

Lepton Universality Violations in b \rightarrow c Transitions

15th Recontres du Vietnam - 3 Neutrinos and Beyond Markus Prim for the Belle Collaboration | 9th August 2019

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP)

Lepton Flavor Universality in the Standard Model

Leptons appear in the SM in the gauge and Yukawa sector.

Gauge sector

•
$$\mathcal{L}_{\mathrm{SM}}^{\mathrm{Gauge}} \subset i \left(\bar{\mathcal{L}}_{\mathrm{L}}^{i} \gamma^{\mu} \mathcal{D}_{\mu} \mathcal{L}_{\mathrm{L}}^{i} + \bar{\mathcal{E}}_{\mathrm{R}}^{i} \gamma^{\mu} \mathcal{D}_{\mu} \mathcal{E}_{\mathrm{R}}^{i}
ight)$$

 Gauge interactions are Lepton Flavor Universal

Yukawa sector

•
$$\mathcal{L}_{\mathrm{SM}}^{\mathrm{Yukawa}} \subset \left(\boldsymbol{Y}_{ij}^{\boldsymbol{E}} \boldsymbol{\bar{L}}_{\mathrm{R}}^{i} \boldsymbol{E}_{\mathrm{R}}^{j} \boldsymbol{H} + \mathrm{h.c.} \right)$$

• Yukawa sector non-universal because of mass terms $m_e \neq m_\mu \neq m_\tau$ and Higgs interactions (negligible).

Testing the LFU in the Standard Model means testing the universality of the gauge interaction.

Lepton Flavor Universality Violation

${\sf b} ightarrow {\sf c} \ell u$

$$R(D^{(*)}) = rac{\mathcal{B}(\mathsf{B} o \mathsf{D}^{(*)} au
u)}{\mathcal{B}(\mathsf{B} o \mathsf{D}^{(*)} \ell
u)}$$

Lepton Flavor Universality Violation

- neutral current (FCNC)
- Loop process in SM
- µµ vs. ee

 $\mathbf{b}\to\mathbf{c}\ell\nu$

Belle's latest R(D^(*))

arXiv:1904.08794

The Belle Experiment

Belle recorded 711 ${\rm fb}^{-1}$ on the $\Upsilon(4S)$ resonance.

B-Tagging at Belle

Purity

Automatic reconstruction of $\mathcal{O}(100)$ explicit decay channels, leading to $\mathcal{O}(10000)$ distinct decay chains.

Tag-Side Reconstruction and Selection

- B_{tag} is reconstructed in $D\ell\nu$ and $D^*\ell\nu$ decay chains (semileptonic tag).
- Good tags identified by classifier output.
- Veto for $\mathsf{B}
 ightarrow \mathsf{D}^* au (
 ightarrow \ell
 u
 u)
 u$ via

$$\cos\theta_{\rm B,D^{(*)}\ell} = \frac{2E_{\rm beam}E_{\rm D^{(*)}\ell} - m_{\rm B}^2 - m_{\rm D^{(*)}\ell}^2}{2|\vec{p}_{\rm B}||\vec{p}_{\rm D^{(*)}\ell}|} \,.$$

- Correctly reconstructed B candidates are found in cos θ_{B,D}^(*)ℓ = [−1, 1].
- Mis-reconstructed $B \rightarrow D^* \tau (\rightarrow \ell \nu \nu) \nu$ decays have larger negative values.

Signal-Side Reconstruction and Selection

• Only consider $\tau \to \ell \nu \nu$.

• D^(*) selection via reconstructed invariant mass and vertex fit (for channels without π^0).

$D^0 \rightarrow$	B(%)	$D^+ ightarrow$	B(%)		$D^{*+} ightarrow$	$\mathcal{B}(%)$
$K^{-}\pi^{+}\pi^{0}$	14.4	$K^-\pi^+\pi^+$	9.38	-	$D^{0}\pi^+$	67.
$K^{-}\pi^{+}\pi^{+}\pi^{-}$	8.23	$K^0_S \pi^+ \pi^0$	7.36		$D^+\pi^0$	30.
${\rm K}^-\pi^+$	3.95	$K^{0}_{S}\pi^{+}\pi^{+}\pi^{-}$	6.25		Total	98.
${ m K_S^0}\pi^+\pi^-$	2.80	${ m K_S^0}\pi^+$	1.56			
${\sf K}^{\sf 0}_{\sf S}\pi^{\sf 0}$	1.24	$K^-K^+\pi^+$	0.99			
$K^0_S K^+ K^-$	4.42	$K^0_SK^+$	0.30			
K^+K^-	0.41				$D^{*0} \to$	$\mathcal{B}(\%$
$\pi^+\pi^-$	0.15				$D^{0}\pi^{0}$	64.7
Total	35.59	Total	25.84	-	Total	64.

Signal Extraction

- Signal extraction in a 2D plane:
- \bullet $E_{
 m ECL}$
- C_{out} : BDT which discriminates between τ and ℓ mode. Input: $\cos \theta_{B,D}(*)_{\ell}, m_{miss}^2, E_{visible}$

Signal Extraction

- Signal extraction in a 2D plane:
- \bullet $E_{
 m ECL}$
- C_{out} : BDT which discriminates between τ and ℓ mode. Input: $\cos \theta_{B,D}(*)_{\ell}, m_{miss}^2, E_{visible}$

Energy left in the calorimeter(EECL)

Systematics

Source	$\Delta R(D)$ (%)	$\Delta R(D^*)$ (%)
D ^{**} composition	0.76	1.41
Fake $D^{(*)}$ calibration	0.19	0.11
$WB_{ ext{tag}}$ calibration	0.07	0.05
Feed-down factors	1.69	0.44
Efficiency factors	1.93	4.12
Lepton efficiency and fake rate	0.36	0.33
Slow pion efficiency	0.08	0.08
MC statistics	4.39	2.25
B decay form factors	0.55	0.28
Luminosity	0.10	0.04
${\cal B}({\it B} ightarrow{\it D}^{(*)}\ell u)$	0.05	0.02
$\mathcal{B}(D)$	0.35	0.13
$\mathcal{B}(D^*)$	0.04	0.02
${\cal B}(au o \ell u u)$	0.15	0.14
Total	5.21	4.94

Lepton Universality Violations in b \rightarrow c Transitions - Markus Prim

Results

 $\mathcal{R}(D) = 0.307 \pm 0.037 \pm 0.016 \ \mathcal{R}(D^*) = 0.283 \pm 0.018 \pm 0.014$

- SM agreement: 1.2σ .
- First result for R(D) with semileptonic tagging.
- Most precise determination of R(D) and R(D*) to date.

A Glimpse into the Future

Belle II will pin down the flavor anomaly.

(Projection with old world average arXiv:1808.10567)

Theory Perspective to $R(D^{(*)})$

Excerpt of arXiv:1904.09311

New World Average

Effective Hamiltonian for b $ightarrow { m c} \ell u$ Transitions

$$\mathcal{H} = \frac{4G_{\rm F}}{\sqrt{2}} V_{\rm cb} \left[(1 + C_{\rm V_L}) \mathcal{O}_{\rm V_L} + \mathcal{C}_{\rm V_R} \mathcal{O}_{\rm V_R} + \mathcal{C}_{\rm S_R} \mathcal{O}_{\rm S_R} + \mathcal{C}_{\rm S_L} \mathcal{O}_{\rm S_L} + \mathcal{C}_{\rm T} \mathcal{O}_{\rm T} \right] + {\rm h.c.}$$

with the Fermi operators \mathcal{O}_i

$$\mathcal{O}_{\mathbf{V}_{\mathrm{L,R}}} = \left(\bar{\mathbf{c}} \gamma^{\mu} \mathbf{b}_{\mathrm{L,R}} \right) \left(\bar{\ell}_{\mathrm{L}} \gamma_{\mu} \nu_{\mathrm{L}} \right), \quad \mathcal{O}_{\mathrm{S}_{\mathrm{L,R}}} = \left(\bar{\mathbf{c}} \mathbf{b}_{\mathrm{L,R}} \right) \left(\bar{\ell}_{\mathrm{R}} \nu_{\mathrm{L}} \right), \quad \mathcal{O}_{\mathrm{T}} = \left(\bar{\mathbf{c}} \sigma^{\mu\nu} \mathbf{b}_{\mathrm{L}} \right) \left(\bar{\ell}_{\mathrm{R}} \sigma_{\mu\nu} \nu_{\mathrm{L}} \right)$$

weighted by the Wilson coefficients C_i , with

$$\mathcal{C}_{\mathrm{V}_{\mathrm{L}}}^{\mathrm{SM}} = \mathcal{C}_{\mathrm{V}_{\mathrm{R}}}^{\mathrm{SM}} = \mathcal{C}_{\mathrm{S}_{\mathrm{R}}}^{\mathrm{SM}} = \mathcal{C}_{\mathrm{S}_{\mathrm{L}}}^{\mathrm{SM}} = \mathcal{C}_{\mathrm{T}}^{\mathrm{SM}} = \mathbf{0}$$

Assumptions:

- No light right-handed neutrinos.
- Possible NP contribution only in third generation of leptons.
- $C_{V_{R}}$ are lepton-flavor universal.
- CP-conserving limit, i.e. Wilson coefficients are real.

Lepton Universality Violations in b $\,\rightarrow\,$ c Transitions $\,$ - $\,$ Markus Prim

New Physics Scenarios

• NP models are usually include combinations of NP operators:

$$\begin{split} \mathbf{W}' &\to \mathcal{C}_{\mathrm{V}_{\mathrm{L}}} \\ \mathbf{H}^{-} &\to \mathcal{C}_{\mathrm{S}_{\mathrm{L}}}, \mathcal{C}_{\mathrm{S}_{\mathrm{R}}}, \mathcal{C}_{\mathrm{T}} \\ \phi_{\mathrm{LQ}} &\to \mathcal{C}_{\mathrm{V}_{\mathrm{L}}}, \mathcal{C}_{\mathrm{V}_{\mathrm{R}}}, \mathcal{C}_{\mathrm{T}} \\ \mathbf{V}_{\mathrm{LQ}}^{\mu} &\to \mathcal{C}_{\mathrm{V}_{\mathrm{L}}}, \mathcal{C}_{\mathrm{S}_{\mathrm{R}}} \end{split}$$

New Physics Influence on $\mathcal{R}(D^{(*)})$

(With old world average)

New Physics Influence on $\mathcal{R}(D^{(*)})$

dashed line parts excluded by $\mathcal{B}(B_c^+ \rightarrow \tau \nu) < 10\%$

 C_{V_I}

 C_{V_R}

 C_{S_R}

caveat: acceptance and efficiency effects of NP not included in these scans

(With old world average)

Theory Perspective to R(D^(*)) with Right-Handed Neutrinos

Models and Their Influence

- New contribution from $b \rightarrow c \tau N_R$.
- EFT study of the lowest dimension electroweak operators that can account for the R(D^(*)) anomalies.
- Models with tree-level mediator exchange:

mediator	WCs		
W'_{μ}	$c_{ m VR}$		
Φ	$c_{\rm SL}(\mu), c_{\rm SR}(\mu)$		
U_1^{μ}	$c_{\rm SL}(\mu), c_{\rm VR}$		
\tilde{R}_2	$c_{\rm SR}(\mu) = 4rc_{\rm T}(\mu)$		
S_1	$c_{\mathrm{VR}}, c_{\mathrm{SR}}(\mu) = -4rc_{\mathrm{T}}(\mu)$		

Best-Fit Points

Belle's latest B ightarrow D $^{*}\ell u$

arXiv:1809.03290 accepted by PRD

- What if NP not only in b \rightarrow c $\tau \nu$ transitions?
- Investigate NP in the normalization mode of R(D^(*)) analysis: b → cℓν.
- Angular observables are a powerful tool.
- Nota Bene: Presented Analysis is focused on V_{cb} extraction.

Event Reconstruction

- In comparison to R(D^(*)), no tag-side reconstruction.
- $\mathsf{B}_{\mathrm{tag}}$ -momentum reconstructed via $\vec{p}_{\mathrm{incl.}} = \sum_{i}^{p_i}$. $\Rightarrow \vec{p}_{\mathsf{B}_{\mathrm{sig}}} = -\vec{p}_{\mathrm{incl.}}$.
- Signal-side only reconstructed in cleanest mode: $B^0 \rightarrow D^{*-} (\rightarrow \overline{D}^0 (\rightarrow K^+ \pi^-) \pi^-) \ell \nu$
- $\mathcal{B} \approx 5\% \times 68\% \times 4\% \approx 0.14\%$

Background Estimation

Differential Distributions

Results

$$\begin{split} V_{\rm cb}^{\rm CLN} &= (38.4\pm0.2\pm0.6\pm0.6)\times10^{-3} \\ V_{\rm cb}^{\rm BGL} &= (38.3\pm0.3\pm0.7\pm0.6)\times10^{-3} \end{split}$$

Tension on $V_{\rm cb}$ between inclusive and exclusive determination is back.

Lepton Universality Violations in b \rightarrow c Transitions - Markus Prim

$$\frac{\mathcal{B}(B^0 \to D^{*-} e^+ \nu)}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu)} = 1.01 \pm 0.01 \pm 0.03 \,.$$

 Systematic uncertainty dominated by lepton identification.

Most stringent test of LFU in B decays to date.

Summary

- Two new important results on LFU: τ vs. ℓ and e vs. μ in b \rightarrow c $\ell\nu$ transitions.
- Tension on $\mathcal{R}(D^{(*)})$ reduced with new measurement.
- Belle's new analyses (will) have an important impact on the current (global) fits on LFU.
- Belle II will give a final answer on the $\mathcal{R}(D^{(*)})$ anomaly.
- There is an interplay between flavor anomalies and neutrino physics.