High-energy neutrinos Diffuse flux and sources

Damien Dornic (CNRS/CPPM)

Rencontres du Vietnam - TMEX 2020

Open questions for neutrino astrophysics ?

- Origin, acceleration mechanisms and cosmic evolution of high-energy cosmic rays: galactic/extragalactic
- Study of galactic (and extragalactic?) propagation of CR with neutrinos as tracers
- Origin of IceCube diffuse HE astrophysical neutrinos
- Which mechanism is responsible for the neutrino emission p-p or/and p-\g? Which is the flavor composition ?
- Are neutrinos and gammas/CR observed from the same sources?
- Which is the contribution of neutrino from the Galactic plane ?
- Disentangle astrophysical models with multi-messenger observations: i.e., GRBs with GW, HEN and traditional astronomy (important also in case of no v observation)
- Test the neutrino sector of the SM and BSM physics

Strength of the multi-messenger ?

- GW170817, IC170922 have demonstrated the capabilities of doing real-time multimessenger follow-ups
- Most of the HE sources are time-dependent, flux quickly varying
- Determine the astrophysical nature on the basis of one event
- Provide accurate positions (redshift, host measurements)
- Simultaneous observations of transient phenomena by pointing instruments (so important for the modelisation)

Neutrino astronomy in a nutshell

Large volume of deep ice/water

High-energy neutrino detectors

0.01 km³ telescope (12 DUs) 12+ yrs of continuous data taking in the Mediterranean Sea

1 km³ telescope, in operation
5 clusters (0.3 km³)
2+ yrs of continuous data
taking in the Baikal lake.

ORCA: 8 Mt detector (115 DUs) ARCA: ~1 km³ telescope (230 DUs) ~1 yr of data taking in the Mediterranean Sea

1 km³ telescope (86 DUs) 10+ yrs of continuous data taking in the South Pole

Al-flavour neutrino detection 😡 😡 📎

High-energy neutrino fluxes

High-energy neutrino fluxes

Diffuse neutrino fluxes detected by IceCube

The track sample (9.5 years)

PoS(ICRC2019)1017

Earth used as a shield against CR muons → cosmic excess at the highest energies (>100 TeV) in the Northern sky

 $\phi^{1f}(100TeV) = (1.44 \pm 0.25)10^{-18}(GeVcm^2ssr)^{-1}$. $\Gamma = 2.28 \pm 0.09$

+ Null-prompt component is fitted

Diffuse neutrino fluxes detected by IceCube

The HESE sample (7.5 years)

PoS(ICRC2019)1004

+ Null-prompt component is fitted

\Longrightarrow Compatible with isotropy but too soft spectrum ?

High-energy starting events above 60 TeV (all-sky search)

- Southern sky accessible (veto)
- Northern sky more opaque (absorption)

Diffuse neutrino fluxes detected by IceCube

Single power law? Statistics not enough to distinguish between different models.

Small tension between the different diffuse analyses (but still compatible at 95% CL) ⇒ different sky, extragalactic/galactic components, dominant sources, systematics...

Diffuse neutrino fluxes detected by ANTARES

Combining shower+track (Southern sky)

 $\phi^{1f}(100TeV) = (1.5 \pm 1.0)10^{-18} - \Gamma = 2.3 \pm 0.4$

TracksShowers $\Phi^{1f}(100 \text{ TeV}) = (0.8^{+0.5}_{-0.4}) 10^{-18}$ $\Phi^{1f}(100 \text{ TeV}) = (2.1\pm0.8) 10^{-18}$ $\Gamma = 2.0^{+0.8}_{-0.4}$ $\Gamma = 2.4\pm0.4$

PoS(ICRC2019)891

3380 days of livetime

Considering the HE tail (~1% highest E)

→ data: 50 events (27 tracks + 23 showers)

→ bkg MC: 36.1 ± 8.7 (stat.+syst.) (19.9 tracks and 16.2 showers

→ signal MC: ~10 events expected (4.5 tracks and 5.5 showers)

Null-cosmic excluded at 90% C.L. 1.8σ excess

Diffuse neutrino fluxes IceCube+ANTARES

Diffuse flux predictions for KM3NeT

With KM3NeT/ARCA, high sensitivity to HE neutrino cosmic flux (optimization for intermediate energies)

Quick re-discovery of the IceCube diffuse signal with different systematics (detector, background...)

(Cf Talk M. Taiuti on Friday)

Galactic neutrino emission

Gaggero et al KRA_γ model: Radially dependent model for the CR diffusion coefficient and the advective wind. It is tuned on KASCADE(GRANDE)/CREAM data.

Individual sources of neutrinos

To look for individual sources on archive:

- All-sky search with no a-priori on the direction, the time and the nature of the source
- Candidate source list (known directions)
- Time-dependent analysis (known time periods and directions)

The most efficient way is to be able to associate a small number of neutrinos with a transient phenomena seen at different wavelengths. (cf Talk of E. Blaufuss)

TXS0506+056 seen by IceCube

Neutrinos from the AGN blazar TXS 0506+056

TXS0506+056 seen by ANTARES

1.03 signal-like events fitted → p-value = 3.4% (pre-trial) 3rd most significant candidate out of 107*

* off the published 2007-2015 analysis; 87% post-trial

+ time dependent search for space-time clustering with the IC neutrino flare – no excess observed

ApJ Lett 863 no.2: L30, 2018

Difficult interpretation of TXS0506+056

Neutrino production rate ~ Proton density x Radiation density

- Proton density ~ Proton injection x confinement time
- Radiation density given by source luminosity, size, geometry (R', G, Lg, ...)

1 zone model for 2017 flare

Violate X-ray data

X-ray (and TeV γ-ray) data indicative for hadronic origin

Hybrid or p synchrotron models

 Violate energetics (L_{edd}) by a factor of a few hundred or significantly exceed v energy

External radiation field for 2014-15 flare

 $p + \gamma \to \Delta^+ \to \begin{cases} n + \pi^+ \Rightarrow \mathbf{v} \\ p + \pi^0 \Rightarrow \mathbf{v} \end{cases}$

Results for TXS 0506+056: µeV GeV TeV PeV MeV s⁻¹] SED (a) SED (b) cm⁻² -10 IceCube 2018 erg -11 (a) N,=4.9 (b) N,=4.0 log₁₀[E²dN/dE, -12 -13 -14 8 26 28 30 32 10 12 14 16 18 20 22 24 log₁₀[frequency, Hz] Rodrigues, et al, ApJL 874 (2019) L29; see also Reimer et al, 1812.05654

Gao, Fedynitch, Winter, Pohl, Nature Astronomy 3 (2019) 88; Cerutti et al, 2018; Sahakyan, 2018; Gokus et at, 2018; Keivani et al, 2018

Point-source searches by IceCube

Point-source searches by IceCube

PoS(ICRC2019)851 + arxiv:1910.08488

Point-source searches by ANTARES

Point-source searches by ANTARES

PoS(ICRC2019)840

Limits from AGN stacking searches

 $(\rightarrow visible objects)$

IceCube, Astrophys. J. 835 (2017) 45 Palladino, Rodrigues, Gao, Winter, ApJ 871 (2019) 41; Lower fig. from Petropoulou et al, arXiv:1911.04010 also found in multi-epoch description of TXS 0506+056

Stacking search with 862 Fermi 2LAC blazars

 \implies No significant excess.

Upper limit on the steady flux contribution of the resolved blazar (quite dependent on input hypothesis).

Joint PS search by ANTARES+IceCube

Point-source searches with KM3NeT

Diffuse v flux

Galactic sources

Extragalactic sources

High Energy Neutrinos are opening a new window into the cosmos:

- All-flavor cosmic neutrino diffuse fluxes well established (>8 σ)
- Compelling evidence for the first high-energy neutrino source: a blazar
- Main limitations are the low statistic of neutrinos (Gen2) and the quality of reconstructions (KM3NeT)
- Multi-messenger studies are essential for identification of sources