Neutrino oscillations and future prospects

(Supposed to be WG1 summary)

Son Cao (KEK/J-PARC)

3 neutrinos and beyond, ICISE, Quy Nhon, VN, August 4-10, 2019

Present status of neutrino oscillations and future prospects

-including theoretical and experimental issues with cross-sections

(To cover a parallel section, not the plenary)

1,2,3 strings...

2 string

Three? Why Three?

(introduction to the sterile neutrino session) Boris Kayser (Fermilab, Batavia) Đàn Tam

3 string

...or more strings

Practical tests on the PMNS paradigm Osamu Yasuda (Tokyo Metropolitan University)

Brief history of neutrino physics

Adapted "The Growing Excitement of Neutrino Physics " by APS

- ★ 1930: On-paper appearance as "desperate" remedy by W. Pauli
- ★ 1956: Anti-ve first experimentally discovered by Reines & Cowan
- ★ 1962: v_{μ} existence confirmed by Lederman *et al*
- + 1986: Existence of v_{τ} was established (see Gary Feldman's talk)
- ★ 1998: Atmospheric v oscillations discovered by Super-K
- ★ 2000: v_{τ} first evidence reported by DONUT experiment
- ★ 2001: Solar v oscillations detected by SNO (KamLAND 2002)
- ★ 2011: ν_{μ} → ν_{τ} transitions observed by OPERA
- ★ 2011-13: $v_{\mu} \rightarrow v_{e}$ observed by T2K and *anti*- v_{e} *anti*- v_{e} by Daya Bay

Reines

& Cowan

discover

(anti)neutrino

1956

muon

1962

neutrinos neutrino

discovery anomaly

Solar

1964

1980

1998

- \star 2015: Nobel prize for v oscillations, Breakthrough prize (2016)
- ★ 2018: T2K hints on leptonic CP violation

Fermi's

theory

of weak

interactions

~25 years

Pauli

predicts

the

Neutrino

1930

2018

5

Neutrino oscillations: A game-changer

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

PMNS leptonic mixing matrix: Standard 3-flavor

- In 3-flavor paradigm, U_{PMNS} is 3x3 unitary matrix and parameterized with 3 mixing angles (θ₁₂, θ₁₃, θ₂₃) and one irreducible Dirac CP-violation phase (δ_{CP})
- If neutrino is Majorana particle, i.e neutrino (mass eigenstate) and anti-neutrino are identical, there are two additional CP-violation phase, which play no role in neutrino oscillations
- Three mass eigenvalues are also fundamental parameters. Neutrino oscillation measurements provide only the mass² spectrum but not the absolute values of mass

Main goal is to measure these oscillation parameters and verify if U_{PMNS} is 3x3 unitary or not

 θ_{13}

 θ_{23}

 θ_{12}

 $P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} Re(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin^2\left(\Delta m_{ij}^2 \frac{L}{4E}\right)$

arxiv:1301.1340

 θ_{12}

 $+2\sum_{\alpha i}Im(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin\left(\Delta m_{ij}^{2}\frac{L}{2E}\right)$

What "global fit" tell us?

Normal mass hierarchy is favored at 3σ (2σ) with (without) Super-K atmospheric neutrino sample

 $\Delta \chi^2$ Normal hierarchy assumed) $\Delta m_{21}^2 = 7.39^{+0.21}_{-0.20} \times 10^{-5} eV^2$ 0.3 0.35 6.5 7.5 0.25 0.4 8 0.2 $\Delta m_{31}^2 = 2.525^{+0.033}_{-0.032} \times 10^{-3} eV^2$ $\Delta m_{21}^2 [10^{-5} \text{ eV}^2]$ $\sin^2 \theta_{12}$ Inverted hierarchy Normal hierarchy $\theta_{12} = 33.82^{+0.78}_{-0.76}$ V_2 V3 Δm_{sol}^2 10 $\theta_{23} = 49.6^{+1.0}_{-1.2}$ $\mathcal{V}\mathbf{1}$ $\Delta m_{atm.}^2$ $\theta_{13} = 8.61^{+0.13}_{-0.13}$ $\Delta m_{atm.}^2$ 0.55 0.4 0.45 0.5 0.6 0.65 -2.6 -2.5 -2.4 2.4 2.5 2.6 V2 $\sin^2 \theta_{23}$ Δm_{32}^2 [10⁻³ eV²] Δm_{31}^2 $\delta_{CP} = 215^{+40}_{-29}$ Δm_{sol}^2 15 V_3 $m_{lightest}^2 = ?$ 10 $m^2 = 0$ JHEP 01 (2019) 106 v_{e} Global neutrino exp. fit MINOS, T2K, NOvA; Daya Bay, RENO, Double Chooz, 0.022 0.024 0.02 0.026 0 180 270 *0.018* 90 36 $\sin^2 \theta_{13}$ δ_{CP} KamLAND; SNO, Borexino; IceCube, Super-K

NO, IO (w/o SK-atm)

====== NO, IO (with SK-atm)

NuFIT 4.1 (2019)

Wait! Is "global fit" reliable?

- Bari: Capozzi, Lisi, Marrone, Palazzo, PPNP 102 (2018) 48; Lisi @ NuInt 18, 15 October
- NuFit: Esteban, Gonzalez-Garcia, Hernandez-Cabezudo, Maltoni, Martinez-Soler, Schwetz, http://www.nu-fit.org; NuFit 4.0: Gonzalez-Garcia @ NuTown 2018, 23 October
- Valencia: de Salas, Forero, Ternes, Tortola, Valle, PLB 782 (2018) 633; http://globalfit.astroparticles.es; Tortola @ Neutrino 2018, 5 June

(on Mass hierarchy)

Bari:	$\chi^2_{IO} - \chi^2_{NO} = 9.5$	$(\approx 3.1\sigma)$
NuFit:	$\chi^2_{\rm IO}-\chi^2_{\rm NO}=9.1$	$(pprox$ 3.0 σ)
Valencia:	$\chi^2_{\rm IO} - \chi^2_{\rm NO} = 11.7$	$(pprox$ 3.4 σ)

Jiajie Ling on JUNO prospects

JUNO is under construction and will start data taking ~2021.

	Statistics	+BG, +1% b2b +1% EScale , +1% EnonL
$sin^2 \theta_{12}$	0.54%	0.67%
Δm ² ₂₁	0.24%	0.59%
Δm ² ₃₂	0.27%	0.44%

Nominal Precision + 2.8% Systematic Uncertainty !

Nominal Precision + 5.1% Systematic Uncertainty !

Comment on "global fit"

- It's nice to see a big picture with data from many experiments since each is sensitive to specific set of parameters
- However, it's very challenging to reproduce experiment results, particularly when start to be dominated by systematics and the experiment doesn't describe detail/ release systematic covariance matrices (can be more than 100 parameters for flux, cross section and detector systematics)

"Near detector" observation*

On flux understanding: Precise hadron prod.

- Thin target measurements improved T2K flux uncertainty down to 10%
- Replica target measurements will improve uncertainty down to ~5% (Replica tuning in figure only considers pions.

Result will further improve with kaons and protons taken into account !!)

On flux understanding: A novel approach

Precise Determination of Neutrino Flux with Hadron Pro Yoshikazu Nagai (University of Colorado, Boulder)

The ENUBET Project

Andrea Longhin (Padova University and INFN)

NUSTORM Alain Blondel (Université de Genève)

aiming for a 1% precision on the v_e flux

Sampling calorimeter with lateral WLS light collection

- Monitor (~ inclusively) the decays in which ν are produced event-by-event
- "By-pass" hadro-production, PoT, beam-line efficiency uncertainties
- Fully instrumented decay region

 $K^{*} \rightarrow e^{*}v_{n} \Pi^{0} \rightarrow \text{large angle } e^{*}$

• v flux prediction = e⁺ counting

```
Removes the leading source of uncertainty in v cross section measurements
To get the correct spectra and avoid swamping the instrumentation \rightarrow needs a collimated momentum selected hadron beam \rightarrow only decay products in the tagger
```

```
→ Correlations with interaction radius allows
an a priori knowledge of the \gamma spectra
```

Radiation-harness is important

On flux understanding: Storm is coming?

On neutrino-nucleus interaction

Cross section measurement with NINJA: Status and Prospects Yosuke Suzuki (Nagoya University)

Recent results and prospects of WAGASCI-BabyMIND Son Cao (KEK, Tsukuba)

- 1. Confirmation and cross-section measurement of 2p2h int.
- 2. Exclusive measurement of v_{μ} , v_{e} cross-sections

very fine position

resolution

On neutrino-nucleus interaction

Cross section measurement with NINJA: Status and Prospects

Yosuke Suzuki (Nagoya University)

- 10%-14% errors for absolute measurement; 5% for ratio measurements
- Unprecedented precision for the measurements of neutrino-water interactions
- Good agreements with interaction models used in T2K exp.

Ready to take data from Nov. 2019 with final detector configuration

On neutrino-nucleus interaction

Kevin McFaland @ NuINT18

More clean data, more model-indepent analysis a p p r o a c h e s, m o r e theoretical calculation & prediction implemented in neutrino event generator are vital to pave the way toward "the best" nuclear model Beginning Re-branding of a new field?

We need to collaborate w/ nuclear physicists

Precision era & PMNS formalism testing

Solar v sector: Tension & solver(?)

DUNE as next-generation solar neutrino exp.

 2σ tension btw. KamLAND and solar neutrino experiments (SNO, Borexino, Super-K). JUNO & DUNE will be solvers?

arXiv:1808.08232

0.3

Reactor

(JUNO)

Solar

(DUNE)

0.4

Atmospheric v sector: θ_{23}

- My hunch is the nuclear model may play an important role for this. It can lurk the effect of (non-) maximal
- With high statistics, appearance channel in Hyper-K/DUNE will be very interesting, to not just compare with reactor measurement on θ_{13} but its sensitivity to octant of θ_{23}

Precision of mixing angle θ_{13}

Measurement & expectation from Daya Bay

- Does ~3% uncertainty on θ_{13} meet our need, particularly for solving θ_{13} - δ_{CP} - θ_{23} mass hierarchy degeneracies
- It will be interesting to compare between reactor-based & accelerator-based experiments on this mixing angle

Indication of CP violation in the lepton sector

It's really exciting time.

Leptonic CP violation

 Amplitude of leptonic CP violation can be presented modelindependently by Jarlskog invariant

$$J_{CP}^{Lepton} = Im[U_{\alpha i}U_{\alpha j}^{*}U_{\beta i}^{*}U_{\beta j}]$$
$$= \frac{1}{8}\sin 2\theta_{12}\sin 2\theta_{23}\sin 2\theta_{13}\cos \theta_{13}\sin \delta_{CP}$$

 Jarlskog invariant is 2 times of area of unitary triangle

 $J_{CP}^{Lepton} = -0.019$ at best fitted parameters

Compare to quarks

 $J_{CP}^{quarks} = (3.18 \pm 0.15) \times 10^{-5}$ (pdg2018)

Amplitude of the leptonic CP violation can be much larger than its of quarks

Based on JHEP 01 (2019) 106

	0.821	0.551	-0.123 + i * 0.086
$U_{PMNS}^{@Bestfit} =$	-0.283 + i * 0.054	0.590 + i * 0.036	0.753
1 11110	0.490 + i * 0.046	-0.588 + i * 0.031	0.641

Unitary of PMNS can write down in six relations (scalar product of any row/column vector), which can be presented by "unitary" triangles

Leptonic CP violation

Based on JHEP 01 (2019) 106

	0.821	0.551	-0.123 + i * 0.086
$U_{PMNS}^{@Bestfit} =$	-0.283 + i * 0.054	0.590 + i * 0.036	0.753
1 1/11/10	0.490 + i * 0.046	-0.588 + i * 0.031	0.641

Unitary of PMNS can write down in six relations (scalar product of any row/column vector), which can be presented by "unitary" triangles

Leptonic CP violation: Race already started

Mass hierarchy: Another intriguing race

 $sin^2\theta_{23}=0.4-0.6$, $l\Delta m^2_{32}l=2.5\times 10^{-3}eV^2$, $sin^22\theta_{13}=0.082$ From NuFIT2019: Normal mass hierarchy Hierarchy resolution NOvA NOVA NH $\delta_{CP}=3\pi/2$ is favored at 3σ (2σ) with (without) Super-NH $\delta_{CP} = \pi$ Significance { $\sigma = \sqrt{\Delta \chi^2}$ Simulation NH $\delta_{CP}=0$ Mass Ordering K atmospheric neutrino sar NH $\delta_{CP} = \pi/2$ **DUNE Sensitivity** 7 years (staged) Normal Ordering 10 years (staged) $\sin^2 2\theta_{13} = 0.085 \pm 0.003$ 25 022: NuFit 2016 (90% C.L. range) •••••• $\sin^2\theta_{22} = 0.441 \pm 0.042$ 20 DUNE 2018 analysis techniques and ₂χ 15 projected beam exposure improvements. 2018 2020 2022 2024 Year 10 Technical analysis may Atm+Beam (JD+KD) $\sqrt{\Delta}\chi^2$ Wrong Hierarchy Rejectio Mass ordering sensitivity Beam (JD+KD) not be trivial since to tell Atm+Beam (JD × 2) Atm+Beam (JD × 1) something on mass Atm (JD+KD) -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 10 δ_{CP}/π hierarchy, one needs to marginalize all nuisance systematic parameters Normal true MH 20 oscillation and T2HKł $\Delta \chi^2 \left(\Delta m^2_{ee} \right)$ parameters JUNO 0.45 0.4 0.5 0.55 0.6 sin² θ_{oo} 10 True MH ($\sigma_{m} = \infty$) + Super-K/ IceCUBE... False MH ($\sigma_{uu} = \infty$) True MH ($\sigma_{m} = 1.0\%$) False MH ($\sigma_{m} = 1.0$ % 2.34 2.38 2.40 2.42 2.44 2.46 2.48 2.50 2.36 $|\Delta m^2_{ee}|$ (X10⁻³ eV²)

How to test PMNS paradigm?

Practical tests on the PMNS paradigm

amu Yasuda (Tokyo Metropolitan University)

3. Tests Before HK & DUNE (1) v_s To test the hypothesis of sterile v, (i) we get the constraints on the extra mixing angles θ_{14} , θ_{24} , θ_{34} or (ii) we get the constraints on different matter effect.

(1-2) Appearance & disappearance probabilities at T2K

(1-1) Neutral current interactions of π^0 at T2K By measuring $\#(\pi^0 -> 2\gamma)$ due to NC, we can determine $P(\nu_{\mu} -> \nu_{e}) + P(\nu_{\mu} -> \nu_{\mu}) + P(\nu_{\mu} -> \nu_{\tau}) = 1 - P(\nu_{\mu} -> \nu_{s})$

(1-3) v_{atm} (SK, IceCUBE)

(1-4) SK v_{atm} : τ appearance

HK & DUNE can give us enough ingredients to test PMNS paradigm at some significant C.L?

Global effort.

We find neutrino very interesting & this center has "v" shape. It can be a "signal" (*for a neutrino group development*) or just "coincidence". Thank you for coming & we hope to continue working with you.