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Introduction

* Recently a novel plastic scintillator technology has been proposed in the
context of the T2K Near Detector upgrade to achieve the following goals

+ Perform particle tracking with relatively fine resolution

+ Capability to reconstruct tracks of particles propagating in the
detector at any angle

+ Reduce the particle momentum threshold with respect to scint
detectors of same granularity

+ Exploit all the advantages of plastic scintillator (Particle
|Dentification, timing resolution)

* T2K has decided to adopt it (Super Fine-Grained Detector - SuperFGD)
as new active target of ND280 (it will be installed in end of 2021). CERN
Neutrino Platform project (NPO7)

* The DUNE collaboration has included it (3D Scintillator Tracker - 3DST)
In the ND conceptual baseline

* Common R&D program will lead to neutron beam tests in Los Alamos



The T2K off-axis near detector: ND280
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ND280 can not efficiently reconstruct particle tracks at any angle
Also need to improve the sensitivity to nuclear effects: lower particle momentum

threshold, high detection efficiency 4xr and possibly precise neutron detection 3
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The T2K Near Detector
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* Keep the electromagnetic calorimeter
* Horizontal active target detector (~2x2x0.6 m3)

* Two High-Angle TPCs

* Time-of-Flight detector around new tracker

* B-fieldof 0.2 T

* Expect total systematic uncertainty below 4%

CERN-SPSC-2018-001
SPSC-P-357
arXiv:1901.03750
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Fully active FGD with three views: SuperFGD

» Usually plastic scintillators made by long bars —> poor angular acceptance

47 2018 JINST 13 P02006

(Polystirene-based Plastic scintillator
1.5% paraterphenyl and 0.01% POPOP
1x1x1 cms3 cubes

Chemical etching as reflector

1cm \WLS fibers (Kuraray Y11, 2-clad, 1mm))
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Fully active FGD with three views: SuperFGD

» Usually plastic scintillators made by long bars —> poor angular acceptance

/0/] 2018 JINST 13 P02006

—

rPonstirene-based Plastic scintillator
1.5% paraterphenyl and 0.01% POPOP
1x1x1 cms3 cubes

- Chemical etching as reflector

1cm \WLS fibers (Kuraray Y11, 2-clad, 1mm))
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* Optically independent cubes —> spatial localization of scintillation light
* Lower momentum threshold: 1 single hit gives immediately XYZ
* Plastic scintillator provides very good time resolution

* Uniform material (just plastic) —> no systematics from different nuclei
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Fully active FGD with three views: SuperFGD

e Three views from XYZ WLS fibers —> 4x acceptance, 3D reconstruction

Z(cm) viewYZ Z(cm) viewXzZ
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3D rotated views

Example of a
photon converting
in SuperFGD




SuperFGD expected performances

e Cubic granularity allows to detect shorter tracks

* Three WLS fibers provides high efficiency at any angle
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* By detecting muons stopping in SuperFGD expect ~15-20% more events
* Momentum resolution ~3% for stopping muons (by range)

* Low-momentum muons —> stronger constraint on the nucleus binding energy



Efficiency

SuperFGD expected performances

e Cubic granularity allows to detect shorter tracks

* Three WLS fibers provides high efficiency at any angle

Efficiency for protons

stopping in SuperFGD
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* Lower momentum detection threshold: ~300 MeV/c for protons
(~450 MeV/c for current ND280 Fine Grained Detector scintillator)

* Better than 90% efficiency for stopping-muons at any angle
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Characterization of the SuperFGD concept
* Prototype 5x5x5 cms3, 1.3 m WLS fibers (Al-based paint at fiber end)
« Exposure to a 6 GeV =« test beam at CERN

e Multi Pixel Photon Counter (MPPC)based readout
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* Average light yield ~ 41 p.e. / fiber / cube (MIP) .-
» Light cross-talk between adjacent cubes ~ 3.7% =
* Very good intrinsic time resolution (measured _
with a 5 GHz waveform digitizer) o

+ ot~ 0.95 ns (1 channel, 1 cube)

rms = 650 ps

+ ot~ 0.65 ns (2 channels, 1 cube) T



2018 beam-tests at CERN: SuperFGD

e New beam tests at CERN performed with a 10,000 cubes prototype
confirmed the previously obtained results

 The good-quality data that will be used to validate the event

reconstruction tools and tune the detector response Pion interaction
(Time-over-Threshold)
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Integration of light readout in the mechanical box

Very compact design increases HA-TPC acceptance to low-momentum particles

The total no. of
cubes is 1,978,368

e ~2 tons active mass

e Total no. of readout
channels is 56,384 |,




e About 300k cubes already manufactured (~17% of total # of cubes)

The detector assembly

e Option 1: @1.3mm fishing lines of to align cubes, replace them with WLS fibers

e Option 2: ultrasonic welding to fix the cubes
to a thin (0.1mm) polystyrene sheet

————‘

@ Align cubes on a dedicated jig

Cube side size, mm
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The SuperFGD detector

Very compact design increases HA-TPC acceptance to low-momentum particles

Carbon Fiber




Mechanical tests of the carbon-fiber box
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Finite Element Analysis performed with water —
instead of 2M cubes due to computational issues o \Without pressure on the sides, the

behavior is not very different from water

o Stress / deformation tests show that the
holes (23mm, 10mm pitch) provide
~20% more deformation but far from
breaking point

¢ AIREX thickness may be increased up
to 3-4 cm to limit bottom maximal
deformation to less then 5 mm s




The SuperFGD detector

Very compact design increases HA-TPC acceptance to low-momentum particles

Important to provide a very
precise alignment between
the WLS fiber and the MPPC

In a very small space

|6



The SuperFGD detector

Very compact design increases HA-TPC acceptance to low-momentum particles

e Hamamatsu MPPC to count
the scintillation photons
produced in the cubes

e ~2 700 pixels to avoid
saturation due to stopping
particles, like protons near
the neutrino interaction vertex

|7



The SuperFGD detector

Very compact design increases HA-TPC acceptance to low-momentum particles
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The SuperFGD detector

Very compact design increases HA-TPC acceptance to low-momentum particles

----.

~ 4% X:aq from cubes to PCB
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The SuperFGD detector

Very compact design increases HA-TPC acceptance to low-momentum particles

LED-based light
Injection system to
calibrate the
MPPCs from the
not-instrumented
WLS fiber end

Two similar options are being investigated:
square clear fiber or light guide plate with “notches’

Physics Procedia 37 ( 2012 ) 402 — 409

Light —» 77‘\' —

12

Reflected
light

Each notch is coupled with a different WLS
fiber that brings the light to the MPPC 20




The SuperFGD detector
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mounted after insertion

\ FEB support is fixed after insertion

FEB structure is

Patch panel is fixed to sFGD
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¢ Measure highest peak point of the MPPC

e Based on the CITIROC chip



Neutron Detection

* Minerva experiment has demonstrated the potential of detecting neutrons
produced by v interactions in scintillator (arXiv:1901.04892)

« SuperFGD has 3D granularity, much better spatial and timing resolution
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» Precise neutron detection is a very powerful : =

400

tool for the understanding of the v interaction =

processes (e.g. 2p2h) >
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New method to infer v, flux

* [solate NuBar-hydrogen and NuBar-carbon interactions with low nuclear effects
* Use neutron kinematics to precisely compute the event transverse momentum
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New method to infer v, flux

* [solate NuBar-hydrogen and NuBar-carbon interactions with low nuclear effects

* Use neutron kinematics to precisely compute the event transverse momentum
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New method to infer v, flux

* [solate NuBar-hydrogen and NuBar-carbon interactions with low nuclear effects
* Use neutron kinematics to precisely compute the event transverse momentum
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 NuBar energy resolution is reduced from
~13% to ~6-7% and almost no bias on Ereco

* Ereco Weakly dependent on the interaction
model and reduce correlations between
flux and cross-section
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The 3DST at the DUNE Near Detector

e DUNE ND conceptual baseline includes three main detector systems:

+ LAr, High-Pressure TPC and 3DST spectrometer

+ LAr and HP-TPC will move off-axis

range of ~30 m)
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The 3DST at the DUNE Near Detector

e DUNE ND conceptual baseline includes three main detector systems:

+ LAr, High-Pressure TPC and 3DST spectrometer
+LAr and HP-TPC will move off-axis (range of ~30 m)

+3DST spectrometer will be the only on-axis detector

27



The 3DST at the DUNE Near Detector

e 3DST-S similar to ND280: ~11 tons mass, low-density gas tracker, ECAL,
magnet

e Most of the R&D made for the T2K-SuperFGD is common to DUNE-3DST
though there is time for improvements, e.g. optimization of the cube size,
electronics sampling rate, etc.

_ 3DST

28



Significance

The 3DST physics program

e The LAr and High-Pressure TPC will move to different off-axis locations
while the far detector is on-axis

¢ \We need a detector with large mass to stay always on-axis

e Monitor the beam spectrum to identify possible issues in the beamline,
e.g. horn misalignment, target density variation, beam angle

e Simply off-axis event rate measurement is not sufficient to detect many
of these effects that would impact mainly the on-axis beam spectrum
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The 3DST physics program

e |ike SuperFGD also 3DST has high neutron detection efficiency
and good expected neutron energy resolution by ToF

e Precision measurement of neutrino-CH interactions with neutrons
kinematics

+ Modern neutrino interactions act at microscopic level and they
intrinsically can predict any extrapolation from carbon to argon or
any other nucleus

+|f the model doesn’t work in CH, we can’t trust it in Argon
+ Hard to measure the neutron kinematics in argon
¢ Anti-Neutrino flux measurement
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Neutron test beam in Los Alamos
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Neutron Flux at Los Alamos and LANSCE/WNR

Neutron spectrum at LANSCE/'WNR
divided by 5x10°

Flux mesurement by Goldhagen 1997
at Los Alamos
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SuperFGD/3DST prototypes will be exposed to neutron test beam in Los Alamos



Conclusions

A novel plastic scintillator detector concept has been developed

An intensive R&D program lead the T2K collaboration to adopt the
SuperFGD technology as active neutrino target of the upgraded
Near Detector. Plan to install it in 2021 and start data taking in 2022

The SuperFGD in the upgraded ND280 may also be the off-axis near
detector of the Hyper-Kamiokande experiment

The DUNE collaboration has included 3DST (same technology as
SuperFGD, higher mass) in the Near Detector conceptual baseline

Several beam tests at CERN already performed

Neutron beam test with SuperFGD / 3DST prototypes planned this
year in Los Alamos under the common US-Japan funding program
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