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What’s Working Group 1 supposed to do?

Present status of neutrino oscillations and future 
prospects

—including theoretical and experimental issues with cross-sections

(To cover a parallel section, not the plenary)
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1,2,3 strings…

Đàn Bầu

1 string

Đàn Nhị

2 string
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…or more strings
/string

Đàn Nguyệt
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Brief history of neutrino physics

Pauli 
predicts 

the 
Neutrino

Fermi’s 
theory 

of weak 
interactions

Reines  
& Cowan 
discover 

(anti)neutrino

muon  
neutrinos 
discovery

Solar 
neutrino  
anomaly Kamioka-II confirms solar deficit

LEP shows 3 active flavors
SAGE/Gallex observe the solar 𝜈 deficit

Kamioka-II/ IMB observe supernova 𝜈

Nobel Prize for 𝜈𝜇 discovery

Super-K observes 𝜈 oscillation

Super-K confirms solar 𝜈 deficit 
and images the sun

SNO observe solar 𝜈 oscillation to  
active flavor

Nobel prize for 𝜈 astrophysics

KamLAND confirms solar 𝜈 oscillation

K2K confirm atmospheric 𝜈 oscillation

Daya Bay observe anti-𝜈e disappeared

T2K observe 𝜈e appeared from 𝜈𝜇

Nobel prize & Breakthrough prize 
for 𝜈 oscillation

1930 1956 1962 1964 1980 2018

IceCUBE observes extragalactic 𝜈 

T2K hints on leptonic CP violation 

1998
~25 years

Adapted “The Growing Excitement of Neutrino Physics ” 
by APS

★ 1930: On-paper appearance as “desperate” remedy by W. Pauli


★ 1956: Anti-𝜈e first experimentally discovered by Reines & Cowan


★ 1962: 𝜈𝜇 existence confirmed by Lederman et al 

★ 1986: Existence of 𝜈𝜏 was established (see Gary Feldman’s talk)


★ 1998: Atmospheric 𝜈 oscillations discovered by Super-K


★ 2000: 𝜈𝜏 first evidence reported by DONUT experiment


★ 2001: Solar 𝜈 oscillations detected by SNO (KamLAND 2002)


★ 2011: 𝜈𝜇→ 𝜈𝜏 transitions observed by OPERA


★ 2011-13: 𝜈𝜇→ 𝜈e observed by T2K and anti-𝜈e↛ anti-𝜈e by Daya Bay


★ 2015: Nobel prize for 𝜈 oscillations, Breakthrough prize (2016)


★ 2018: T2K hints on leptonic CP violation
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Neutrino oscillations: A game-changer 

"for the discovery of neutrino oscillations, which shows 
that neutrinos have mass"
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PMNS leptonic mixing matrix: Standard 3-flavor

• In 3-flavor paradigm, UPMNS is 3x3 unitary matrix and 
parameterized with 3 mixing angles (𝜽12, 𝜽13, 𝜽23) and one 
irreducible Dirac CP-violation phase (𝛿CP)


• If neutrino is Majorana particle, i.e neutrino (mass 
eigenstate) and anti-neutrino are identical, there are two 
additional CP-violation phase, which play no role in 
neutrino oscillations


• Three mass eigenvalues are also fundamental parameters. 
Neutrino oscillation measurements provide only the mass2 

spectrum but not the absolute values of mass

P(να → νβ) = δαβ−4∑
i>j

Re(U*αiUβiUαjU*βj)sin2 (Δm2
ij

L
4E )

+2∑
i>j

Im(U*αiUβiUαjU*βj)sin (Δm2
ij

L
2E )

Main goal is to measure these oscillation parameters 
and verify if UPMNS is 3x3 unitary or not

arxiv:1301.1340

PMNS matrix
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Δm2
21 = 7.39+0.21

−0.20 × 10−5eV2

Δm2
31 = 2.525+0.033

−0.032 × 10−3eV2

θ12 = 33.82+0.78
−0.76

θ23 = 49.6+1.0
−1.2

θ13 = 8.61+0.13
−0.13

δCP = 215+40
−29

Normal mass hierarchy is favored at 3𝝈 (2𝝈) 
with (without) Super-K atmospheric 
neutrino sample

JHEP 01 (2019) 106 
Global neutrino exp. fit

MINOS, T2K, NOvA; Daya Bay, RENO, Double Chooz, 
KamLAND; SNO, Borexino; IceCube, Super-K

What “global fit” tell us?

𝜈e 𝜈𝜇 𝜈𝜏

Δm2
atm.

Δm2
sol.

Inverted hierarchy

𝜈3

𝜈1

𝜈2

m2
lightest = ?

Δm2
atm.

Δm2
sol.

𝜈1

𝜈2

𝜈3

Normal hierarchy

m2 = 0
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Wait! Is “global fit” reliable?
C. Giunti NNN2018

(on Mass hierarchy)

Jiajie Ling on JUNO prospects
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Comment on “global fit”
• It’s nice to see a big picture with data from many experiments since each is sensitive 

to specific set of parameters


• However, it’s very challenging to reproduce experiment results, particularly when start 
to be dominated by systematics and the experiment doesn’t describe detail/ release 
systematic covariance matrices (can be more than 100 parameters for flux, cross 
section and detector systematics )

Nνα(Ereco.
ν , ⃗s ) = Φνα

f lux(E
true
ν ) × σνα

int.(E
true
ν , ⃗s ) × Mdet. × ϵνα

det.(E
true
ν , ⃗s ) × M(Etrue.

ν , Ereco.
ν )

Nνβ(Ereco.
ν , ⃗s ) = Φνα

f lux(E
true
ν ) × σνβ

int.(E
true
ν , ⃗s ) × Mdet. × ϵνβ

det.(E
true
ν , ⃗s ) × M(Etrue.

ν , Ereco.
ν ) × P(να → νβ)

“Near detector” observation*

“Far detector” observation

𝜈𝛼  flux wo/ oscillation

Neutrino-nucleus cross sections

Number of target nuclei

Detection efficiency 

Detection response 

Oscillation prob.

⃗s limited phase space of final state 
particles detected by detector 

Need precise measurement 
for every elements
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On flux understanding: Precise hadron prod.
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On flux understanding: A novel approach

Radiation-harness is important
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On flux understanding: Storm is coming?
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On neutrino-nucleus interaction
very fine position 

resolution

Some interesting results showed. More to come soon
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On neutrino-nucleus interaction

Ready to take data from Nov. 2019 with final detector configuration
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On neutrino-nucleus interaction

More clean data, more 
model-indepent analysis 
a p p r o a c h e s , m o r e 
theoretical calculation & 
prediction implemented in 
neutrino event generator are 
vital to pave the way toward 
“the best” nuclear model
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Precision era & PMNS formalism testing
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 Solar 𝜈 sector: Tension & solver(?)

2𝜎 tension btw. KamLAND and 
solar neutrino experiments 
(SNO, Borexino, Super-K).  
JUNO & DUNE will be solvers?

JUNO
arXiv:1808.08232

DUNE as next-generation  
solar neutrino exp.
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Atmospheric 𝜈 sector: 𝜽23

Reasonably consistent among experiments

T2K(-II)/NOvA/Hyper-K/ 
DUNE & atmospheric exp.

Hyper-K

• My hunch is the nuclear model may play an important role for this. It can lurk the effect 
of (non-) maximal 


• With high statistics, appearance channel in Hyper-K/DUNE will be very interesting, to 
not just compare with reactor measurement on 𝜽13 but its sensitivity to octant of 𝜽23 
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Precision of mixing angle 𝜽13
Measurement & expectation from Daya Bay

@Jiajia Ling

• Does ~3% uncertainty on 𝜽13 meet our need, particularly for solving 𝜽13 -𝜹CP- 𝜽23 - mass 
hierarchy degeneracies


• It will be interesting to compare between reactor-based & accelerator-based 
experiments on this mixing angle
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Indication of CP violation in the lepton sector
It’s really exciting time.
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T2K: CP-conserving values of δCP are 
out of its 2𝜎 C.L  measured range

But NOvA point to other direction

No doubt, we need more data
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Leptonic CP violation

U@Bestfit
PMNS =

0.821 0.551 −0.123 + i * 0.086
−0.283 + i * 0.054 0.590 + i * 0.036 0.753
0.490 + i * 0.046 −0.588 + i * 0.031 0.641

 (Real)ρ
0.4− 0.2− 0 0.2 0.4 0.6 0.8 1 1.2

 (I
m

ag
in

e)
η

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

A(0,0) B(0,1)
2µU

*
e2U

1µU
*
e1U

2µU
*
e2U

3µU
*
e3U

 = -0.0192|2µU
*

e2
)x 2 x Area x |UCPδ = sign(CPJ

C(0.30,0.18)

° =14.38γ
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 =31.47βJquarks
CP = (3.18 ± 0.15) × 10−5

Based on JHEP 01 (2019) 106
• Amplitude of leptonic CP violation 

c a n b e p r e s e n t e d m o d e l -
independently by Jarlskog invariant

U*e1Uμ1 + U*e2Uμ2 + U*e3Uμ3 = 0

JLepton
CP = Im[UαiU*αjU*βiUβj]

=
1
8

sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δCP

(pdg2018)

JLepton
CP = − 0.019 at best fitted parameters 

Amplitude of the leptonic CP violation 
can be much larger than its of quarks

• Compare to quarks

Unitary of PMNS can write down in six relations 
(scalar product of any row/column vector ), 
which can be presented by “unitary” triangles

• Jarlskog invariant is 2 times of area of 
unitary triangle
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Leptonic CP violation

U@Bestfit
PMNS =
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−0.283 + i * 0.054 0.590 + i * 0.036 0.753
0.490 + i * 0.046 −0.588 + i * 0.031 0.641

 (Real)ρ
0.4− 0.2− 0 0.2 0.4 0.6 0.8 1 1.2

 (I
m

ag
in

e)
η

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

A(0,0) B(0,1)
2µU

*
e2U

1µU
*
e1U

2µU
*
e2U

3µU
*
e3U

 = -0.0192|2µU
*

e2
)x 2 x Area x |UCPδ = sign(CPJ

C(0.30,0.18)

° =14.38γ
°

 =31.47β

Based on JHEP 01 (2019) 106

U*e1Uμ1 + U*e2Uμ2 + U*e3Uμ3 = 0

Unitary of PMNS can write down in six relations 
(scalar product of any row/column vector ), 
which can be presented by “unitary” triangles

Andre de Gouvea
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Leptonic CP violation: Race already started
T2K(-II)

NOvA

Hyper-K

DUNE
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Mass hierarchy: Another intriguing race
From NuFIT2019: Normal mass hierarchy 
is favored at 3𝝈 (2𝝈) with (without) Super-
K atmospheric neutrino sample

Technical analysis may 
not be trivial since to tell 
someth ing on mass 
hierarchy, one needs to 
marginalize all nuisance 
systematic parameters 
a n d o s c i l l a t i o n 
parameters

NOvA

DUNE

T2HKK
JUNO

+ Super-K/ IceCUBE..
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How to test PMNS paradigm?

HK & DUNE can give us enough ingredients to test PMNS paradigm at some 
significant C.L?
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Global effort. 

We find neutrino very interesting & this center has “𝜈” shape. It can be 
a “signal” (for a neutrino group development) or  just “coincidence”. 


Thank you for coming & we hope to continue working with you. 


