond the currently available 4PN and 3.5PN) non-spinning terms in the 
PN expansion of the energy and the flux that minimize the difference of multiple PN 
approximants (TaylorT1, TaylorT2, TaylorT4, TaylorF2) with effective one body waveforms 
calibrated to numerical relativity (EOBNR). We showed that PN approximants constructed using 
the effective higher order terms show significantly better agreement (as compared to 3.5PN) with 
the inspiral part of the EOBNR. For non-spinning binaries with component masses 1.4 -- 15 M⊙, 
most of the approximants have a match (faithfulness) of better than 99% with both EOBNR and 
each other. Although these effective terms are not the same as actual higher order terms, they find 
immediate practical use in GW searches. PN waveforms employing these effective higher order 
terms can be used in LIGO/Virgo searches for compact binaries as computationally inexpensive 
surrogates of EOBNR waveforms in the “low-mass” region of the parameter space. We are in the 
process of extending this computation to the case of spinning binaries, where this work is of 
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Probes of strong gravity using Advanced LIGO and Virgo  
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Figure 1: Probing gravity at all scales: Illustration of the reach in curvature scales vs potential scales
targeted by different, representative, past/current/future missions. In this figure, M and L are the characteristic
mass and length involved in the observable associated to each mission. For instance, in observables associated
to binary systems M is the total mass and L the binary’s separation, in this case M/L is related to v2/c2

through the virial theorem.

black holes and relativistic stars exhibit the largest curvature of spacetime accessible to us. They are,
therefore, ideal systems to observe the behavior of spacetimes under the most extreme gravitational
conditions. New physics indicative of departures from the basic tenants of General Relativity (GR)
could reveal itself in high fidelity waveforms expected to be observed in the next generation of
detectors.

Such signals would provide a unique access to extremely warped spacetimes and gain invaluable
insights on GR or what might replace it as the theory of gravity governing such systems. The
adjacent diagram provides a perspective of the reach of different missions/facilities and their target
regime with respect to characteristic spacetime curvature (R) and gravitational potential F (which
for binary systems can be traded with v2/c2, where v is the binary’s characteristic velocity and c the
speed of light).

New fields, particles and polarizations Lovelock’s uniqueness theorem in 4-dimensions [16]
implies that departures from GR that preserve locality necessarily require the presence of extra
degrees of freedom, which generically also arise from theories of quantum gravity in the low-
energy limit. This often leads to violations of the strong equivalence principle through the fields’
nonminimal coupling with matter. Among possible theories, those with an additional scalar field are
relatively simple [17, 18] yet could give rise to exciting new strong-field phenomenology [19, 20].
Together with examples of strong-field GW signatures in more complicated scenarios inspired by
the low-energy limit of quantum gravity theories [21, 22] they also serve as excellent proxies of
the type of new physics we can hope to detect. In addition, if a binary’s constituents can become

[arXiv:1903.09221]

gravitational potential Φ = M/L = (v/c)2



Probes of strong gravity using Advanced LIGO and Virgo  

• Detection of GW signals that are broadly consistent with GR predictions! 
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Probes of strong gravity using Advanced LIGO and Virgo  

• Detection of GW signals that are broadly consistent with GR predictions!  

• In the absence of reliable predictions from alternative theories, the current 
philosophy is to test the degree of consistency of the data with GR (and 
black holes in GR).  

Signal consistency tests, GW generation & propagation, nature of GW 
polarizations, probes of horizons, etc. 
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Signal consistency tests: Testing residuals 

!5

•Residuals of  the data after 
subtracting the best-fit templates 
are consistent with noise. 

[LVC+ PRD 100, 104036 (2019)]
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TABLE II. Results of the residuals analysis. For each event, this table
presents the 90%-credible upper limit on the reconstructed network
SNR after subtraction of the best-fit GR waveform (SNR90), a cor-
responding lower limit on the fitting factor (FF90 in the text), and
the SNR90 p-value. SNR90 is a measure of the maximum possible
coherent signal power not captured by the best-fit GR template, while
the p-value is an estimate of the probability that instrumental noise
produced such SNR90 or higher. We also indicate which interferome-
ters (IFOs) were used in the analysis of a given event, either the two
Advanced LIGO detectors (HL) or the two Advanced LIGO detectors
plus Advanced Virgo (HLV). See Sec. V A in the main text for details.

Event IFOs Residual SNR90 Fitting factor p-value

GW150914 HL 6.4 � 0.97 0.34
GW151012 HL 6.9 � 0.81 0.18
GW151226 HL 5.7 � 0.91 0.76

GW170104 HL 5.2 � 0.94 0.97
GW170608 HL 7.8 � 0.90 0.07
GW170729 HLV 6.5 � 0.87 0.72
GW170809 HLV 6.7 � 0.91 0.73
GW170814 HLV 8.6 � 0.90 0.19
GW170818 HLV 10.1 � 0.78 0.13
GW170823 HL 5.4 � 0.92 0.89
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FIG. 1. Survival function (p = 1 � CDF) of the 90%-credible upper
limit on the network SNR (SNR90) for each event (solid or dashed
curves), compared to the measured residual values (vertical dotted
lines). For each event, the value of the survival function at the mea-
sured SNR90 gives the p-value reported in Table II (markers). The
colored bands correspond to uncertainty regions for a Poisson pro-
cess and have half width ±p/

p
N, with N the number of noise-only

instantiations that yielded SNRn
90 greater than the abscissa value.

with SNRn
90 greater than or equal to the residual value SNR90,

i.e., p B P(SNRn
90 � SNR90 | noise). In that sense, a smaller

p-value indicates a smaller chance that the residual power arose
from instrumental noise only. For each event, our estimate of
p is produced from the fraction of noise instantiations that
yielded SNRn

90 � SNR90 (that is, from the empirical survival

function).6
Our results are summarized in Table II. For each event,

we present the values of the residual SNR90, the lower limit
on the fitting factor (FF90), and the SNR90 p-value. The
background distributions that resulted in those p-values are
shown in Fig. 1. In Fig. 1 we represent these distributions
through the empirical estimate of their survival functions, i.e.,
p(SNR90) = 1 � CDF(SNR90), with “CDF” the cumulative
distribution function. Fig. 1 also displays the actual value of
SNR90 measured from the residuals of each event (dotted ver-
tical line). In each case, the height of the curve evaluated at
the SNR90 measured for the corresponding detection yields the
p-value reported in Table II (markers in Fig. 1).

The values of residual SNR90 vary widely among events
because they depend on the specific state of the instruments
at the time of detection: segments of data with elevated noise
levels are more likely to result in spurious coherent residual
power, even if the signal agrees with GR. In particular, the
background distributions for events seen by three detectors are
qualitatively di↵erent from those seen by only two. This is both
due to (i) the fact that BayesWave is configured to expect the
SNR to increase with the number of detectors and (ii) the fact
that Virgo data present a higher rate of non-Gaussianities than
LIGO. We have confirmed both these factors play a role by
studying the background SNR90 distributions for real data from
each possible pair of detectors, as well as distributions over
fabricated Gaussian noise. Specifically, removing Virgo from
the analysis results in a reduction in the coherent residual power
for GW170729 (SNRHL

90 = 6.0), GW170809 (SNRHL
90 = 6.3),

GW170814 (SNRHL
90 = 5.9), and GW170818 (SNRHL

90 = 6.6).
The event-by-event variation of SNR90 is also reflected in

the values of FF90. GW150914 provides the strongest result
with FF90 = 0.97, which corresponds to an upper limit of 3%
on the magnitude of potential deviations from our GR-based
template,7 in the specific sense defined in [4] and discussed
above. On the other hand, GW170818 yields the weakest result
with FF90 = 0.78 and a corresponding upper limit on waveform
mismatch of 22%. The average FF90 over all events is 0.89.

The set of p-values shown in Table II is consistent with all
coherent residual power being due to instrumental noise. As-
suming that this is indeed the case, we expect the p-values to
be uniformly distributed over [0, 1], which explains the vari-
ation in Table II. With only ten events, however, it is di�cult
to obtain strong quantitative evidence of the uniformity of this
distribution. Nevertheless, we follow Fisher’s method [74] to
compute a meta p-value for the null hypothesis that the individ-
ual p-values in Table II are uniformly distributed. We obtain a
meta p-value of 0.4, implying that there is no evidence for co-
herent residual power that cannot be explained by noise alone.

6 Computing p-values would not be necessary if the noise was perfectly
Gaussian, in which case we could predict the noise-only distribution of
SNRn

90 from first principles.
7 This value is better than the one quoted in [4] by 1 percentage point. The

small di↵erence is explained by several factors, including that paper’s use
of the maximum a posteriori waveform (instead of maximum likelihood)
and 95% (instead of 90%) credible intervals, as well as improvements in
data calibration.
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GW150914, our waveform models have much higher FFs
against numerical GR waveforms, we conclude that the noise-
weighted correlation between the observed strain signal and
the true GR waveform is � 96%. This statement can be read
as implying that the GR prediction for GW150914 is veri-
fied to better than 4%, in a precise sense related to noise-
weighted signal correlation; and conversely, that e↵ects due to
GR-violations in GW150914 are limited to less than 4% (for
e↵ects that cannot be reabsorbed in a redefinition of physical
parameters).

Inspiral, merger and ringdown consistency test. We now
perform a test to show that the inspiral and merger/ringdown
parts of GW150914 do not deviate from the predictions of a
binary black-hole coalescence in GR. One way to do that is
to compare the estimates of the mass and spin of the remnant
obtained from di↵erent parts of the waveform, using the rela-
tions between the binary’s components and final masses and
spins provided by NR [57].

We first explore the posterior distributions of the bi-
nary’s component masses and spins from the “inspiral” (low-
frequency) part of the observed signal, using the nested sam-
pling algorithm from the LALInference software library [50],
and then use formulae obtained from NR simulations to get
posterior distributions of the remnant’s mass and spin. The
inspiral part of the signal is defined as follows. We fix the
frequency at which the inspiral phase ends to f end insp

GW = 132
Hz, close to the MAP waveform’s merger frequency [3] (see
Figs. 2 and 5 below), and restrict the waveform model in the
frequency domain from 20 Hz to f end insp

GW . Next, we estimate
posterior distributions on the mass and spin of the final com-
pact object from the “post-inspiral” (high-frequency) signal
that is dominated by the contribution from merger and ring-
down stages (i.e., from the waveform model that extends from
f end insp
GW up to 1024 Hz), again using formulae obtained from

NR simulations. We notice that the expectation value of the
SNRdet from the MAP waveform whose support is only from
20 Hz to 132 Hz is ⇠ 19.5, while when the support is from
132 Hz to 1024 Hz it is ⇠ 16. Finally, we compare these
two estimates of the final Mf and dimensionless spin a f , and
compare them also against the estimate performed using the
full inspiral–merger–ringdown waveform GW150914. In all
cases, we average the posteriors obtained with the EOBNR
and IMRPhenom waveform models, following the procedure
outlined in Ref. [3]. Technical details about the implementa-
tion of this test can be found in Ref. [58].

This test is similar in spirit to the �2 GW-search veto [2, 59]
that penalizes event candidates if their (noise-weighted) resid-
ual with respect to theoretical templates is too uneven across
frequency segments—a warning that some parts of the wave-
form are fit much worse than others, and thus the candidates
may be due to instrument glitches that are very loud, but
do not resemble binary-inspiral signals. However, �2 tests
are performed by comparing the data with a single theoret-
ical waveform, while in this case we allow the inspiral and
merger/ringdown partial waveforms to select di↵erent physi-
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FIG. 3. Top panel: 90% confidence regions on the joint posterior
distributions for the mass Mf and dimensionless spin af of the final
compact object predicted from the inspiral (dark violet, dashed) and
measured from the post-inspiral (violet, dot-dashed), as well as the
result from a full inspiral-merger-ringdown (IMR) analysis (black).
Bottom panel: Posterior distributions for the parameters �Mf /Mf
and �af /af that describe the fractional di↵erence in the estimates
of the final mass and spin from inspiral and post-inspiral parts. The
contour shows the 90% confidence region. The plus symbol indicates
the expected value (0, 0) in GR.

cal parameters. Thus, this test should be sensitive to subtler
deviations from the predictions of GR.

In Fig. 2 we show the EOBNR MAP waveform [3] with its
instantaneous GW frequency; the shaded areas correspond to
the 90% credible regions. The vertical line marks f end insp

GW =
132 Hz; see also Fig. 5 below, where we plot the MAP
frequency-domain amplitude and indicate the inspiral, inter-
mediate, and merger-ringdown regimes. In Fig. 3 we sum-
marize our findings. The top panel of Fig. 3 shows the poste-
rior distributions of Mf and a f estimated from the inspiral and
post-inspiral parts, as well as from the entire inspiral–merger–
ringdown signal. It confirms the expected behavior: the in-

GW150914

Signal consistency tests: Inspiral-merger-ringdown consistency  

• Test the consistency of  mass & spin of  the 
final black hole estimated from the inspiral/
post-inspiral parts of  the observed signal 
[Ghosh et al 2016]. 
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FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full band-
width of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical-relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Kep-
lerian effective black hole separation in units of Schwarzschild
radii (R

S

= 2GM/c2) and the effective relative velocity given
by the post-Newtonian parameter v/c = (GM⇡f/c3)1/3, where
f is the gravitational-wave frequency calculated with numerical
relativity and M is the total mass (value from Table I).

At the lower frequencies, such evolution is characterized
by the chirp mass [46]

M =
(m1m2)3/5

(m1 +m2)1/5
=

c3

G


5

96
⇡�8/3f�11/3ḟ

�3/5

,

where f and ḟ are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and ḟ from the data in Fig. 1
we obtain a chirp mass of M ' 30M�, implying that the
total mass M = m1 + m2 is >⇠ 70M� in the detector
frame. This bounds the sum of the Schwarzschild radii of
the binary components to 2GM/c2 >⇠ 210 km. To reach
an orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this fre-
quency would be only ' 350 km apart. A pair of neutron
stars, while compact, would not have the required mass,
while a black hole-neutron star binary with the deduced
chirp mass would have a very large total mass, and would
thus merge at much lower frequency. This leaves black
holes as the only known objects compact enough to reach

an orbital frequency of 75 Hz without contact. Further-
more, the decay of the waveform after it peaks is consis-
tent with the damped oscillations of a black hole relaxing
to a final stationary Kerr configuration. Below, we present
a general-relativistic analysis of GW150914; Fig. 2 shows
the calculated waveform using the resulting source param-
eters.

Detectors — Gravitational-wave astronomy exploits multi-
ple, widely separated detectors to distinguish gravitational
waves from local instrumental and environmental noise, to
provide source sky localization from relative arrival times,
and to measure wave polarizations. The LIGO sites each
operate a single Advanced LIGO detector [32], a modi-
fied Michelson interferometer (see Fig. 3) that measures
gravitational-wave strain as a difference in length of its or-
thogonal arms. Each arm is formed by two mirrors, act-
ing as test masses, separated by L

x

= L
y

= L = 4 km.
A passing gravitational wave effectively alters the arm
lengths such that the measured difference is �L(t) =
�L

x

� �L
y

= h(t)L, where h is the gravitational-wave
strain amplitude projected onto the detector. This differ-
ential length variation alters the phase difference between
the two light fields returning to the beamsplitter, transmit-
ting an optical signal proportional to the gravitational-wave
strain to the output photodetector.

To achieve sufficient sensitivity to measure gravitational
waves the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains
a resonant optical cavity, formed by its two test mass mir-
rors, that multiplies the effect of a gravitational wave on
the light phase by a factor of 300 [48]. Second, a partially
transmissive power-recycling mirror at the input provides
additional resonant buildup of the laser light in the interfer-
ometer as a whole [49, 50]: 20 W of laser input is increased
to 700 W incident on the beamsplitter, which is further in-
creased to 100 kW circulating in each arm cavity. Third,
a partially transmissive signal-recycling mirror at the out-
put optimizes the gravitational-wave signal extraction by
broadening the bandwidth of the arm cavities [51, 52].
The interferometer is illuminated with a 1064-nm wave-
length Nd:YAG laser, stabilized in amplitude, frequency,
and beam geometry [53, 54]. The gravitational-wave sig-
nal is extracted at the output port using homodyne read-
out [55].

These interferometry techniques are designed to maxi-
mize the conversion of strain to optical signal, thereby min-
imizing the impact of photon shot noise (the principal noise
at high frequencies). High strain sensitivity also requires
that the test masses have low displacement noise, which
is achieved by isolating them from seismic noise (low fre-
quencies) and designing them to have low thermal noise
(mid frequencies). Each test mass is suspended as the final
stage of a quadruple pendulum system [56], supported by
an active seismic isolation platform [57]. These systems
collectively provide more than 10 orders of magnitude of

3

inspiral post-inspiral

[LVC+ PRL 116, 221101 (2016)]



Signal consistency tests: Inspiral-merger-ringdown consistency  

• Test the consistency of  mass & spin of  the 
final black hole estimated from the inspiral/
post-inspiral parts of  the observed signal 
[Ghosh et al 2016]. 

!7

Future Test of black hole area 
theorem [Cabero et al 2018], 

measurement of the energy loss 
[Hughes et al 2004], etc. 
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TABLE III. Results from the inspiral-merger-ringdown consistency
test for selected binary black hole events. fc denotes the cuto↵ fre-
quency used to demarcate the division between the inspiral and post-
inspiral regimes; ⇢IMR, ⇢insp, and ⇢post�insp are the median values of
the SNR in the full signal, the inspiral part, and the post-inspiral part,
respectively; and the GR quantile denotes the fraction of the posterior
enclosed by the isoprobability contour that passes through the GR
value, with smaller values indicating better consistency with GR.

Event fc [Hz] ⇢IMR ⇢insp ⇢post�insp GR quantile [%]

GW150914 132 25.3 19.4 16.1 55.5
GW170104 143 13.7 10.9 8.5 24.4
GW170729 91 10.7 8.6 6.9 10.4
GW170809 136 12.7 10.6 7.1 14.7
GW170814 161 16.8 15.3 7.2 7.8
GW170818 128 12.0 9.3 7.2 25.5
GW170823 102 11.9 7.9 8.5 80.4

All in all, this means that there is no statistically significant
evidence for deviations from GR.
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FIG. 2. Results of the inspiral-merger-ringdown consistency test for
the selected BBH events (see Table I). The main panel shows 90%
credible regions of the posterior distributions of (�Mf/M̄f ,�af/āf ),
with the cross marking the expected value for GR. The side panels
show the marginalized posteriors for �Mf/M̄f and �af/āf . The thin
black dashed curve represents the prior distribution, and the grey
shaded areas correspond to the combined posteriors from the five
most significant events (as outlined in Sec. III and Table I).

B. Inspiral-merger-ringdown consistency test

The inspiral-merger-ringdown consistency test for binary
black holes [38, 75] checks the consistency of the low-
frequency part of the observed signal (roughly correspond-
ing to the inspiral of the black holes) with the high-frequency
part (to a good approximation, produced by the post-inspiral
stages). The cuto↵ frequency fc between the two regimes is
chosen as the frequency of the innermost stable circular or-
bit of a Kerr black hole [76], with mass and dimensionless
spin equal to the median values of the posterior distribution
of the remnant’s mass and spin. This determination of fc is
performed separately for each event and based on parameter
inference of the full signal (see Table III for values of fc).8 The
binary’s parameters are then estimated independently from the
low (high) frequency parts of the data by restricting the noise-
weighted integral in the likelihood calculation to frequencies
below (above) this frequency cuto↵ fc. For each of these inde-
pendent estimates of the source parameters, we make use of fits
to numerical-relativity simulations given in [77–79] to infer the
mass Mf and dimensionless spin magnitude af = c|~S f |/(GM2

f )
of the remnant black hole.9 If the data are consistent with GR,
these two independent estimates have to be consistent with
each other [38, 75]. Because this consistency test ultimately
compares between the inspiral and the post-inspiral results,
posteriors of both parts must be informative. In the case of
low-mass binaries, the SNR in the part f > fc is insu�cient
to perform this test, so that we only analyze seven events as
indicated in Tables I and III.

In order to quantify the consistency of the two di↵erent
estimates of the final black hole’s mass and spin we define
two dimensionless quantities that quantify the fractional di↵er-
ence between them: �Mf/M̄f B 2 (Minsp

f � Mpost-insp
f )/(Minsp

f +

Mpost-insp
f ) and �af/āf B 2 (ainsp

f � apost-insp
f )/(ainsp

f + apost-insp
f ),

where the superscripts indicate the estimates of the mass
and spin from the inspiral and post-inspiral parts of the sig-
nal.10 The posteriors of these dimensionless parameters, es-
timated from di↵erent events, are shown in Fig. 2. For
all events, the posteriors are consistent with the GR value
(�Mf/M̄f = 0,�af/āf = 0). The fraction of the posterior
enclosed by the isoprobability contour that passes through
the GR value (i.e., the GR quantile) for each event is shown
in Table III. Figure 2 also shows the posteriors obtained by
combining all the events that pass the stronger significance

8 The frequency fc was determined using preliminary parameter inference
results, so the values in Table III are slightly di↵erent than those that would
be obtained using the posterior samples in GWTC-1 [9]. However, the test
is robust against small changes in the cuto↵ frequency [38].

9 As in [6], we average the Mf , af posteriors obtained by di↵erent fits [77–79]
after augmenting the fitting formulae for aligned-spin binaries by adding
the contribution from in-plane spins [80]. However, unlike in [6, 80], we do
not evolve the spins before applying the fits, due to technical reasons.

10 For black hole binaries with comparable masses and moderate spins, as we
consider here, the remnant black hole is expected to have af & 0.5; see, e.g.,
[77–79] for fitting formulae derived from numerical simulations, or Table I
for values of the remnant’s spins obtained from GW events. Hence, �af/āf
is expected to yield finite values.

[LVC+ PRD 100, 104036 (2019)]



Tests of waveform generation: Parameterized tests 

• Introduce deviations in the coefficients 
describing the GR waveform’s phase
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to the first GW observation GW150914 [9], yielding the first560

bounds on higher-order PN coe�cients [4]. Since then, the561

constraints have been revised with the binary black holes events562

that followed, GW151226 in O1 [5] and GW170104 in O2 [6].563

Bounds on parametrized violations of GR from GW detections564

have been mapped, to leading order, to constraints on specific565

alternative theories of gravity (see, e.g., [89]). In this paper, we566

present individual constraints on parametrized deviations from567

GR for each of the GW sources in O1 and O2 listed in Table I,568

as well as the tightest combined constraints obtained to date569

by combining information from all the significant binary black570

holes events observed so far, as described in Section III.571

The GW phase evolution �( f ) in the early-inspiral stage572

of IMRPhenomPv2 is described by a PN expansion, and is573

analytically expressed in closed form by employing the station-574

ary phase approximation. The late-inspiral and post-inspiral575

(intermediate and merger-ringdown) stages are described by576

phenomenological analytical expressions, using coe�cients577

calibrated with data from NR simulations of mass-ratios as578

asymmetric as 1 : 18 and of dimensionless spin-magnitudes579

up to 0.99, as well as the inspiral portion of EOB waveforms.580

The transition frequency7 from inspiral to intermediate regime581

is given by the condition GM f /c3 = 0.018, with M the total582

mass of the binary in the detector frame, since this is the lowest583

frequency above which this model was calibrated with NR584

data [19]. Deviations from GR in all three stages are expressed585

by means of relative shifts � p̂i in the corresponding waveform586

coe�cients: pi ! (1 + � p̂i) pi, which are used as additional587

free parameters in our extended waveform models.588

We denote the testing parameters corresponding to PN phase589

coe�cients by �'̂i, where i indicates the power of v/c beyond590

leading (Newtonian or 0PN) order in �( f ). The frequency591

dependence of the corresponding phase term is f (i�5)/3. In592

the parametrized model, i varies from 0 to 7, including the593

terms with logarithmic dependence at 2.5PN and 3PN. The594

non-logarithmic term at 2.5PN is not possible to constrain595

because of its degeneracy with a constant reference phase (e.g.,596

phase at coalescence). These coe�cients were introduced in597

their current form in Eq. (19) of [84]. In addition, we also598

test for i = �2, representing an e↵ective �1PN term, which is599

motivated below. The full set of inspiral parameters are thus600

{�'̂�2, �'̂0, �'̂1, �'̂2, �'̂3, �'̂4, �'̂5l, �'̂6, �'̂6l, �'̂7}.

Since, the �1PN term and the 0.5PN term are absent in the GR601

phasing, we parametrize �'̂�2 and �'̂1 as absolute deviations,602

with a pre-factor equal to the 0PN coe�cient.603

The �1PN term of �'̂2 can be interpreted as arising from604

the emission of dipolar radiation in, e.g., alternative theories of605

gravity where an additional scalar charge is sourced by terms606

related to curvature [90, 91]. At leading order, this introduces607

a deviation in the �1PN coe�cient of the waveform [92, 93].608

This e↵ectively introduces a term in the inspiral GW phase,609

varying with frequency as f �7/3, while the gravitational flux610

7 This frequency is di↵erent than the cuto↵ frequency used in the inspiral-
merger-ringdown consistency test, as was briefly mention in Sec III.

is modified as FGR ! FGR(1 + Bc2/v2). The first bound on611

�'̂�2 was published in [8]. The higher-order terms in the above612

expansion also lead to a modification in the higher-order PN613

coe�cients. Unlike the case of GW170817 (which we study614

separately in [8]), where the higher-order terms in the expan-615

sion of the flux are negligible, the contibution of higher-order616

terms can be significant in the binary black-hole signals that617

we study here. This prohibits an exact interpretation of the618

�1PN term as the strength of dipolar radiation. Hence, this619

analysis only serves as a test of the presence of an e↵ective620

�1PN term in the inspiral phasing, which is absent in GR.621

To measure the above GR violations in the post-Newtonian622

inspiral, we employ two waveform models: (i) the analyti-623

cal frequency-domain model IMRPhenomPv2 which also pro-624

vided the natural parametrization for our tests and (ii) SEOB-625

NRv4 ROM, a frequency-domain, reduced-order-model of the626

SEOBNRv4 model [18, 94]. The inspiral part of SEOBNRv4627

is based on a numerical evolution of the aligned-spin e↵ective-628

one-body dynamics of the binary, while its post-inspiral evo-629

lution is calibrated against NR simulations. Despite its non-630

analytical nature, SEOBNRv4 ROM can also be used to test631

the parametrized modifications of the early inspiral defined632

above. Using the method presented in [8], we add deviations633

to the waveform phase corresponding to a given �'̂i at low fre-634

quencies and then taper the corrections to zero at a frequency635

consistent with the transition frequency between early-inspiral636

and intermediate phases used by IMRPhenomPv2. The same637

procedure cannot be applied to the later stages of the waveform638

, thus the analysis performed with SEOBNRv4 is restricted to639

the post-Newtonian inspiral, cf. Fig 3.640

The analytical descriptions of the intermediate and merger-641

ringdown stages in the IMRPhenomPv2 model allow for a642

straightforward way of parametrizing deviations from GR, de-643

noted by {��̂2, ��̂3} and {�↵̂2, �↵̂3, �↵̂4} respectively, follow-644

ing [88]. While the parameters ��̂i correspond to deviations645

from the NR-calibrated phenomenological coe�cients �i of the646

intermediate stage, the parameters �↵̂i refer to modifications647

of the merger-ringdown coe�cients ↵i obtained from a com-648

bination of phenomenological fits and analytical black-hole649

perturbation theory calculations [19].650

Using LALInference [29, 66], we calculate posterior distri-651

butions of the parameters characterizing the waveform (includ-652

ing those that describe the binary in GR). Our parametrization653

recovers GR at � p̂i = 0, so consistency with GR is verified654

if the posteriors of � p̂i have support at zero. We perform the655

analyses by varying one � p̂i at a time, as shown in Ref. [95],656

this is fully robust to detecting deviations present in multiple657

PN-orders. In addition, allowing for a larger parameter space658

by varying multiple coe�cients simultaneously would not im-659

prove our e�ciency in identifying violations of GR, as it would660

yield less informative posterior PDFs. A specific alternative661

theory of gravity would likely yield correlated deviations in662

many parameters, including modifications that we have not663

considered here. This would be the target of an apples-to-664

apples comparison with GR, which would only be possible if a665

complete, accurate description of the inspiral-merger-ringdown666

signal in that theory was available.667

We use priors uniform on � p̂i and symmetric around zero.668

ψ( f ) = ∑
i

pi f iGR waveform 
phase

Coefficients are unique 
functions of the intrinsic 

parameters

Analogous to binary pulsar tests using the post-Keplerian formalism



Tests of waveform generation: Parameterized tests 

• Introduce deviations in the coefficients 
describing the GR waveform’s phase 

• Estimate posteriors on deviation 
parameters along with the parameters 
in GR [Arun et al 2006, Yunes & Pretorius 
2009, Li et al 2011, Sennett et al]
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to the first GW observation GW150914 [9], yielding the first560

bounds on higher-order PN coe�cients [4]. Since then, the561

constraints have been revised with the binary black holes events562

that followed, GW151226 in O1 [5] and GW170104 in O2 [6].563

Bounds on parametrized violations of GR from GW detections564

have been mapped, to leading order, to constraints on specific565

alternative theories of gravity (see, e.g., [89]). In this paper, we566

present individual constraints on parametrized deviations from567

GR for each of the GW sources in O1 and O2 listed in Table I,568

as well as the tightest combined constraints obtained to date569

by combining information from all the significant binary black570

holes events observed so far, as described in Section III.571

The GW phase evolution �( f ) in the early-inspiral stage572

of IMRPhenomPv2 is described by a PN expansion, and is573

analytically expressed in closed form by employing the station-574

ary phase approximation. The late-inspiral and post-inspiral575

(intermediate and merger-ringdown) stages are described by576

phenomenological analytical expressions, using coe�cients577

calibrated with data from NR simulations of mass-ratios as578

asymmetric as 1 : 18 and of dimensionless spin-magnitudes579

up to 0.99, as well as the inspiral portion of EOB waveforms.580

The transition frequency7 from inspiral to intermediate regime581

is given by the condition GM f /c3 = 0.018, with M the total582

mass of the binary in the detector frame, since this is the lowest583

frequency above which this model was calibrated with NR584

data [19]. Deviations from GR in all three stages are expressed585

by means of relative shifts � p̂i in the corresponding waveform586

coe�cients: pi ! (1 + � p̂i) pi, which are used as additional587

free parameters in our extended waveform models.588

We denote the testing parameters corresponding to PN phase589

coe�cients by �'̂i, where i indicates the power of v/c beyond590

leading (Newtonian or 0PN) order in �( f ). The frequency591

dependence of the corresponding phase term is f (i�5)/3. In592

the parametrized model, i varies from 0 to 7, including the593

terms with logarithmic dependence at 2.5PN and 3PN. The594

non-logarithmic term at 2.5PN is not possible to constrain595

because of its degeneracy with a constant reference phase (e.g.,596

phase at coalescence). These coe�cients were introduced in597

their current form in Eq. (19) of [84]. In addition, we also598

test for i = �2, representing an e↵ective �1PN term, which is599

motivated below. The full set of inspiral parameters are thus600

{�'̂�2, �'̂0, �'̂1, �'̂2, �'̂3, �'̂4, �'̂5l, �'̂6, �'̂6l, �'̂7}.

Since, the �1PN term and the 0.5PN term are absent in the GR601

phasing, we parametrize �'̂�2 and �'̂1 as absolute deviations,602

with a pre-factor equal to the 0PN coe�cient.603

The �1PN term of �'̂2 can be interpreted as arising from604

the emission of dipolar radiation in, e.g., alternative theories of605

gravity where an additional scalar charge is sourced by terms606

related to curvature [90, 91]. At leading order, this introduces607

a deviation in the �1PN coe�cient of the waveform [92, 93].608

This e↵ectively introduces a term in the inspiral GW phase,609

varying with frequency as f �7/3, while the gravitational flux610

7 This frequency is di↵erent than the cuto↵ frequency used in the inspiral-
merger-ringdown consistency test, as was briefly mention in Sec III.

is modified as FGR ! FGR(1 + Bc2/v2). The first bound on611

�'̂�2 was published in [8]. The higher-order terms in the above612

expansion also lead to a modification in the higher-order PN613

coe�cients. Unlike the case of GW170817 (which we study614

separately in [8]), where the higher-order terms in the expan-615

sion of the flux are negligible, the contibution of higher-order616

terms can be significant in the binary black-hole signals that617

we study here. This prohibits an exact interpretation of the618

�1PN term as the strength of dipolar radiation. Hence, this619

analysis only serves as a test of the presence of an e↵ective620

�1PN term in the inspiral phasing, which is absent in GR.621

To measure the above GR violations in the post-Newtonian622

inspiral, we employ two waveform models: (i) the analyti-623

cal frequency-domain model IMRPhenomPv2 which also pro-624

vided the natural parametrization for our tests and (ii) SEOB-625

NRv4 ROM, a frequency-domain, reduced-order-model of the626

SEOBNRv4 model [18, 94]. The inspiral part of SEOBNRv4627

is based on a numerical evolution of the aligned-spin e↵ective-628

one-body dynamics of the binary, while its post-inspiral evo-629

lution is calibrated against NR simulations. Despite its non-630

analytical nature, SEOBNRv4 ROM can also be used to test631

the parametrized modifications of the early inspiral defined632

above. Using the method presented in [8], we add deviations633

to the waveform phase corresponding to a given �'̂i at low fre-634

quencies and then taper the corrections to zero at a frequency635

consistent with the transition frequency between early-inspiral636

and intermediate phases used by IMRPhenomPv2. The same637

procedure cannot be applied to the later stages of the waveform638

, thus the analysis performed with SEOBNRv4 is restricted to639

the post-Newtonian inspiral, cf. Fig 3.640

The analytical descriptions of the intermediate and merger-641

ringdown stages in the IMRPhenomPv2 model allow for a642

straightforward way of parametrizing deviations from GR, de-643

noted by {��̂2, ��̂3} and {�↵̂2, �↵̂3, �↵̂4} respectively, follow-644

ing [88]. While the parameters ��̂i correspond to deviations645

from the NR-calibrated phenomenological coe�cients �i of the646

intermediate stage, the parameters �↵̂i refer to modifications647

of the merger-ringdown coe�cients ↵i obtained from a com-648

bination of phenomenological fits and analytical black-hole649

perturbation theory calculations [19].650

Using LALInference [29, 66], we calculate posterior distri-651

butions of the parameters characterizing the waveform (includ-652

ing those that describe the binary in GR). Our parametrization653

recovers GR at � p̂i = 0, so consistency with GR is verified654

if the posteriors of � p̂i have support at zero. We perform the655

analyses by varying one � p̂i at a time, as shown in Ref. [95],656

this is fully robust to detecting deviations present in multiple657

PN-orders. In addition, allowing for a larger parameter space658

by varying multiple coe�cients simultaneously would not im-659

prove our e�ciency in identifying violations of GR, as it would660

yield less informative posterior PDFs. A specific alternative661

theory of gravity would likely yield correlated deviations in662

many parameters, including modifications that we have not663

considered here. This would be the target of an apples-to-664

apples comparison with GR, which would only be possible if a665

complete, accurate description of the inspiral-merger-ringdown666

signal in that theory was available.667

We use priors uniform on � p̂i and symmetric around zero.668
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FIG. 2. 90% upper bounds on deviations |�'̂n| in the PN co-
efficients following from the posterior density functions shown
in Fig. 1.

evolution parameterized by �p̂n to any frequency domain
waveform model [39]. We conduct independent tests of
GR using inspiral-merger-ringdown models that incorpo-
rate deviations from GR using each of these two prescrip-
tions; by comparing these analyses, we are able to esti-
mate the magnitude of systematic modeling uncertainty
in our results.

The merger and ringdown regimes of binary neutron
stars differ from those of binary black holes, and tidal
effects not present in binary black holes need to be in-
cluded in the description of the inspiral. Significant work
has been done to understand and model the dynamics of
binary neutron stars analytically using the PN approxi-
mation to general relativity [40]. This includes modeling
the non-spinning [30, 31] and spinning radiative/inspiral
dynamics [32–37] as well as finite size effects [41–43] for
binary neutron star systems. Frequency domain wave-
forms based on the stationary phase approximation [44]
have been developed incorporating the abovementioned
effects [45–47] and have been successfully employed for

the data analysis of compact binaries. A combination of
these analytical results with the results from numerical
relativity simulations of binary neutron star mergers (see
[48] for a review) have led to the development of efficient
waveform models which account for tidal effects [49–51].

We employ the NRTidal models introduced in [51, 52]
as the basis of our binary neutron star waveforms: fre-
quency domain waveform models for binary black holes
are converted into waveforms for inspiraling neutron stars
that undergo tidal deformations by adding to the phase
an appropriate expression �T (f) and windowing the am-
plitude such that the merger and ringdown are smoothly
removed from the model; see [52] for details. The closed-
form expression for �T (f) is built by combining PN infor-
mation, the tidal effective-one-body (EOB) model of [49],
and input from numerical relativity (NR). The form of
�T (f) was originally obtained in a setting where the neu-
tron stars were irrotational or had their spins aligned
to the angular momentum. Nevertheless, a waveform
model that includes both tides and precessing spins can
be constructed by first applying �T (f) to an aligned-spin
waveform, and then performing the twisting-up proce-
dure that introduces spin precession [53]. We consider
two waveform models that use this description of tidal
effects.

The first binary neutron star model we consider is con-
structed by applying this procedure to IMRPhenomPv2
waveforms. Following the nomenclature of [19], we refer
to the resulting waveform model as PhenomPNRT. Param-
eterized deformations �p̂n are then introduced as shifts
in parameters describing the phase in precisely the same
way as was done for binary black holes. This will allow
us to naturally combine PDFs for the �p̂n from measure-
ments on binary black holes and binary neutron stars,
arriving at increasingly sharper results in the future. Be-
cause of the unknown merger-ringdown behavior in the
case of binary neutron stars, which in any case gets re-
moved from the waveform model, in practice only devia-
tions �'̂n in the PN parameters 'n can be bounded. The

[LVC+ PRL 123, 011102 (2019)]

GW170817



8

FIG. 1. Posterior density functions on deviations of PN coefficients �'̂n obtained using two different waveform models
(PhenomPNRT and SEOBNRT); see the main text for details. The �1PN and 0.5PN corrections correspond to absolute devi-
ations, whereas all others represent fractional deviations from the PN coefficient in GR. The horizontal bars indicate 90%
credible regions.
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evolution parameterized by �p̂n to any frequency domain
waveform model [39]. We conduct independent tests of
GR using inspiral-merger-ringdown models that incorpo-
rate deviations from GR using each of these two prescrip-
tions; by comparing these analyses, we are able to esti-
mate the magnitude of systematic modeling uncertainty
in our results.

The merger and ringdown regimes of binary neutron
stars differ from those of binary black holes, and tidal
effects not present in binary black holes need to be in-
cluded in the description of the inspiral. Significant work
has been done to understand and model the dynamics of
binary neutron stars analytically using the PN approxi-
mation to general relativity [40]. This includes modeling
the non-spinning [30, 31] and spinning radiative/inspiral
dynamics [32–37] as well as finite size effects [41–43] for
binary neutron star systems. Frequency domain wave-
forms based on the stationary phase approximation [44]
have been developed incorporating the abovementioned
effects [45–47] and have been successfully employed for

the data analysis of compact binaries. A combination of
these analytical results with the results from numerical
relativity simulations of binary neutron star mergers (see
[48] for a review) have led to the development of efficient
waveform models which account for tidal effects [49–51].

We employ the NRTidal models introduced in [51, 52]
as the basis of our binary neutron star waveforms: fre-
quency domain waveform models for binary black holes
are converted into waveforms for inspiraling neutron stars
that undergo tidal deformations by adding to the phase
an appropriate expression �T (f) and windowing the am-
plitude such that the merger and ringdown are smoothly
removed from the model; see [52] for details. The closed-
form expression for �T (f) is built by combining PN infor-
mation, the tidal effective-one-body (EOB) model of [49],
and input from numerical relativity (NR). The form of
�T (f) was originally obtained in a setting where the neu-
tron stars were irrotational or had their spins aligned
to the angular momentum. Nevertheless, a waveform
model that includes both tides and precessing spins can
be constructed by first applying �T (f) to an aligned-spin
waveform, and then performing the twisting-up proce-
dure that introduces spin precession [53]. We consider
two waveform models that use this description of tidal
effects.

The first binary neutron star model we consider is con-
structed by applying this procedure to IMRPhenomPv2
waveforms. Following the nomenclature of [19], we refer
to the resulting waveform model as PhenomPNRT. Param-
eterized deformations �p̂n are then introduced as shifts
in parameters describing the phase in precisely the same
way as was done for binary black holes. This will allow
us to naturally combine PDFs for the �p̂n from measure-
ments on binary black holes and binary neutron stars,
arriving at increasingly sharper results in the future. Be-
cause of the unknown merger-ringdown behavior in the
case of binary neutron stars, which in any case gets re-
moved from the waveform model, in practice only devia-
tions �'̂n in the PN parameters 'n can be bounded. The

Tests of waveform generation: Parameterized tests 

• Introduce deviations in the coefficients 
describing the GR waveform’s phase 

• Estimate posteriors on deviation 
parameters along with the parameters 
in GR [Arun et al 2006, Yunes & Pretorius 2009, 
Li et al 2011, Sennett et al] 

• Bounds on deviation parameters 
could be interpreted in terms of  
specific theories [e.g, Nair et al 2019] 
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to the first GW observation GW150914 [9], yielding the first560

bounds on higher-order PN coe�cients [4]. Since then, the561

constraints have been revised with the binary black holes events562

that followed, GW151226 in O1 [5] and GW170104 in O2 [6].563

Bounds on parametrized violations of GR from GW detections564

have been mapped, to leading order, to constraints on specific565

alternative theories of gravity (see, e.g., [89]). In this paper, we566

present individual constraints on parametrized deviations from567

GR for each of the GW sources in O1 and O2 listed in Table I,568

as well as the tightest combined constraints obtained to date569

by combining information from all the significant binary black570

holes events observed so far, as described in Section III.571

The GW phase evolution �( f ) in the early-inspiral stage572

of IMRPhenomPv2 is described by a PN expansion, and is573

analytically expressed in closed form by employing the station-574

ary phase approximation. The late-inspiral and post-inspiral575

(intermediate and merger-ringdown) stages are described by576

phenomenological analytical expressions, using coe�cients577

calibrated with data from NR simulations of mass-ratios as578

asymmetric as 1 : 18 and of dimensionless spin-magnitudes579

up to 0.99, as well as the inspiral portion of EOB waveforms.580

The transition frequency7 from inspiral to intermediate regime581

is given by the condition GM f /c3 = 0.018, with M the total582

mass of the binary in the detector frame, since this is the lowest583

frequency above which this model was calibrated with NR584

data [19]. Deviations from GR in all three stages are expressed585

by means of relative shifts � p̂i in the corresponding waveform586

coe�cients: pi ! (1 + � p̂i) pi, which are used as additional587

free parameters in our extended waveform models.588

We denote the testing parameters corresponding to PN phase589

coe�cients by �'̂i, where i indicates the power of v/c beyond590

leading (Newtonian or 0PN) order in �( f ). The frequency591

dependence of the corresponding phase term is f (i�5)/3. In592

the parametrized model, i varies from 0 to 7, including the593

terms with logarithmic dependence at 2.5PN and 3PN. The594

non-logarithmic term at 2.5PN is not possible to constrain595

because of its degeneracy with a constant reference phase (e.g.,596

phase at coalescence). These coe�cients were introduced in597

their current form in Eq. (19) of [84]. In addition, we also598

test for i = �2, representing an e↵ective �1PN term, which is599

motivated below. The full set of inspiral parameters are thus600

{�'̂�2, �'̂0, �'̂1, �'̂2, �'̂3, �'̂4, �'̂5l, �'̂6, �'̂6l, �'̂7}.

Since, the �1PN term and the 0.5PN term are absent in the GR601

phasing, we parametrize �'̂�2 and �'̂1 as absolute deviations,602

with a pre-factor equal to the 0PN coe�cient.603

The �1PN term of �'̂2 can be interpreted as arising from604

the emission of dipolar radiation in, e.g., alternative theories of605

gravity where an additional scalar charge is sourced by terms606

related to curvature [90, 91]. At leading order, this introduces607

a deviation in the �1PN coe�cient of the waveform [92, 93].608

This e↵ectively introduces a term in the inspiral GW phase,609

varying with frequency as f �7/3, while the gravitational flux610

7 This frequency is di↵erent than the cuto↵ frequency used in the inspiral-
merger-ringdown consistency test, as was briefly mention in Sec III.

is modified as FGR ! FGR(1 + Bc2/v2). The first bound on611

�'̂�2 was published in [8]. The higher-order terms in the above612

expansion also lead to a modification in the higher-order PN613

coe�cients. Unlike the case of GW170817 (which we study614

separately in [8]), where the higher-order terms in the expan-615

sion of the flux are negligible, the contibution of higher-order616

terms can be significant in the binary black-hole signals that617

we study here. This prohibits an exact interpretation of the618

�1PN term as the strength of dipolar radiation. Hence, this619

analysis only serves as a test of the presence of an e↵ective620

�1PN term in the inspiral phasing, which is absent in GR.621

To measure the above GR violations in the post-Newtonian622

inspiral, we employ two waveform models: (i) the analyti-623

cal frequency-domain model IMRPhenomPv2 which also pro-624

vided the natural parametrization for our tests and (ii) SEOB-625

NRv4 ROM, a frequency-domain, reduced-order-model of the626

SEOBNRv4 model [18, 94]. The inspiral part of SEOBNRv4627

is based on a numerical evolution of the aligned-spin e↵ective-628

one-body dynamics of the binary, while its post-inspiral evo-629

lution is calibrated against NR simulations. Despite its non-630

analytical nature, SEOBNRv4 ROM can also be used to test631

the parametrized modifications of the early inspiral defined632

above. Using the method presented in [8], we add deviations633

to the waveform phase corresponding to a given �'̂i at low fre-634

quencies and then taper the corrections to zero at a frequency635

consistent with the transition frequency between early-inspiral636

and intermediate phases used by IMRPhenomPv2. The same637

procedure cannot be applied to the later stages of the waveform638

, thus the analysis performed with SEOBNRv4 is restricted to639

the post-Newtonian inspiral, cf. Fig 3.640

The analytical descriptions of the intermediate and merger-641

ringdown stages in the IMRPhenomPv2 model allow for a642

straightforward way of parametrizing deviations from GR, de-643

noted by {��̂2, ��̂3} and {�↵̂2, �↵̂3, �↵̂4} respectively, follow-644

ing [88]. While the parameters ��̂i correspond to deviations645

from the NR-calibrated phenomenological coe�cients �i of the646

intermediate stage, the parameters �↵̂i refer to modifications647

of the merger-ringdown coe�cients ↵i obtained from a com-648

bination of phenomenological fits and analytical black-hole649

perturbation theory calculations [19].650

Using LALInference [29, 66], we calculate posterior distri-651

butions of the parameters characterizing the waveform (includ-652

ing those that describe the binary in GR). Our parametrization653

recovers GR at � p̂i = 0, so consistency with GR is verified654

if the posteriors of � p̂i have support at zero. We perform the655

analyses by varying one � p̂i at a time, as shown in Ref. [95],656

this is fully robust to detecting deviations present in multiple657

PN-orders. In addition, allowing for a larger parameter space658

by varying multiple coe�cients simultaneously would not im-659

prove our e�ciency in identifying violations of GR, as it would660

yield less informative posterior PDFs. A specific alternative661

theory of gravity would likely yield correlated deviations in662

many parameters, including modifications that we have not663

considered here. This would be the target of an apples-to-664

apples comparison with GR, which would only be possible if a665

complete, accurate description of the inspiral-merger-ringdown666

signal in that theory was available.667

We use priors uniform on � p̂i and symmetric around zero.668
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bound these propagation e↵ects to be very small, we can work
to linear order in A↵ when computing the e↵ects of this disper-
sion on the frequency-domain GW phasing,15 thus obtaining a
correction [100] that is added to �( f ) in Eq. (1):

��↵( f ) = sign(A↵)

8>>>>>>><
>>>>>>>:

⇡DL
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c3

!
, ↵ = 1
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Here, DL is the binary’s luminosity distance, Mdet is the bi-
nary’s detector-frame (i.e., redshifted) chirp mass, and �A,e↵
is the e↵ective wavelength parameter used in the sampling,
defined as

�A,e↵ B
"
(1 + z)1�↵DL

D↵

#1/(↵�2)

�A . (4)

The parameter z is the binary’s redshift, and D↵ is a distance
parameter given by

D↵ =
(1 + z)1�↵

H0

Z z

0

(1 + z̄)↵�2
p
⌦m(1 + z̄)3 +⌦⇤

dz̄ , (5)

where H0 = 67.90 km s�1 Mpc�1 is the Hubble constant, and
⌦m = 0.3065 and ⌦⇤ = 0.6935 are the matter and dark energy
density parameters; these are the TT+lowP+lensing+ext values
from [108].16

The dephasing in Eq. (3) is obtained by treating the gravita-
tional wave as a stream of particles (gravitons), which travel
at the particle velocity vp/c = pc/E = 1 � A↵E↵�2/2 + O(A2

↵).
There are suggestions to use the particle velocity when consid-
ering doubly special relativity, though there are also sugges-
tions to use the group velocity vg in that case (see, e.g., [110]
and references therein for both arguments). However, the group
velocity is appropriate for, e.g., multi-fractal spacetime theo-
ries (see, e.g., [111]). To convert the bounds presented here to
the case where the particles travel at the group velocity, scale
the A↵ bounds for ↵ , 1 by factors of 1/(1 � ↵). The group
velocity calculation gives an unobservable constant phase shift
for ↵ = 1.

We consider the cases of positive and negative A↵ separately,
and obtain the results shown in Table IV and Fig. 5 when
applying this analysis to the GW events under consideration.
While we sample with a flat prior in log �A,e↵, our bounds are
given using priors flat in A↵ for all results except for the mass of
the graviton, where we use a prior flat in the graviton mass. We
also show the results from combining together all the signals

15 The dimensionless parameter controlling the size of the linear correction
is A↵ f ↵�2, which is . 10�18 at the 90% credible level for the events we
consider and frequencies up to 1 kHz.

16 We use these values for consistency with the results presented in [14].
If we instead use the more recent results from [109], specifically the
TT,TE,EE+lowE+lensing+BAO values used for comparison in [14], then
there are very minor changes to the results presented in this section. For
instance, the upper bounds in Table IV change by at most ⇠ 0.1%.

0 1 2 3 4
↵

10�21

10�20

10�19

|A
↵
|

[p
eV

2�
↵
]

A↵ < 0

0 1 2 3 4
↵

A↵ > 0

GW150914 + GW151226 + GW170104
O1 and O2 combined results

FIG. 5. 90% credible upper bounds on the absolute value of the modi-
fied dispersion relation parameter A↵. We show results for positive
and negative values of A↵ separately. Specifically, we give the up-
dated versions of the results from combining together GW150914,
GW151226, and GW170104 (first given in [6]), as well as the re-
sults from combining together all the events meeting our significance
threshold for combined results (see Table I). Picoelectronvolts (peV)
provide a convenient scale, because 1 peV ' h ⇥ 250 Hz, where
250 Hz is roughly around the most sensitive frequencies of the LIGO
and Virgo instruments.

FIG. 6. Violin plots of the full posteriors on the modified dispersion
relation parameter A↵ calculated from the combined events, with the
90% credible interval around the median indicated.

that satisfy our selection criterion. We are able to combine
together the results from di↵erent signals with no ambiguity,
since the known distance dependence is accounted for in the
waveforms.

Figure 6 displays the full A↵ posteriors obtained by combin-
ing all selected events (using IMRPhenomPv2 waveforms). To
obtain the full A↵ posteriors, we combine together the positive
and negative A↵ results for individual events by weighting by
their Bayesian evidences; we then combine the posteriors from

Tests of GW propagation: Modified dispersion relation 

• In GR, GWs propagate at the speed of  
light and are non-dispersive. However, 
one can consider a more general  
dispersion relation… 
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FIG. 3. Combined posterior PDFs for parametrized violations of GR, obtained from all events in Tab. I with a significance of FAR < (1000 yr)�1.
The combined posteriors on 'i in the inspiral regime are obtained from the events which in addition exceed the SNR threshold in the inspiral
regime(GW150914, GW151226, GW170104, GW170608, and GW170814), analyzed with IMRPhenomPv2 (blue shades) and SEOBNRv4
(orange lines). The combined posteriors on the intermediate and merger-ringdown parameters �i and ↵i are obtained from events which exceed
the SNR threshold in the post-inspiral regime (GW150914, GW170104, GW170608, GW170809, GW170814 and GW170823), analyzed with
IMRPhenomPv2.

Figure 3 shows the combined posteriors of � p̂i (marginal-669

ized over all other parameters) estimated from the combina-670

tion of all the events that cross the significance threshold of671

FAR < (1000 yr)�1. Additionally, the posterior PDFs on the672

inspiral parameters �'̂i are obtained from the events which673

have significant SNR (> 6) in the inspiral regime. The poste-674

rior PDFs in the intermediate and merger-ringdown parameters675

��̂i and �↵̂i are obtained from combining information from676

events which have significant SNR in the post-inspiral regime.677

In all cases considered, the posterior PDFs are consistent with678

� p̂i = 0 within statistical fluctuations. Bounds on the inspiral679

coe�cients obtained with the two di↵erent waveform models680

are found to in good agreement with each other. Finally, we681

note that the event-combining analyses on � p̂i incorporate the682

highly non-trivial assumption that these parametrized viola-683

tions are constant across all events considered. While this684

is valid for our null hypothesis (GR), in an active search for685

signs of modified gravity, this assumption should be dropped.686

Results from individual-event analyses are provided in Ap-687

pendix 3.688

Figure 4 shows the 90% upper bounds on �'̂i for all the indi-689

vidual events which cross the SNR threshold (SNR > 6) in the690

inspiral regime (the most massive among which is GW150914).691

The bounds from the combined posterior PDFs are also shown;692

these include the events which exceed both the SNR threshold693

in the inspiral regime as well as the significance threshold,694

namely: GW150914, GW151226, GW170104, GW170608,695

and GW170814. The bound from GW170608 at 1.5PN is696

currently the strongest constraint obtained on a PN coe�cient697

from a single event as shown in Fig. 4. At this order, the con-698

straint is about five times worse than that obtained from the699

BNS event GW170817 alone [8]. The �1PN bound is two700

orders of magnitude better for GW170817 than the best bound701

obtained from the lightest mass BBH GW170608. For all other702

PN orders, GW170608 provides the best bounds, which at high703

PN orders are of the same order of magnitude as the ones from704

GW170817. The combined bounds are the tightest obtained705

so far, improving on the bounds obtained in [5] by about a706

factor of 2. Our results can be statistically compared to those707

of performing the same tests on simulated GR and non-GR708

waveforms given in [88]. The results presented here are consis-709

tent with those of GR waveforms injected into realistic detector710

FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of the
events listed in Tab. I that cross the SNR threshold in the inspiral
regime, analyzed with IMRPhenomPv2. Bounds obtained from com-
bining posteriors of events detected with a significance that exceed
a FAR threshold of FAR < (1000 yr)�1 are shown for both analyses,
using IMRPhenomPv2 (filled diamonds) and SEOBNRv4 (empty dia-
monds).

data.711

VII. PARAMETERIZED TESTS OF GRAVITATIONAL712

WAVE PROPAGATION713

We now place constraints on a phenomenological modifica-714

tion of the GW dispersion relation, i.e., on a possible frequency715

dependence of the speed of GWs. This modification, intro-716

duced in [96] and first applied to LIGO data in [6], is obtained717

by adding a power-law term in the momentum to the dispersion718

relation E2 = p2c2 of GWs in GR, giving719

E2 = p2c2 + A↵p↵c↵. (2)

GR part  + Phenomenological 
modification

[LVC+ PRD 100, 104036 (2019)]



11

bound these propagation e↵ects to be very small, we can work
to linear order in A↵ when computing the e↵ects of this disper-
sion on the frequency-domain GW phasing,15 thus obtaining a
correction [100] that is added to �( f ) in Eq. (1):

��↵( f ) = sign(A↵)
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Here, DL is the binary’s luminosity distance, Mdet is the bi-
nary’s detector-frame (i.e., redshifted) chirp mass, and �A,e↵
is the e↵ective wavelength parameter used in the sampling,
defined as

�A,e↵ B
"
(1 + z)1�↵DL

D↵

#1/(↵�2)

�A . (4)

The parameter z is the binary’s redshift, and D↵ is a distance
parameter given by

D↵ =
(1 + z)1�↵

H0

Z z

0

(1 + z̄)↵�2
p
⌦m(1 + z̄)3 +⌦⇤

dz̄ , (5)

where H0 = 67.90 km s�1 Mpc�1 is the Hubble constant, and
⌦m = 0.3065 and ⌦⇤ = 0.6935 are the matter and dark energy
density parameters; these are the TT+lowP+lensing+ext values
from [108].16

The dephasing in Eq. (3) is obtained by treating the gravita-
tional wave as a stream of particles (gravitons), which travel
at the particle velocity vp/c = pc/E = 1 � A↵E↵�2/2 + O(A2

↵).
There are suggestions to use the particle velocity when consid-
ering doubly special relativity, though there are also sugges-
tions to use the group velocity vg in that case (see, e.g., [110]
and references therein for both arguments). However, the group
velocity is appropriate for, e.g., multi-fractal spacetime theo-
ries (see, e.g., [111]). To convert the bounds presented here to
the case where the particles travel at the group velocity, scale
the A↵ bounds for ↵ , 1 by factors of 1/(1 � ↵). The group
velocity calculation gives an unobservable constant phase shift
for ↵ = 1.

We consider the cases of positive and negative A↵ separately,
and obtain the results shown in Table IV and Fig. 5 when
applying this analysis to the GW events under consideration.
While we sample with a flat prior in log �A,e↵, our bounds are
given using priors flat in A↵ for all results except for the mass of
the graviton, where we use a prior flat in the graviton mass. We
also show the results from combining together all the signals

15 The dimensionless parameter controlling the size of the linear correction
is A↵ f ↵�2, which is . 10�18 at the 90% credible level for the events we
consider and frequencies up to 1 kHz.

16 We use these values for consistency with the results presented in [14].
If we instead use the more recent results from [109], specifically the
TT,TE,EE+lowE+lensing+BAO values used for comparison in [14], then
there are very minor changes to the results presented in this section. For
instance, the upper bounds in Table IV change by at most ⇠ 0.1%.
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FIG. 5. 90% credible upper bounds on the absolute value of the modi-
fied dispersion relation parameter A↵. We show results for positive
and negative values of A↵ separately. Specifically, we give the up-
dated versions of the results from combining together GW150914,
GW151226, and GW170104 (first given in [6]), as well as the re-
sults from combining together all the events meeting our significance
threshold for combined results (see Table I). Picoelectronvolts (peV)
provide a convenient scale, because 1 peV ' h ⇥ 250 Hz, where
250 Hz is roughly around the most sensitive frequencies of the LIGO
and Virgo instruments.

FIG. 6. Violin plots of the full posteriors on the modified dispersion
relation parameter A↵ calculated from the combined events, with the
90% credible interval around the median indicated.

that satisfy our selection criterion. We are able to combine
together the results from di↵erent signals with no ambiguity,
since the known distance dependence is accounted for in the
waveforms.

Figure 6 displays the full A↵ posteriors obtained by combin-
ing all selected events (using IMRPhenomPv2 waveforms). To
obtain the full A↵ posteriors, we combine together the positive
and negative A↵ results for individual events by weighting by
their Bayesian evidences; we then combine the posteriors from

Tests of GW propagation: Modified dispersion relation 

• In GR, GWs propagate at the speed of  
light and are non-dispersive. However, 
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FIG. 3. Combined posterior PDFs for parametrized violations of GR, obtained from all events in Tab. I with a significance of FAR < (1000 yr)�1.
The combined posteriors on 'i in the inspiral regime are obtained from the events which in addition exceed the SNR threshold in the inspiral
regime(GW150914, GW151226, GW170104, GW170608, and GW170814), analyzed with IMRPhenomPv2 (blue shades) and SEOBNRv4
(orange lines). The combined posteriors on the intermediate and merger-ringdown parameters �i and ↵i are obtained from events which exceed
the SNR threshold in the post-inspiral regime (GW150914, GW170104, GW170608, GW170809, GW170814 and GW170823), analyzed with
IMRPhenomPv2.

Figure 3 shows the combined posteriors of � p̂i (marginal-669

ized over all other parameters) estimated from the combina-670

tion of all the events that cross the significance threshold of671

FAR < (1000 yr)�1. Additionally, the posterior PDFs on the672

inspiral parameters �'̂i are obtained from the events which673

have significant SNR (> 6) in the inspiral regime. The poste-674

rior PDFs in the intermediate and merger-ringdown parameters675

��̂i and �↵̂i are obtained from combining information from676

events which have significant SNR in the post-inspiral regime.677

In all cases considered, the posterior PDFs are consistent with678

� p̂i = 0 within statistical fluctuations. Bounds on the inspiral679

coe�cients obtained with the two di↵erent waveform models680

are found to in good agreement with each other. Finally, we681

note that the event-combining analyses on � p̂i incorporate the682

highly non-trivial assumption that these parametrized viola-683

tions are constant across all events considered. While this684

is valid for our null hypothesis (GR), in an active search for685

signs of modified gravity, this assumption should be dropped.686

Results from individual-event analyses are provided in Ap-687

pendix 3.688

Figure 4 shows the 90% upper bounds on �'̂i for all the indi-689

vidual events which cross the SNR threshold (SNR > 6) in the690

inspiral regime (the most massive among which is GW150914).691

The bounds from the combined posterior PDFs are also shown;692

these include the events which exceed both the SNR threshold693

in the inspiral regime as well as the significance threshold,694

namely: GW150914, GW151226, GW170104, GW170608,695

and GW170814. The bound from GW170608 at 1.5PN is696

currently the strongest constraint obtained on a PN coe�cient697

from a single event as shown in Fig. 4. At this order, the con-698

straint is about five times worse than that obtained from the699

BNS event GW170817 alone [8]. The �1PN bound is two700

orders of magnitude better for GW170817 than the best bound701

obtained from the lightest mass BBH GW170608. For all other702

PN orders, GW170608 provides the best bounds, which at high703

PN orders are of the same order of magnitude as the ones from704

GW170817. The combined bounds are the tightest obtained705

so far, improving on the bounds obtained in [5] by about a706

factor of 2. Our results can be statistically compared to those707

of performing the same tests on simulated GR and non-GR708

waveforms given in [88]. The results presented here are consis-709

tent with those of GR waveforms injected into realistic detector710

FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of the
events listed in Tab. I that cross the SNR threshold in the inspiral
regime, analyzed with IMRPhenomPv2. Bounds obtained from com-
bining posteriors of events detected with a significance that exceed
a FAR threshold of FAR < (1000 yr)�1 are shown for both analyses,
using IMRPhenomPv2 (filled diamonds) and SEOBNRv4 (empty dia-
monds).
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We now place constraints on a phenomenological modifica-714

tion of the GW dispersion relation, i.e., on a possible frequency715

dependence of the speed of GWs. This modification, intro-716

duced in [96] and first applied to LIGO data in [6], is obtained717

by adding a power-law term in the momentum to the dispersion718

relation E2 = p2c2 of GWs in GR, giving719

E2 = p2c2 + A↵p↵c↵. (2)
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of 5.3s. This unambiguous association confirms that BNS
mergers are progenitors of (at least some) SGRBs.

4. Implications for Fundamental Physics

Little or no arrival delay between photons and GWs over
cosmological distances is expected as the intrinsic emission
times are similar and the propagation speeds of EM and GWs
are thought to be identical. In this Section we discuss the
implications on fundamental physics of the temporal offset of

1.74 0.05 s+ o( ) measured between GW170817 and
GRB170817A.

Standard EM theory minimally coupled to general relativity
predicts that GWs and light propagate with identical speeds.
The refractive index of vacuum is expected to be unity, and
both waves are expected to be affected by background
gravitational potentials in the same way. The arrival delay of
only a few seconds across a distance greater than one hundred
million light years places stringent constraints on deviations
from fundamental principles. We use the observed temporal
offset, the distance to the source, and the expected emission-
time difference to place constraints on the deviation of the
speed of gravity from the speed of light, and on violations of
Lorentz invariance and the equivalence principle.

4.1. Speed of Gravity

Assuming a small difference in travel time tD between
photons and GWs, and the known travel distance D, the
fractional speed difference during the trip can be written

v v v t DEM EMD » D , where v v vGW EMD = - is the differ-
ence between the speed of gravity vGW and the speed of light
vEM. This relation is less constraining for small distances, hence
we conservatively use here D 26 Mpc= , the lower bound of
the 90% credible interval on luminosity distance derived from
the GW signal (Abbott et al. 2017e). If we conservatively
assume that the peak of the GW signal and the first photons
were emitted simultaneously, attributing the entire

1.74 0.05 s+ o( ) lag to faster travel by the GW signal, this
time difference provides an upper bound on vD . To obtain a
lower bound on vD , one can assume that the two signals were
emitted at times differing by more than 1.74 0.05 s+ o( ) with
the faster EM signal making up some of the difference. As a
conservative bound relative to the few second delays discussed
in Section 2.1, we assume the SGRB signal was emitted 10 s
after the GW signal. The resulting constraint on the fractional
speed difference is

v
v

3 10 7 10 . 115

EM

16- -- ´
D

+ ´- - ( )

The intergalactic medium dispersion has negligible impact on
the gamma-ray photon speed, with an expected propagation
delay many orders of magnitude smaller than our errors
on vGW.

Lags much longer than 10 s are proposed in alternative
models (e.g., Ciolfi & Siegel 2015; Rezzolla & Kumar 2015),
and emission of photons before the merger is also possible
(Tsang et al. 2012). Hence, certain exotic scenarios can extend
this time difference window to (−100 s, 1000 s), yielding a 2
orders of magnitude broadening of the allowed velocity range
on either side. While the emission times of the two messengers
are inherently model dependent, conservative assumptions
yield dramatic improvements over existing indirect (Kostelecky

& Russell 2017) and direct (Cornish et al. 2017) constraints,
which allow for time differences of more than 1000 years.
Future joint GW–GRB detection should allow disentangling
the emission time difference from the relative propagation time,
as only the latter is expected to depend on distance.

4.2. Lorentz Invariance Violation Limits

Within a comprehensive effective field theory description of
Lorentz violation (Colladay & Kostelecký 1997, 1998;
Kostelecký 2004; Tasson 2014), the relative group velocity
of GWs and EM waves, is controlled by differences in
coefficients for Lorentz violation in the gravitational sector and
the photon sector at each mass dimension d (Kostelecký &
Mewes 2016, 2009, 2008; Wei et al. 2017). We focus here on
the non-birefringent, non-dispersive limit at mass dimension
d=4, as it yields by far the most impressive results. In this
case, the difference in group velocities for the two sectors takes
the form
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The result is presented in a spherical harmonic, Yℓm, basis, sℓm
4( )

and c I ℓm
4

( )
( ) being spherical-basis coefficients for Lorentz violation

in the gravitational and EM sectors, respectively. The direction n̂
refers to the sky position (provided in Coulter et al. 2017a,
2017b).
For ease of comparison with the many existing sensitivities

(Shao 2014a, 2014b; Shao et al. 2017; Kostelecký & Tasson
2015; Bourgoin et al. 2016; Le Poncin-Lafitte et al. 2016;
Kostelecky & Russell 2017) to the d=4 gravity-sector
coefficients (Bailey & Kostelecký 2006; Hees et al. 2016), an
analysis in which the coefficients are constrained one at a time
is useful (Flowers et al. 2016), with all other coefficients,
including the EM sector ones, set to zero. These results are
presented in Table 1 along with the best constraints for each
coefficient prior to this work. These results can be compared
with the isotropic A, LVa Lorentz violation parametrization
(Mirshekari et al. 2012) used by Abbott et al. (2017c) in
dispersive GW tests. The 2LVa = limit of this parametrization
is equivalent to the isotropic limit of the framework discussed
above, with s A400

4 pl( ) . Constraints on A for 2LVa = can
be obtained from the first line of Table 1; these cannot be
established within the analysis carried out in Abbott et al.
(2017c).

4.3. Test of the Equivalence Principle

Probing whether EM radiation and GWs are affected by
background gravitational potentials in the same way is a test of
the equivalence principle (Will 2014). One way to achieve this
is to use the Shapiro effect (Shapiro 1964), which predicts that
the propagation time of massless particles in curved spacetime,
i.e., through gravitational fields, is slightly increased with
respect to the flat spacetime case. We will consider the
following simple parametrized form of the Shapiro delay
(Krauss & Tremaine 1988; Longo 1988; Gao et al. 2015;
Kahya & Desai 2016):
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Fractional difference between speed of 
GWs & light

[ApJ 848:L13, 27 (2017)]

Tight constraints on f(R)/scalar-tensor theories from the speed of GW measurement. 
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cg = c cg 6= c

General Relativity quartic/quintic Galileons [13, 14]

quintessence/k-essence [46] Fab Four [15]

Brans-Dicke/f(R) [47, 48] de Sitter Horndeski [49]

Kinetic Gravity Braiding [50] Gµ⌫�
µ�⌫ [51], f(�)·Gauss-Bonnet [52]

Derivative Conformal (19) [17] quartic/quintic GLPV [18]

Disformal Tuning (21) quadratic DHOST [20] with A1 6= 0

quadratic DHOST with A1 = 0 cubic DHOST [23]

H
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d
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Viable after GW170817 Non-viable after GW170817

FIG. 2: Summary of the viable (left) and non-viable (right) scalar-tensor theories after GW170817. Only simple Horndeski
theories, G4,X ⇡ 0 and G5 ⇡ constant, and specific beyond Horndeski models, conformally related to cg = 1 Horndeski or
disformally tuned, remain viable.

classes include some interesting models, such as acceler-
ating solutions due to the weakening of the gravitational
force [53] and self-tuning theories that attempt to solve
the cosmological constant problem, and which rely on
non-minimal derivative couplings to curvature [15].

Despite the strong constraints, theories remain that
avoid this constraint and thus can still be used to ex-
plain DE (see Fig. 2). Within Horndeski’s theory these
include only the simplest modifications of gravity. Be-
yond Horndeski theory, viable gravities can be obtained
in two ways. One can apply a derivative-dependent con-
formal transformation to those Horndeski models with
cg = 1, since it does not a↵ect their causal structure. Al-
ternatively, one can implement a disformal transforma-
tion, which does alter the GW-cone, designed to precisely
compensate the original anomalous speed of the theory.

The constraints of GW 170817 extends further into
the landscape of gravity theories. In the case of vector-
tensor and scalar-vector-tensor theories, there are several
couplings to the curvature that now will be extremely
constrained because they modify the speed of GWs, e.g.
Rµ⌫v

µv⌫ in vector DE [54]. In particular, this test has an
impact on Einstein-Aether theories [25], including some
sectors of Hořava gravity [55], and more general frame-
works such as Generarlized Proca theories [56]. TeVeS
[27] and MOND-like theories [57, 58] are as well critically
a↵ected by this bound. Massive gravity [24], bigravity
[59] and multi-gravity [60] remain viable as long as the
graviton mass is small and matter couples minimally to
one of the metrics.

In summary, multi-messenger GW astronomy has
proven to be a powerful tool in the quest of the origin
of cosmic acceleration and GW170817 sets a landmark
in dark energy research. New DE models and theories of
gravity will have to satisfy this strong constraint on the
GWs speed. Future GW-EM detections will be as well
determinant for the search of dynamical DE by better

constraining the presence of additional polarizations.
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4. Implications for Fundamental Physics

Little or no arrival delay between photons and GWs over
cosmological distances is expected as the intrinsic emission
times are similar and the propagation speeds of EM and GWs
are thought to be identical. In this Section we discuss the
implications on fundamental physics of the temporal offset of

1.74 0.05 s+ o( ) measured between GW170817 and
GRB170817A.

Standard EM theory minimally coupled to general relativity
predicts that GWs and light propagate with identical speeds.
The refractive index of vacuum is expected to be unity, and
both waves are expected to be affected by background
gravitational potentials in the same way. The arrival delay of
only a few seconds across a distance greater than one hundred
million light years places stringent constraints on deviations
from fundamental principles. We use the observed temporal
offset, the distance to the source, and the expected emission-
time difference to place constraints on the deviation of the
speed of gravity from the speed of light, and on violations of
Lorentz invariance and the equivalence principle.

4.1. Speed of Gravity

Assuming a small difference in travel time tD between
photons and GWs, and the known travel distance D, the
fractional speed difference during the trip can be written

v v v t DEM EMD » D , where v v vGW EMD = - is the differ-
ence between the speed of gravity vGW and the speed of light
vEM. This relation is less constraining for small distances, hence
we conservatively use here D 26 Mpc= , the lower bound of
the 90% credible interval on luminosity distance derived from
the GW signal (Abbott et al. 2017e). If we conservatively
assume that the peak of the GW signal and the first photons
were emitted simultaneously, attributing the entire

1.74 0.05 s+ o( ) lag to faster travel by the GW signal, this
time difference provides an upper bound on vD . To obtain a
lower bound on vD , one can assume that the two signals were
emitted at times differing by more than 1.74 0.05 s+ o( ) with
the faster EM signal making up some of the difference. As a
conservative bound relative to the few second delays discussed
in Section 2.1, we assume the SGRB signal was emitted 10 s
after the GW signal. The resulting constraint on the fractional
speed difference is

v
v

3 10 7 10 . 115

EM

16- -- ´
D

+ ´- - ( )

The intergalactic medium dispersion has negligible impact on
the gamma-ray photon speed, with an expected propagation
delay many orders of magnitude smaller than our errors
on vGW.

Lags much longer than 10 s are proposed in alternative
models (e.g., Ciolfi & Siegel 2015; Rezzolla & Kumar 2015),
and emission of photons before the merger is also possible
(Tsang et al. 2012). Hence, certain exotic scenarios can extend
this time difference window to (−100 s, 1000 s), yielding a 2
orders of magnitude broadening of the allowed velocity range
on either side. While the emission times of the two messengers
are inherently model dependent, conservative assumptions
yield dramatic improvements over existing indirect (Kostelecky

& Russell 2017) and direct (Cornish et al. 2017) constraints,
which allow for time differences of more than 1000 years.
Future joint GW–GRB detection should allow disentangling
the emission time difference from the relative propagation time,
as only the latter is expected to depend on distance.

4.2. Lorentz Invariance Violation Limits

Within a comprehensive effective field theory description of
Lorentz violation (Colladay & Kostelecký 1997, 1998;
Kostelecký 2004; Tasson 2014), the relative group velocity
of GWs and EM waves, is controlled by differences in
coefficients for Lorentz violation in the gravitational sector and
the photon sector at each mass dimension d (Kostelecký &
Mewes 2016, 2009, 2008; Wei et al. 2017). We focus here on
the non-birefringent, non-dispersive limit at mass dimension
d=4, as it yields by far the most impressive results. In this
case, the difference in group velocities for the two sectors takes
the form
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The result is presented in a spherical harmonic, Yℓm, basis, sℓm
4( )

and c I ℓm
4

( )
( ) being spherical-basis coefficients for Lorentz violation

in the gravitational and EM sectors, respectively. The direction n̂
refers to the sky position (provided in Coulter et al. 2017a,
2017b).
For ease of comparison with the many existing sensitivities

(Shao 2014a, 2014b; Shao et al. 2017; Kostelecký & Tasson
2015; Bourgoin et al. 2016; Le Poncin-Lafitte et al. 2016;
Kostelecky & Russell 2017) to the d=4 gravity-sector
coefficients (Bailey & Kostelecký 2006; Hees et al. 2016), an
analysis in which the coefficients are constrained one at a time
is useful (Flowers et al. 2016), with all other coefficients,
including the EM sector ones, set to zero. These results are
presented in Table 1 along with the best constraints for each
coefficient prior to this work. These results can be compared
with the isotropic A, LVa Lorentz violation parametrization
(Mirshekari et al. 2012) used by Abbott et al. (2017c) in
dispersive GW tests. The 2LVa = limit of this parametrization
is equivalent to the isotropic limit of the framework discussed
above, with s A400

4 pl( ) . Constraints on A for 2LVa = can
be obtained from the first line of Table 1; these cannot be
established within the analysis carried out in Abbott et al.
(2017c).

4.3. Test of the Equivalence Principle

Probing whether EM radiation and GWs are affected by
background gravitational potentials in the same way is a test of
the equivalence principle (Will 2014). One way to achieve this
is to use the Shapiro effect (Shapiro 1964), which predicts that
the propagation time of massless particles in curved spacetime,
i.e., through gravitational fields, is slightly increased with
respect to the flat spacetime case. We will consider the
following simple parametrized form of the Shapiro delay
(Krauss & Tremaine 1988; Longo 1988; Gao et al. 2015;
Kahya & Desai 2016):
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If  non-compact extra dimensions exist, GWs could leak into them, producing a systematic bias in the 
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complete, unique GW model in higher-dimensional grav-
ity, we use a phenomenological ansatz for the GW am-
plitude scaling and neglect all other effects of modified
gravity in the GW phase and amplitude. This approach
requires that gravity be asymptotically GR in the strong-
field regime, while modifications due to leakage into extra
dimensions start to appear at large distances from the
source. We therefore consider gravity modifications with
a screening mechanism, i.e., a phenomenological model
with a characteristic length scale Rc beyond which the
propagating GWs start to leak into higher dimensions.
In this model, the strain scales as

h / 1

dGW
L

=

1

dEM
L


1 +

✓
dEM
L

Rc

◆n��(D�4)/(2n)

(2)

where D denotes the number of spacetime dimensions,
and where Rc and n are the distance scale of the screen-
ing and the transition steepness, respectively. Eq. (2)
reduces to the standard GR scaling at distances much
shorter than Rc, and the model is consistent with tests
of GR performed in the Solar System or with binary pul-
sars. Unlike the scaling relation considered in [70, 71],
notice that Eq. (2) reduces to the GR limit for D = 4

spacetime dimensions. An independent measurement of
the source luminosity distance from EM observations of
GW170817 allows us to infer the number of spacetime di-
mensions from a comparison of the GW and EM distance
estimates, for given values of model parameters Rc and
n. Constraints on the number of spacetime dimensions
are derived in a framework of Bayesian analysis, from the
joint posterior probability for D, dGW

L and dEM
L , given the

two statistically independent measurements of EM data
xEM and GW data xGW. The posterior for D is then
given by:

p(D|xGW, xEM) =

Z
p(dGW

L |xGW)p(dEM
L |xEM)�(D � D(dGW

L , dEM
L , Rc, n)) ddGW

L ddEM
L . (3)

As in [19], we use a measurement of the surface brightness
fluctuation distance to the host galaxy NGC 4993 from
[73] to constrain the EM distance, assuming a Gaussian
distribution for the posterior probability p(dEM

L |xEM),
with the mean value and standard deviation given by
40.7 ± 2.4 Mpc [73]. Contrary to [71], our analysis relies
on a direct measurement of dEM

L and is independent of
prior information on H0 or any other cosmological pa-
rameter. For the measurement of the GW distance, the
posterior distribution p(dGW

L |xGW) was inferred from the
GW data assuming general relativity and fixing the sky
position to the optical counterpart while marginalizing
over all other waveform parameters [19]. Our analysis
imposes a prior on the GW luminosity distance that is
consistent with a four-dimensional Universe, but we have
checked that other reasonable prior choices do not signif-
icantly modify the results. We invert the scaling relation
in Eq. (2) to compute D(dGW

L , dEM
L , Rc, n) in Eq. (3).

Fig. 3 shows the 90% upper bounds on the number of di-
mensions D, for theories with a certain transition steep-
ness n and distance scale Rc. Shading indicates the ex-
cluded regions of parameter space. Our results are con-
sistent with the GR prediction of D = 4.

Additionally, the data allows us to infer constraints on
the characteristic distance scale Rc of higher-dimensional
theories with a screening mechanism, while fixing D to
5, 6 or 7. The posterior for p(Rc|xGW, xEM) is ob-
tained from the joint posterior probability of Rc, d

GW
L

and dEM
L , fixing D instead of Rc in Eq. (3) and comput-

ing Rc(d
GW
L , dEM

L , D, n) by inverting the scaling relation

FIG. 3. 90% upper bounds on the number of spacetime di-
mensions D, assuming fixed transition steepness n and dis-
tance scale Rc. Shading indicates the regions of parameter
space excluded by the data.

in Eq. (2). Since we consider higher-dimensional mod-
els that allow only for a relative damping of the GW
signal, we select posterior samples with dGW

L > dEM
L ,

leading to an additional step function ✓(dGW
L � dEM

L ) in
p(Rc|xGW, xEM). In Fig. 4, we show 10% lower bounds
on the screening radius Rc, for theories with a certain
fixed transition steepness n and number of dimensions
D > 4. Shading indicates the excluded regions of pa-
rameter space. For higher-dimensional theories of grav-
ity with a characteristic length scale Rc of the order of
the Hubble radius RH ⇠ 4 Gpc, such as the well known
Dvali-Gabadadze-Porrati (DGP) models of dark energy

[LVC+ PRL 123, 011102 (2019)]

3

In order to measure gravitational leakage, we compare
the EM luminosity distance to the source, dEM

L , with the
GW luminosity distance, dGW

L , extracted from the wave-
form under the assumption that GR is the correct theory
of gravity. To find the EM luminosity distance to the
source, we use Hubble’s law to relate the host galaxy’s
“Hubble velocity”, vH , to its luminosity distance. In the
nearby universe, this relationship can be approximated
by:

vH = H
0

dEM

L . (6)

The Hubble velocity is the recessional velocity that the
galaxy would have if it was stationary with respect to
the Hubble flow. To find the Hubble velocity of the
host galaxy NGC 4993, we follow Abbott et al. (2017a)
and correct the recessional velocity of the galaxy group
to which NGC 4993 belongs, ESO-508, by its peculiar
velocity. The EM observables are then the measured re-
cessional velocity, vr, of the group of galaxies to which
NGC 4993 belongs, and the measured peculiar velocity,
hvpi, in the neighborhood of NGC 4993. We denote the
true peculiar velocity by vp, so that the true recessional
velocity is the sum of vH and vp. We adopt the con-
servative uncertainty on vp from Guidorzi et al. (2017),
which sets the Hubble velocity to be vH = 3017 ± 250
km s�1. Together with a prior measurement of the Hub-
ble constant, the measured velocities, vr and hvpi, yield
a measurement of the EM luminosity distance to the
system.

Meanwhile, the GW data, x
GW

, gives the poste-
rior probability of the GW luminosity distance, dGW

L ,
marginalized over all other waveform parameters, ex-
cept the sky position, which is fixed to the position of
the optical counterpart. We recover the GW distance
posterior from the LIGO-Virgo Collaboration’s publicly
available H

0

posterior samples (Abbott et al. 2017a).
The H

0

posterior is given by marginalizing the joint
probability of H

0

, the GW distance posterior probabil-
ity, p(dGW

L | x
GW

), and the velocities vH and vp, over all
parameters except H

0

(Eq. 9 of Abbott et al. (2017a)).
We recover the GW distance posterior (marginalized
over inclination angles) from the H

0

posterior by decon-
volving the vr and vp terms, which are given by Gaus-
sians. We approximate the integral in Equation 9 of Ab-
bott et al. (2017a) by a Riemann sum. Then the term
p(x

GW

| dGW

L )p(dGW

L ) is obtained by solving a system
of linear equations.

We carry out a Bayesian analysis to infer the posterior
of the gravitational leakage parameter, �, and the num-
ber of spacetime dimensions, D, given the GW and EM
measurements described above. The statistical frame-
work is described in detail in the Appendix.
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Figure 1. Posterior probability distribution for the number
of spacetime dimensions, D, using the GW distance poste-
rior to GW170817 and the measured Hubble velocity to its
host galaxy, NGC 4993, assuming theH0 measurements from
Planck Collaboration et al. (2016) (blue curve) and Riess
et al. (2016) (green curve). The dashed lines show the sym-
metric 90% credible intervals. The equivalent constraints on
the damping factor, �, are shown on the top axis. GW170817
constrainsD to be very close to the GR value ofD = 4 space-
time dimensions, denoted by the solid black line.

4. RESULTS & DISCUSSION

The posterior for D assuming a waveform with the
scaling shown in Equations 2 and 3 is given in Figure 1.
Since the results depend on the assumed H

0

prior, we
compute the D posterior for both the SHoES H

0

value
(Riess et al. 2016) and the Planck H

0

value (Planck
Collaboration et al. 2016). The maximum a posteriori
(MAP) values and minimal 68% credible interval values
for � and D are given in Table 1. As can be seen, the
results are completely consistent with GR.

We can also use these constraints to place limits on
waveforms with a scaling given by Equation 4. For the
higher-dimensional theories that give rise to such wave-
forms, the dGW

L measured under the assumption of GR
will be greater than the true luminosity distance, dEM

L .
Thus, while our posterior for � allows for both � > 1
and � < 1 (allowing for the relative damping of both
the GW and EM signals), in the following analysis we
restrict � > 1. Using our joint posterior on dGW

L and
dEM

L = (dGW

L )1/� for GW170817, we can apply Equa-
tion 4 to constrain the screening radius, Rc:

Rc =
dEM

L
h⇣

dGW

L

dEM

L

⌘n

� 1
i 2

n(D�4)

. (7)

[Pardo et al JCAP 2018]



Nature of GW polarizations 

• Generic metric theories of  gravity allow up to six 
GW polarizations. Only two tensor modes are 
permitted in GR.
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Figure 8: The six polarization modes for gravitational waves permitted in any metric theory of
gravity. Shown is the displacement that each mode induces on a ring of test particles. The wave
propagates in the +z direction. There is no displacement out of the plane of the picture. In (a),
(b), and (c), the wave propagates out of the plane; in (d), (e), and (f), the wave propagates in
the plane. In GR, only (a) and (b) are present; in massless scalar-tensor gravity, (c) may also be
present.
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Nature of GW polarizations 

• Generic metric theories of  gravity allow up to six 
GW polarizations. Only two tensor modes are 
permitted in GR. 

Current tests using CBC signals: A tensor-only model 
is preferred over scalar-only or vector-only model.  

Similar possible constraints from CWs [Isi et al 2014] 
and stochastic background [Nishizawa 2009]
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present.
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Evidence of quasi-normal modes 

• Late stages of  the post-merger signal from a 
BBH coalescence should be described by a 
QNM spectrum. 
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FIG. 15: Comparison of numerical and QNM −2C22 ring-down waveforms for d = 16 and 19. All plots show the numerical
ring-down waveform as a thin solid (black) line. The thick solid (red) line displays the fit of the ring-down signal using the
first N ℓ = 2, m = 2 overtones beyond the fundamental. For plots containing N > 0 overtones, we also include the fit residual
from the previous value of N . This is displayed as a dashed (blue) line. The coefficients for the displayed fits are found in
Tables VIII and IX.

preceding the point where |−2C22| reaches its peak. For each case beyond the fit to the fundamental n = 0 mode, we
include the residual of the previous fit. To be explicit, the residual displayed for N = 1 is defined as the difference
between the numerical signal and the fit obtained using the fundamental mode. The residual displayed for N = 2
is the difference between the numerical signal and the n = 0, 1 modes used in the N = 1 fit. This residual gives an
estimate of the remaining signal that is being fit. However, it is important to remember that for each value of N ,
the entire signal is actually being fit, including a redetermination of a/Mf and Mf/M for all the modes. The most
important point to notice from the residuals is that for each value of N there is a clear signal that is being fit.

A close examination of Tables VII–IX reveals a significant level of consistency to the fits. For each separation d,
the spin and mass ratios remain very consistent and the C22n and φ22n coefficients remain quite consistent, as we
increase the number of overtones included in the fits. This is true individually within the separate fits of the real and
imaginary parts of −2C22, and consistency is also seen between the fits of the real and imaginary parts. While the
ℓ = 2, m = 2 QNMs seem to dominate the ring down signal in −2C22, the ℓ = 2, m = −2 modes and the modes with
ℓ > 2 should be present. However, the remaining residual after the N = 3 fit (not shown in any figure) has very low
amplitude at times after the peak in |−2C22|. While there are some hints to structure, there is insufficient signal and
the simple approach we have used for fitting does not yield consistent fits when additional modes are included.

However, if we fix the values for a/Mf and Mf/M to the values obtained from the ℓ = 2, m = 2 fits, we can fit
for the Cℓ±2n and φℓ±2n coefficients for a range of modes. Doing so, we find that the fundamental QNM with ℓ = 3,
m = −2 has the most significant contribution, followed by the ℓ = 4, m = −2 and ℓ = 3, m = 2 fundamental modes
at roughly comparable levels. Unlike the case of fitting only the ℓ = 2, m = 2 modes, adding in higher overtones
when an increased spectrum of modes was considered did not lead to consistent fits. Part of the difficulty in finding
consistent fits to the subdominant modes is likely due to the fact that the signal associated with these modes is close
to the level of numerical precision in the waveform. However, it is also likely that more sophisticated fitting methods
are needed. In particular, it would be useful to fit the real and imaginary parts of the waveform simultaneously. It
may also be helpful to fit several −2Cℓm modes simultaneously.

While fitting multiple modes is problematic in some cases, it is essential in others. For the case of −2C32(t), the
dominant QNMs include both ℓ = 2 and ℓ = 3, both with m = 2. In fact, it was not possible to fit the ring-down
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FIG. 15: Comparison of numerical and QNM −2C22 ring-down waveforms for d = 16 and 19. All plots show the numerical
ring-down waveform as a thin solid (black) line. The thick solid (red) line displays the fit of the ring-down signal using the
first N ℓ = 2, m = 2 overtones beyond the fundamental. For plots containing N > 0 overtones, we also include the fit residual
from the previous value of N . This is displayed as a dashed (blue) line. The coefficients for the displayed fits are found in
Tables VIII and IX.

preceding the point where |−2C22| reaches its peak. For each case beyond the fit to the fundamental n = 0 mode, we
include the residual of the previous fit. To be explicit, the residual displayed for N = 1 is defined as the difference
between the numerical signal and the fit obtained using the fundamental mode. The residual displayed for N = 2
is the difference between the numerical signal and the n = 0, 1 modes used in the N = 1 fit. This residual gives an
estimate of the remaining signal that is being fit. However, it is important to remember that for each value of N ,
the entire signal is actually being fit, including a redetermination of a/Mf and Mf/M for all the modes. The most
important point to notice from the residuals is that for each value of N there is a clear signal that is being fit.

A close examination of Tables VII–IX reveals a significant level of consistency to the fits. For each separation d,
the spin and mass ratios remain very consistent and the C22n and φ22n coefficients remain quite consistent, as we
increase the number of overtones included in the fits. This is true individually within the separate fits of the real and
imaginary parts of −2C22, and consistency is also seen between the fits of the real and imaginary parts. While the
ℓ = 2, m = 2 QNMs seem to dominate the ring down signal in −2C22, the ℓ = 2, m = −2 modes and the modes with
ℓ > 2 should be present. However, the remaining residual after the N = 3 fit (not shown in any figure) has very low
amplitude at times after the peak in |−2C22|. While there are some hints to structure, there is insufficient signal and
the simple approach we have used for fitting does not yield consistent fits when additional modes are included.

However, if we fix the values for a/Mf and Mf/M to the values obtained from the ℓ = 2, m = 2 fits, we can fit
for the Cℓ±2n and φℓ±2n coefficients for a range of modes. Doing so, we find that the fundamental QNM with ℓ = 3,
m = −2 has the most significant contribution, followed by the ℓ = 4, m = −2 and ℓ = 3, m = 2 fundamental modes
at roughly comparable levels. Unlike the case of fitting only the ℓ = 2, m = 2 modes, adding in higher overtones
when an increased spectrum of modes was considered did not lead to consistent fits. Part of the difficulty in finding
consistent fits to the subdominant modes is likely due to the fact that the signal associated with these modes is close
to the level of numerical precision in the waveform. However, it is also likely that more sophisticated fitting methods
are needed. In particular, it would be useful to fit the real and imaginary parts of the waveform simultaneously. It
may also be helpful to fit several −2Cℓm modes simultaneously.

While fitting multiple modes is problematic in some cases, it is essential in others. For the case of −2C32(t), the
dominant QNMs include both ℓ = 2 and ℓ = 3, both with m = 2. In fact, it was not possible to fit the ring-down
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Evidence of quasi-normal modes 

• Late stages of  the post-merger signal from a 
BBH coalescence should be described by a 
QNM spectrum.  

• Data following the peak of  GW150914 
consistent with the least-damped QNM 
inferred from the mass & spin of  the 
remnant BH. 
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FIG. 4. We show the posterior 90% confidence regions from
Bayesian parameter estimation for a damped-sinusoid model, assum-
ing di↵erent start-times t0 = tM + 1, 3, 5, 7 ms, labeled by o↵set from
the merger time tM of the most-probable waveform from GW150914.
The black solid line shows contours of 90% confidence region for the
frequency f0 and decay time ⌧ of the ` = 2, m = 2 and n = 0 (i.e.,
the least damped) QNM obtained from the inspiral-merger-ringdown
waveform for the entire detector’s bandwidth.

ringdown signal. It confirms the expected behavior: the in-
tersection of the inspiral and post-inspiral 90% confidence re-
gions (defined by the isoprobability contours that enclose 90%
of the posterior) contain the inspiral-merger-ringdown 90%
confidence region. We have verified that these conclusions
are not a↵ected by the specific formula [38, 57, 60] used to
predict Mf and a f , nor by the choice of f end insp

GW within a few
cycles of the waveform’s peak.

To assess the significance of our findings more quantita-
tively, we define parameters �Mf /Mf and �a f /a f that de-
scribe the fractional di↵erence in the two estimates of the final
mass and spin [58]. In the bottom panel of Fig. 3 we show
their joint posterior distribution; the solid line marks the iso-
probability contour that contains 90% of the posterior. The
plus symbol indicates the null (0, 0) result expected in GR,
which lies on the isoprobability contour that encloses 28% of
the posterior. We have checked that when performing anal-
yses of NR signals added to LIGO instrumental noise, the
null (0, 0) result expected in GR lies within isoprobability con-
tours that encloses 68% of the posterior, roughly 68% of the
time, as expected from random-noise fluctuations. By con-
trast, our test can rule out the null hypothesis (with high statis-
tical significance) when analyzing a simulated signal that re-
flects a significant GR violation in the frequency dependence
of the energy and angular-momentum loss [58], even when we
choose violations which would be too small to be noticeable
in double-pulsar observations [12]. Thus, our inspiral-merger-
ringdown test shows no evidence of discrepancies with the
predictions of GR.

The mass and dimensionless spin of the final black hole im-
plied by formulae obtained from NR simulations together with
the component mass and spin posteriors [3] are 67+4

�4 M� (in

the source frame 62+4
�4 M�) and 0.67+0.05

�0.07 at 90% confidence.
From the posterior distributions of the mass and spin of the
final black hole, we can predict the frequency and decay time
of the least-damped QNM (i.e., the ` = 2,m = 2, n = 0 over-
tone) [61]. We find f QNM

220 = 251+8
�8 Hz and ⌧QNM

220 = 4.0+0.3
�0.3 ms

at 90% confidence.
Testing for the least-damped QNM in the data. We per-

form a test to check the consistency of the data with the pre-
dicted least-damped QNM of the remnant black hole. For
this purpose we compute the Bayes factor between a damped-
sinusoid waveform model and Gaussian noise, and estimate
the corresponding parameter posteriors. The signal model
used is h(t � t0) = A e�(t�t0)/⌧ cos

⇥
2⇡ f0 (t � t0) + �0

⇤
, h(t <

t0) = 0, with fixed starting time t0, and uniform priors over
the unknown frequency f0 2 [200, 300] Hz and damping time
⌧ 2 [0.5, 20] ms. The prior on amplitude A and phase �0 is
chosen as a two-dimensional Gaussian isotropic prior in {As ⌘
�A sin �0, Ac ⌘ A cos �0} with a characteristic scale H, which
is in turn marginalized over the range H 2 [2, 10]⇥10�22 with
a prior / 1/H. This is a practical choice that encodes relative
ignorance about the detectable damped-sinusoid amplitude in
this range.

We compute the Bayes factor and posterior estimates of
{ f0, ⌧} as a function of the unknown QNM start-time t0, which
we parameterize as an o↵set from a fiducial GPS merger time3

tM = 1126259462.423 (referring to the GPS arrival time at the
LIGO Hanford site). Figure 4 shows various di↵erent poste-
rior 90% credible contours in { f0, ⌧} as a function of the start-
time o↵set t0�tM from merger, in addition to the least-damped
QNM prediction from GR derived in the previous section.

The 90% posterior contour starts to overlap the GR predic-
tion from the IMR waveform at t0 = tM + 3 ms, or ⇠ 10 M
after merger. The corresponding Bayes factor at this point is
log10 B ⇠ 17 with an SNR in the MAP waveform { f0, ⌧} of
SNR ⇠ 9. At t0 = tM + 5 ms the MAP waveform actually falls
within the (much smaller) IMR prediction uncertainty, and the
Bayes factor is log10 B ⇠ 9 and SNR ⇠ 7. At t0 = tM + 7 ms,
or about 20 M after merger, the posterior uncertainty becomes
quite large, and the Bayes factor drops to log10 B ⇠ 2.6 with
SNR ⇠ 4.4. The signal becomes undetectable shortly there-
after, t0 � tM + 8 ms or so, where B ⇠ 1.

Measuring only the frequency and decay time of one
damped sinusoid in the data does not allow us to conclude
that we have observed the least-damped QNM of the final
black hole. The measured quality factor can be obtained from
several QNMs that have di↵erent black-hole’s spin, harmon-
ics and overtones (see, e.g., Ref. [61] and references therein).
However, the overlap between the 90% posterior contour of
the damped-sinusoid waveform model and the 90% confi-
dence region estimated from the IMR waveform indicates that

3 The merger time is obtained by taking the EOBNR MAP waveform and
lining this waveform up with the data such that the largest SNR is obtained.
The merger time is then defined as the point at which the quadrature sum
of the h+ and h⇥ polarizations is maximum.

Expected 
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Estimated 
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Evidence of quasi-normal modes 

• Late stages of  the post-merger signal from a 
BBH coalescence should be described by a 
QNM spectrum.  

• Data following the peak of  GW150914 
consistent with the least-damped QNM 
inferred from the mass & spin of  the 
remnant BH.  

• Claims of  a confident QNM detection 
considering multiple “overtones.” 
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FIG. 1. Remnant parameters inferred with di↵erent number
of overtones, using data starting at peak strain amplitude.
Contours represent 90%-credible regions on the remnant mass
(Mf ) and dimensionless spin magnitude (�f ), obtained from
the Bayesian analysis of GW150914. The inference model is
that of Eq. (1), with di↵erent number of overtones N : 0 (solid
blue), 1 (solid yellow), 2 (dashed purple). In all cases, the
analysis uses data starting at peak strain (�t0 = t0�tpeak = 0).
Amplitudes and phases are marginalized over. The black
contour is the 90%-credible region obtained from the full IMR
waveform, as described in the text. The intersection of the
dotted lines marks the peak of this distribution (Mf = 68.5M�,
�f = 0.69). The top and right panels show 1D posteriors for
Mf and �f respectively. The linear quasinormal mode models
with N > 0 provide measurements of the mass and spin
consistent with the full IMR waveform, in agreement with
general relativity.

numerical relativity to translate measured values of the
binary mass ratio q and component spins (~�1, ~�2) into
expected remnant parameters [50, 51]. We use posterior
samples on the binary parameters made available by the
LIGO and Virgo collaborations [22, 52], marginalizing
over unavailable component-spin angles.

We consider explicit deviations from the Kerr spectrum
by allowing the frequency and damping time of the first
overtone to di↵er from the no-hair values. Under this
modified N = 1 model, the overtone angular frequency

becomes !1 = 2⇡f (GR)
1 (1 + �f1), with �f1 a fractional

deviation away from the Kerr frequency f (GR)
1 for any

given Mf and �f . Similarly, the damping time is allowed

to vary by letting ⌧1 = ⌧ (GR)
1 (1 + �⌧1). Fixing �f1 =

�⌧1 = 0 recovers the regular N = 1 analysis. We may then
compute the relative likelihood of the no-hair hypothesis
by means of the Savage-Dickey density ratio [53].
Results. Fig. 1 shows the 90%-credible regions for the

FIG. 2. Measured quasinormal-mode amplitudes for a model
with the fundamental mode and two overtones (N = 2). The
purple colormap represents the joint posterior distribution
for the three amplitudes in the N = 2 model: A0, A1, A2,
as defined in Eq. (1). The solid curves enclose 90% of the
probability mass. A yellow curve in the A0–A1 plane, as well as
corresponding yellow dashed lines, represents the 90%-credible
measurement of the amplitudes assuming N = 1. Similarly,
blue dashed lines give the 90%-credible measurement of A0

assuming N = 0. All amplitudes are defined at t = tpeak,
where all fits here are carried out (�t0 = 0). Values have been
rescaled by a constant to correspond to the strain measured
by the LIGO Hanford detector. Assuming N = 1, the mean
of the A1 marginalized posterior lies 3.6 standard deviations
away from zero, i.e. A1 = 0 is disfavored at 3.6�. Assuming
N = 2, A1 = A2 = 0 is disfavored with 90% credibility.

remnant mass (abscissa) and spin magnitude (ordinate)
obtained by analyzing data starting at tpeak with di↵er-
ent numbers of overtones (N = 0, 1, 2) in the ringdown
template of Eq. (1). The quasinormal-mode amplitudes
and phases have been marginalized over. For comparison,
we also show the 90%-credible region inferred from the
full IMR signal, as explained above. If the remnant is
su�ciently well described as a perturbed Kerr black hole,
and if general relativity is correct, we expect the ringdown
and IMR measurements to agree. As expected, this is not
the case if we assume the ringdown is composed solely of
the longest-lived mode (N = 0), in which case we obtain
a biased estimate of the remnant properties. In contrast,
the ringdown and IMR measurements begin to agree with
the addition of one overtone (N = 1). This is expected
from previous work suggesting that, given the network
signal-to-noise ratio of GW150914 (⇠14 in the post-peak
region, for frequencies >154.7Hz), we should be able to

[Isi et al PRL 123, 111102 (2019)]

Future Tests of no-hair theorem based on the 
consistency of multiple QNMs [Dreyer et al 2003, 

Carullo et al 2018].



Evidence of (lack of) horizons: Echoes

• For an ultra compact object, BH horizon is replaced by a partly outgoing boundary condition. 
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Figure 3: Typical e↵ective potential for perturbations of a Schwarzschild BH
(top panel) and of an horizonless compact object (bottom panel). In the BH
case, QNMs are waves which are outgoing at infinity (z ! +1) and ingoing at
the horizon (z ! �1), whereas the presence of a potential well (provided either
by a reflective surface, a centrifugal barrier at the center, or by the geometry)
supports quasi-trapped, long-lived modes.

infinity. The tunneling probability can be computed analytically in the small-
frequency regime and scales as |A|2 ⇠ (M!R)2l+2 ⌧ 1 [21]. After a time
t, a wave trapped inside a box of size z0 is reflected N = t/z0 times, and

its amplitude reduces to A(t) = A0

�
1� |A|2�N ⇠ A0

�
1� t|A|2/z0

�
. Since,

A(t) ⇠ A0e�|!I |t ⇠ A0(1� |!I |t) in this limit, we immediately obtain

!R ⇠ 1/z0 , !I ⇠ |A|2/z0 ⇠ !2l+3
R . (20)

This scaling agrees with exact numerical results and is valid for any l and any
type of perturbation.

Clearly, a perfectly reflecting surface is an idealization. In certain models,
only low-frequency waves are reflected, whereas higher-frequency waves probe
the internal structure of the specific object [27, 28]. In general, the location of
the e↵ective surface and its properties (e.g., its reflectivity) can depend on the
energy scale of the process under consideration.
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Evidence of (lack of) horizons: Echoes

• For an ultra compact object, BH horizon is replaced by a partly outgoing boundary condition.  

Modes (semi) trapped between the photon ring and the boundary can reach the outside observer, 
producing a series of  echoes.  

!22
-10 0 10 20 30

0.00
0.05
0.10
0.15

z/M

V
(z
)M

2

outgoingtrapped

0.00
0.05
0.10
0.15

V
(z
)M

2 outgoingingoing

Figure 3: Typical e↵ective potential for perturbations of a Schwarzschild BH
(top panel) and of an horizonless compact object (bottom panel). In the BH
case, QNMs are waves which are outgoing at infinity (z ! +1) and ingoing at
the horizon (z ! �1), whereas the presence of a potential well (provided either
by a reflective surface, a centrifugal barrier at the center, or by the geometry)
supports quasi-trapped, long-lived modes.

infinity. The tunneling probability can be computed analytically in the small-
frequency regime and scales as |A|2 ⇠ (M!R)2l+2 ⌧ 1 [21]. After a time
t, a wave trapped inside a box of size z0 is reflected N = t/z0 times, and

its amplitude reduces to A(t) = A0

�
1� |A|2�N ⇠ A0

�
1� t|A|2/z0

�
. Since,

A(t) ⇠ A0e�|!I |t ⇠ A0(1� |!I |t) in this limit, we immediately obtain

!R ⇠ 1/z0 , !I ⇠ |A|2/z0 ⇠ !2l+3
R . (20)

This scaling agrees with exact numerical results and is valid for any l and any
type of perturbation.

Clearly, a perfectly reflecting surface is an idealization. In certain models,
only low-frequency waves are reflected, whereas higher-frequency waves probe
the internal structure of the specific object [27, 28]. In general, the location of
the e↵ective surface and its properties (e.g., its reflectivity) can depend on the
energy scale of the process under consideration.
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FIG. 1. Schematic classification of dark compact objects. Their compactness is expressed as the di↵erence between the object
radius r0 and the Schwarzschild radius rg. Objects in the same category have similar dynamical properties on a timescale
⌧ ⇠ rg

c | log ✏|. The upper axis refers to the time, as measured by distant observers, that light from the photosphere takes to
reach the surface r0. Numbers refer to an object of 60M� and scale linearly with it mass.
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FIG. 2. Ringdown waveforms from black holes (black line)
and ClePhOs (red line). We consider objects of 60M�. For
ClePhOs, there is a reflective surface at r0 = rg(1 + ✏), ✏ =
10�11. The amplitude of the GW signal (proportional to the
relative strain of the interferometer’s arm induced by the GW)
is normalized to its peak value. The initial data describes a
quadrupolar Gaussian wavepacket of axial GWs. The inset
shows a zoom-in version of the waveform at late times. Note
that each subsequent echo has a smaller frequency content.

These are the (quasi)normal modes of the system. The
structure of GW signals at late times is therefore ex-
pected to be relatively simple. This is shown in Fig. 2,
which refers to the scattering of a Gaussian pulse o↵ a

BH. The pulse crosses the photosphere, and excites its
modes. The ringdown signal, a fraction of which trav-
els to outside observers, is to a very good level described
by its lowest modes, Eq. (4). The fraction of the GWs
that leaks from the barrier inwards travels down to the
horizon and that’s the last one hears of it.
Contrast the previous description with the dynamical

response of a ClePhO. The initial evolution of the pho-
tosphere modes still holds, by causality. Thus, up to
timescales of the order ⇠ rg

c | log ✏| (the roundtrip time of
radiation between the photosphere and the surface) the
signal is identical to that of BHs [10, 11]. At later times,
however, the pulse traveling inwards is bound to interact
with the object. This pulse is semi-trapped between the
object and the photosphere. Upon each interaction, a
fraction exits to outside observers, giving rise to a series
of echoes of ever-decreasing amplitude. Repeated reflec-
tions occur in a characteristic echo delay time [10, 11],

⌧
echo

⇠ 2rg
c

| log ✏| . (5)

This logarithmic dependence is crucial to make echoes
observable even with only Planckian corrections near the
horizon, when ✏ ⇠ 10�40. Although, at very late times,
the fundamental modes of a ClePhO have low frequen-
cies, the main burst is typically generated at the pho-
tosphere and has therefore a frequency content of the
same order as the BH modes (4). The initial signal is
of high frequency and a substantial component is able to
cross the potential barrier. Thus, observers see a series
of echoes whose amplitude is getting smaller and whose
frequency content is also going down (see Fig. 2).
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radius r0 and the Schwarzschild radius rg. Objects in the same category have similar dynamical properties on a timescale
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FIG. 2. Ringdown waveforms from black holes (black line)
and ClePhOs (red line). We consider objects of 60M�. For
ClePhOs, there is a reflective surface at r0 = rg(1 + ✏), ✏ =
10�11. The amplitude of the GW signal (proportional to the
relative strain of the interferometer’s arm induced by the GW)
is normalized to its peak value. The initial data describes a
quadrupolar Gaussian wavepacket of axial GWs. The inset
shows a zoom-in version of the waveform at late times. Note
that each subsequent echo has a smaller frequency content.

These are the (quasi)normal modes of the system. The
structure of GW signals at late times is therefore ex-
pected to be relatively simple. This is shown in Fig. 2,
which refers to the scattering of a Gaussian pulse o↵ a

BH. The pulse crosses the photosphere, and excites its
modes. The ringdown signal, a fraction of which trav-
els to outside observers, is to a very good level described
by its lowest modes, Eq. (4). The fraction of the GWs
that leaks from the barrier inwards travels down to the
horizon and that’s the last one hears of it.
Contrast the previous description with the dynamical

response of a ClePhO. The initial evolution of the pho-
tosphere modes still holds, by causality. Thus, up to
timescales of the order ⇠ rg

c | log ✏| (the roundtrip time of
radiation between the photosphere and the surface) the
signal is identical to that of BHs [10, 11]. At later times,
however, the pulse traveling inwards is bound to interact
with the object. This pulse is semi-trapped between the
object and the photosphere. Upon each interaction, a
fraction exits to outside observers, giving rise to a series
of echoes of ever-decreasing amplitude. Repeated reflec-
tions occur in a characteristic echo delay time [10, 11],

⌧
echo

⇠ 2rg
c

| log ✏| . (5)

This logarithmic dependence is crucial to make echoes
observable even with only Planckian corrections near the
horizon, when ✏ ⇠ 10�40. Although, at very late times,
the fundamental modes of a ClePhO have low frequen-
cies, the main burst is typically generated at the pho-
tosphere and has therefore a frequency content of the
same order as the BH modes (4). The initial signal is
of high frequency and a substantial component is able to
cross the potential barrier. Thus, observers see a series
of echoes whose amplitude is getting smaller and whose
frequency content is also going down (see Fig. 2).
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)]• Claims of  weak evidence in LIGO-Virgo 
events [Abedi et al 2016, Conklin et al 2017]. 
Contested by other groups [Westerweck et 
al 2018, Nielsen et al 2019]



Exotic compact objects: Tidal/spin-induced deformations 

• Possible imprints of  black-hole mimickers  

Tidal deformability Λ: Ratio of  the induced quadruple 
moment to the external tidal field. [Cardoso et al 2017, Sennett et al 
2017, Johnson-McDaniel et al 2017] 

Spin-induced quadruple moment [Krishnendu et al 2017] 
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Extracting science: Measuring equations of state 

• BNS/NSBH inspiral signals contain imprint of  the 
NS EoS (through tidal deformation of  the NS). 
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deformability between polytropes and “realistic” EOS.
In this paper, we calculate the deformability for realistic
EOS, and show that a tidal signature is actually only
marginally detectable with Advanced LIGO.

In Sec. II we describe how the Love number and tidal
deformability can be calculated for tabulated EOS. We
use the equations for k

2

developed in [15], which arise
from a linear perturbation of the Oppenheimer-Volko↵
(OV) equations of hydrostatic equilibrium. In Sec. III we
then calculate k

2

and � as a function of mass for several
EOS commonly found in the literature. We find that,
in contrast to the Love number, the tidal deformability
has a wide range of values, spanning roughly an order of
magnitude over the observed mass range of neutron stars
in binary systems.

As discussed above, the direct practical importance of
the stars’ tidal deformability for gravitational wave ob-
servations of NS binary inspirals is that it encodes the
EOS influence on the waveform’s phase evolution during
the early portion of the signal, where it is accurately mod-
eled by post-Newtonian (PN) methods. In this regime,
the influence of tidal e↵ects is only a small correction to
the point-mass dynamics. However, when the signal is
integrated against a theoretical waveform template over
many cycles, even a small contribution to the phase evo-
lution can be detected and could give information about
the NS structure.

Following [11], we calculate in Sec. IV the measurabil-
ity of the tidal deformability for a wide range of equal-
and unequal- mass binaries, covering the entire expected
range of NS masses and EOS, and with proposed detector
sensitivity curves for second- and third- generation detec-
tors. We show that the measurability of � is quite sensi-
tive to the total mass of the system, with very low-mass
neutron stars contributing significant phase corrections
that are optimistically detectable in Advanced LIGO,
while larger-mass neutron stars are more di�cult to dis-
tinguish from the k

2

= 0 case of black holes [16, 17]. In
third-generation detectors, however, the tenfold increase
in sensitivity allows a finer discrimination between equa-
tions of state leading to potential measurability of a large
portion of proposed EOSs over most of the expected neu-
tron star mass range.

We conclude by briefly considering how the errors
could be improved with a more careful analysis of the
detectors and extension of the understanding of EOS ef-
fects to higher frequencies.

Finally, in the Appendix we compute the leading or-
der EOS-dependent corrections to our model of the tidal
e↵ect and derive explicit expressions for the resulting cor-
rections to the waveform’s phase evolution, extending the
analysis of Ref. [11]. Estimates of the size of the phase
corrections show that the main source of error are post-
1 Newtonian corrections to the Newtonian tidal e↵ect
itself, which are approximately twice as large as other,
EOS-dependent corrections at a frequency of 450 Hz.
Since these point-particle corrections do not depend on
unknown NS physics, they can easily be incorporated into

the analysis. A derivation of the explicit post-Newtonian
correction terms is the subject of Ref. [18].

Conventions: We set G = c = 1.

II. CALCULATION OF THE LOVE NUMBER
AND TIDAL DEFORMABILITY

As in [11] and [15], we consider a static, spherically
symmetric star, placed in a static external quadrupolar
tidal field Eij . To linear order, we define the tidal de-
formability � relating the star’s induced quadrupole mo-
ment Qij to the external tidal field,

Qij = ��Eij . (1)

The coe�cient � is related to the l = 2 dimensionless
tidal Love number k

2

by

k
2

=
3
2
�R�5. (2)

The star’s quadrupole moment Qij and the external
tidal field Eij are defined to be coe�cients in an asymp-
totic expansion of the total metric at large distances r
from the star. This expansion includes, for the met-
ric component gtt in asymptotically Cartesian, mass-
centered coordinates, the standard gravitational poten-
tial m/r, plus two leading order terms arising from the
perturbation, one describing an external tidal field grow-
ing with r2 and one describing the resulting tidal distor-
tion decaying with r�3:

� (1 + gtt)
2

= �m

r
� 3Qij

2r3

ninj + . . . +
Eij

2
r2ninj + . . . ,

(3)

where ni = xi/r and Qij and Eij are both symmetric and
traceless. The relative size of these multipole components
of the perturbed spacetime gives the constant � relating
the quadrupole deformation to the external tidal field as
in Eq. (1).

To compute the metric (3), we use the method dis-
cussed in [15]. We consider the problem of a linear static
perturbation expanded in spherical harmonics following
[19]. Without loss of generality we can set the azimuthal
number m = 0, as the tidal deformation will be axisym-
metric around the line connecting the two stars which
we take as the axis for the spherical harmonic decompo-
sition. Since we will be interested in applications to the
early stage of binary inspirals, we will also specialize to
the leading order for tidal e↵ects, l = 2.

Introducing a linear l = 2 perturbation onto the spher-
ically symmetric star results in a static (zero-frequency),
even-parity perturbation of the metric, which in the
Regge-Wheeler gauge [20] can be simplified [15] to give

ds2 = �e2�(r) [1 + H(r)Y
20

(✓,')] dt2

+e2⇤(r) [1�H(r)Y
20

(✓,')] dr2

+r2 [1�K(r)Y
20

(✓,')]
�

d✓2 + sin2 ✓d'2

�

,

(4)
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NS EoS (through tidal deformation of  the NS). 
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deformability between polytropes and “realistic” EOS.
In this paper, we calculate the deformability for realistic
EOS, and show that a tidal signature is actually only
marginally detectable with Advanced LIGO.

In Sec. II we describe how the Love number and tidal
deformability can be calculated for tabulated EOS. We
use the equations for k

2

developed in [15], which arise
from a linear perturbation of the Oppenheimer-Volko↵
(OV) equations of hydrostatic equilibrium. In Sec. III we
then calculate k

2

and � as a function of mass for several
EOS commonly found in the literature. We find that,
in contrast to the Love number, the tidal deformability
has a wide range of values, spanning roughly an order of
magnitude over the observed mass range of neutron stars
in binary systems.

As discussed above, the direct practical importance of
the stars’ tidal deformability for gravitational wave ob-
servations of NS binary inspirals is that it encodes the
EOS influence on the waveform’s phase evolution during
the early portion of the signal, where it is accurately mod-
eled by post-Newtonian (PN) methods. In this regime,
the influence of tidal e↵ects is only a small correction to
the point-mass dynamics. However, when the signal is
integrated against a theoretical waveform template over
many cycles, even a small contribution to the phase evo-
lution can be detected and could give information about
the NS structure.

Following [11], we calculate in Sec. IV the measurabil-
ity of the tidal deformability for a wide range of equal-
and unequal- mass binaries, covering the entire expected
range of NS masses and EOS, and with proposed detector
sensitivity curves for second- and third- generation detec-
tors. We show that the measurability of � is quite sensi-
tive to the total mass of the system, with very low-mass
neutron stars contributing significant phase corrections
that are optimistically detectable in Advanced LIGO,
while larger-mass neutron stars are more di�cult to dis-
tinguish from the k

2

= 0 case of black holes [16, 17]. In
third-generation detectors, however, the tenfold increase
in sensitivity allows a finer discrimination between equa-
tions of state leading to potential measurability of a large
portion of proposed EOSs over most of the expected neu-
tron star mass range.

We conclude by briefly considering how the errors
could be improved with a more careful analysis of the
detectors and extension of the understanding of EOS ef-
fects to higher frequencies.

Finally, in the Appendix we compute the leading or-
der EOS-dependent corrections to our model of the tidal
e↵ect and derive explicit expressions for the resulting cor-
rections to the waveform’s phase evolution, extending the
analysis of Ref. [11]. Estimates of the size of the phase
corrections show that the main source of error are post-
1 Newtonian corrections to the Newtonian tidal e↵ect
itself, which are approximately twice as large as other,
EOS-dependent corrections at a frequency of 450 Hz.
Since these point-particle corrections do not depend on
unknown NS physics, they can easily be incorporated into

the analysis. A derivation of the explicit post-Newtonian
correction terms is the subject of Ref. [18].

Conventions: We set G = c = 1.

II. CALCULATION OF THE LOVE NUMBER
AND TIDAL DEFORMABILITY

As in [11] and [15], we consider a static, spherically
symmetric star, placed in a static external quadrupolar
tidal field Eij . To linear order, we define the tidal de-
formability � relating the star’s induced quadrupole mo-
ment Qij to the external tidal field,

Qij = ��Eij . (1)

The coe�cient � is related to the l = 2 dimensionless
tidal Love number k

2

by

k
2

=
3
2
�R�5. (2)

The star’s quadrupole moment Qij and the external
tidal field Eij are defined to be coe�cients in an asymp-
totic expansion of the total metric at large distances r
from the star. This expansion includes, for the met-
ric component gtt in asymptotically Cartesian, mass-
centered coordinates, the standard gravitational poten-
tial m/r, plus two leading order terms arising from the
perturbation, one describing an external tidal field grow-
ing with r2 and one describing the resulting tidal distor-
tion decaying with r�3:

� (1 + gtt)
2

= �m

r
� 3Qij

2r3

ninj + . . . +
Eij

2
r2ninj + . . . ,

(3)

where ni = xi/r and Qij and Eij are both symmetric and
traceless. The relative size of these multipole components
of the perturbed spacetime gives the constant � relating
the quadrupole deformation to the external tidal field as
in Eq. (1).

To compute the metric (3), we use the method dis-
cussed in [15]. We consider the problem of a linear static
perturbation expanded in spherical harmonics following
[19]. Without loss of generality we can set the azimuthal
number m = 0, as the tidal deformation will be axisym-
metric around the line connecting the two stars which
we take as the axis for the spherical harmonic decompo-
sition. Since we will be interested in applications to the
early stage of binary inspirals, we will also specialize to
the leading order for tidal e↵ects, l = 2.

Introducing a linear l = 2 perturbation onto the spher-
ically symmetric star results in a static (zero-frequency),
even-parity perturbation of the metric, which in the
Regge-Wheeler gauge [20] can be simplified [15] to give

ds2 = �e2�(r) [1 + H(r)Y
20

(✓,')] dt2

+e2⇤(r) [1�H(r)Y
20

(✓,')] dr2

+r2 [1�K(r)Y
20

(✓,')]
�

d✓2 + sin2 ✓d'2

�

,

(4)

induced quadrupole 
moment of the star

external tidal 
field

tidal 
deformabilityLISA

 

Tidal deformation during inspiral

§ Part of the signal in detector band is mostly 
inspiral 

§ Angular motion (phase of GW signal):

   Point particle contribution    Tidal contribution 

§ Tidal effects enter phase through            
tidal deformability

                                            

                                

     

                                

     

Tidal field of companion star

                                

     

Quadrupolar deformation

                                

     

 Tidal deformability function

                                

     

[Talk by B. Sathyaprakash]

= 0 for black holes

𝜿 =1 for Kerr BHs. For other 
objects, depends on the EoS

2

FIG. 1. Errors in measuring s as a function of binary’s total mass for three di↵erent mass ratio cases (left panel) and for di↵erent spin
configurations (right panel) for advanced LIGO. The values of dimensionless spin parameters (�1, �2) are fixed at 0.9 and 0.8 for the left panel
plots where as mass ratio (q) is fixed to be 1.2 for the plots in the right panel. Both panels assume a fixed inclination angle of the binary, ◆ = ⇡3 .
The binary’s location and the orientation is chosen in a way that produces an observed signal to noise ratio of 10.

[31–34]. But this method works for only those cases where the
mass of the central BH is much higher than its companion.

In this letter we propose a new method to test the binary
black hole nature of the detected GW event by measuring the
spin-induced quadrupole moments of the binary’s constituents,
whose values are unique for Kerr BHs in GR.

The basic idea is the following. If the two compact ob-
jects constituting the binary are spinning, each will possess a
quadrupole moment due to the deformation induced by their
individual spins 2. For a Kerr BH, due to no-hair conjecture,
this quadrupole moment depends only on its mass and spin.
For non-BH compact objects (such as neutron stars or more
exotic objects such as gravastars and boson stars), in addition
to the mass and the spin, it can also depend on the equation of
state.

For an isolated Kerr BH, it is well-known that quadrupole
moment scalar is given by Q = �m3 �2, where m is the mass of
the BH and � = |S|m2 (where S is the spin vector of the BH) is the
dimensionless spin parameter. The negative sign indicates the
fact that the spin induces oblateness to the BH. For a non-BH
compact object, this may be generalised to Q = � m3 �2,
where  ⌘ 1 for BHs. For neutron stars,  may range between
' 2–14 depending on the equation of state [36] (see also [37]).
For boson stars  may lie between ' 10–150 [38] and for
gravastars  may even take negative values [39] (which means
the spin leads to prolateness of the object instead of oblateness.)

It is interesting to note that in the PN model of compact
binaries, the spin-induced quadrupole moment terms appear at
the same order where the leading order quadratic-in-spin terms
appear (note Q / �2), which is second PN order [40]. The pa-
rameter, , that characterises the magnitude of the spin-induced
quadrupole moment (given the nature of the object), for each
binary component, can be tagged as 1 and 2, following the

2 The spin also induces other (sub-dominant) higher order multipole moments.
A future study will assess the simultaneous measurability of quadrupole and
octupole moments using third generation detectors [35].

notation of [41] 3. If we re-write the waveforms in terms of the
symmetric and anti-symmetric combinations of 1 and 2 given
by s = (1 + 2)/2 and a = (1 � 2)/2, respectively, then a
BBH system is specified by s = 1, a = 0. Hence, if we can
accurately measure s and a to be 1 and 0, respectively, we
have established that the detected compact binary is a BBH.

However, note that s and a are highly degenerate parame-
ters whose simultaneous extraction turns out to yield almost no
constraint on them 4. Hence, we resort to a method where we
fix the a to be 0, as expected for a Kerr binary BH, and then
try to calculate the accuracy with which s may be constrained
by GW observations. The aim here is to see how well can
we estimate s around the true value of 1 (for a BBH) and
hence confirm that the observed system is indeed a BBH. The
accuracy with which one can estimate s constrains the values
of s allowed for other exotic compact objects. The smaller the
error on s is, the stronger are the constraints on the parameter
space allowed for BH mimickers. In this sense, the proposed
test is a “null-test” of the BBH nature, where, observations
would constrain the allowed range of deviations of s from the
BBH value. Moreover, since the spirit of the test relies on the
fact that quadrupole moments of a BH would be depend only
on the mass and the spin, the proposed test can be regarded as
the “no-hair theorem” test for the BBHs.

In addition, if we parametrize the deviation of  by  = 1+↵
(where ↵ is the deformation parameter which is 0 for BHs),
and assume that the constituents of the binary are of identical
types (↵1 = ↵2) then, again, showing s = 1 is equivalent
to showing the BBH nature of the compact binary system.
This is because a ⌘ 0 in this case, which is the assumption
we work with while treating only s as the parameter to be
measured. Hence we argue that under the above assumptions,
it is enough to measure s = 1 to reliably call the observed

3 Throughout the paper, su�x 1 refers to the heavier compact binary compo-
nent , and 2 the lighter one.

4 This will have to be revisited using Bayesian methods in a future work.



Accurate modeling of GW signals in alternative theories 

• If accurate GW signal predictions are available in 
alternative theories, straightforward to do Bayesian 
model selection.   

• Several challenges (e.g. well-posedness of  the initial 
value problem). Interesting new approaches in solving 
the problem, e.g., [Okounkova et al 2017]
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P(ℋalt |d)
P(ℋGR |d)



Summary 

• GW observations have enabled the first tests of  GR in the highly relativistic, strong-field 
regime.  

• In the absence of  accurate signals predictions in alternative theories, current tests only 
probe the consistency of  the data with GR.  

• Interesting theoretical work in predicting GW signals from alternative theories and exotic 
objects.  

• Considerable reduction statistical errors can be expected in near future. Soon, we will 
reach a regime where the error budget is dominated by systematic errors! 
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