Search for Heavy Neutral Leptons at Belle and Belle II

Petar Rados (DESY) on behalf of the Belle II collaboration

15th Rencontres du Vietnam ICISE, Quy Nhon, 8 August 2019

Introduction

- Particle masses in the SM are generated by the coupling of the Higgs field to a given particles LH and RH components
- In SM there are only LH neutrinos \Rightarrow massless

• Neutrino oscillation data shows they do have mass,

and that these masses are much smaller than the other fermions

- A mechanism beyond the SM is necessary to explain $m_{\nu}...$

Heavy Neutral Leptons

- Neutrino masses can be incorporated into the SM by introducing sterile RH (Majorana) neutrino(s)
- For example, the vMSM model introduces three RH singlet HNLs (N₁, N₂ and N₃). Can solve:
 - origin and smallness of SM neutrino masses (with GeV scale N_{1,2} and see-saw mechanism)
 - dark matter (N₁ with mass ~keV)
 - BAU: leptogenesis due to Majorana mass term

- Ш Ш mass -2.4 MeV 1.27 GeV 173.2 GeV 2/3 g charge → 2/3 2/3 U С charm name top gluon 4.8 MeV 104 MeV 4.2 GeV Quarks b C ·¼ -1/3 S bottom down strange photon 126 GeV 91.2 GeV 🔿 spin orces) weak spin 0 0.511 MeV 105.7 MeV 1.777 GeV 80.4 GeV Leptons Bosons e μ τ tau electron muon
- N is mostly RH neutrino, but small LH component allows it to interact with SM particles
- Interacts with v_{SM} via $N \leftrightarrow v_{SM}$ mixing. Long lifetime due to small M_N and small mixing.
- HNLs also appear in other BSM models (SUSY, grand unification theories, exotic Higgs, ...)

HNL Production and Decay

• Neutrino flavour and mass eigenstates need not coincide, but may be related through a unitary transformation

$$\nu_{\alpha} = \sum_{i} U_{\alpha,i} \nu_{i}, \quad \alpha = e, \mu, \tau, \dots, \quad i = 1, 2, 3, 4, \dots$$

- HNL production can occur through mixing with the SM neutrinos \Rightarrow suppressed by factor of $U_{\alpha}{}^2$
- They can then decay (after long flight length) by mixing again with SM neutrinos \Rightarrow additional U_{α}^2

Production

<u>Decay</u>

Status of Direct Searches for HNL

- Existing experiments have explored M_N from 100 MeV up to almost 1 TeV
- *M_N* > *M_Z* direct search @LHC (pp→NI[±])
- *M_N* < *M_{Z,W}* DELPHI (Z⁰→vN) ATLAS/CMS (W[±]→NI[±])
 - *M_N* < *M_{B,D,K}* beam-dump, NA62, etc. LHCb, <u>Belle</u>, soon also <u>Belle II</u>

Belle and Belle II

- Energy asymmetric e⁺-e⁻ colliders operating mostly at √s=m_{Y(4s)}, located at KEK near Tsukuba, Japan
- KEKB → SuperKEKB accelerator
 - 2x beam currents, 50nm vertical beam spot size ("nano beam")
 - design lumi 2.1×10³⁴ \rightarrow 8.0×10³⁵ cm⁻²s⁻¹

 Consequently, SuperKEKB has higher beam bkg conditions and event rates

• Belle → Belle II detector

- PXD at r=1.4cm significantly improves vertexing
- larger SVD acceptance and outer CDC radius
- improved PID, TOP + new ARICH (K/ π separation)
- Faster electronics in general

Dataset size: $1 ab^{-1} \rightarrow 50 ab^{-1}$ (by 2027)

First collisions @ Belle II

- First collisions recorded by Belle II on 26th April 2018
- During Phase 2 (April-July 2018) about ~0.5 fb⁻¹ of data was recorded
- Phase 3 since March 2019 with ~6.5 fb⁻¹ so far
- Good performance of the subsystems. Clear mass peaks observed from both tracks and photons.

Belle II Schedule

- Belle and Belle II are *B***-meson** + τ -lepton factories
 - $\sigma(e^+e^- \rightarrow \Upsilon(4s)) = 1.05 \text{ nb}, \ \sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.92 \text{ nb}$
- Over its lifetime Belle II aims to record 50 ab⁻¹ of e⁺e⁻ collision data (x50 that of Belle)
 - 5.25×10¹⁰ BB and 4.6×10¹⁰ TT events
 - unique environment to search for HNLs that are produced in B and T decays!

- Data taking in **Phase II** was performed with all subsystems, except full vertex detector
- VXD installed and running during Phase III

Global constraints on N↔v mixing

 $10^{(}$

 10^{-1}

- Direct searches for visible HNL decay products can strongly constrain $|U_{\alpha N}|$
 - $\Rightarrow\,$ e.g. search in B decays with N ${\rightarrow} I\pi$ @ Belle
- In addition, more model independent global constraints can be set assuming
 - (i) **invisible** HNL decay (to SM *v*, dark matter, ...)
 - (ii) HNL too heavy to be produced in a given process
- For these constrains, the main input from **Belle** comes from tests of **lepton universality**, for example:
 - ▶ B-meson decays $\frac{Br(B \to D^{(*)}\tau\nu)}{Br(B \to D^{(*)}\ell\nu)} = \frac{Br(B \to K^*\mu\mu)}{Br(B \to K^*ee)}$ ⇒ D and τ decays $\frac{Br(D_s \to \tau\nu)}{Br(D_s \to \mu\nu)} = \frac{Br(\tau \to e\nu\bar{\nu})}{Br(\tau \to \mu\nu\bar{\nu})}$ and many more

 10^{0}

 $m_4 \, [\text{GeV}]$

A. de Gouvêa et al: Phys. Rev. D 93, 033005 (2016)

and many more...

 10^{-10}

 10^{-3}

 10^{-2}

 10^{-1}

 10^{3}

 10^{2}

 10^{1}

Search for HNL at Belle

- Direct search for Majorana HNL in *B* decays using the Belle detector
 <u>Phys. Rev. D. 87, 071102 (2013)</u>
 - Phys. Rev. D 95, 099903(E) (2017)
- Data sample of $722 \times 10^6 B\overline{B}$ pairs (711 fb⁻¹), collected at $\sqrt{s} = M_{Y(4s)}$
- Sensitivity to $N \leftrightarrow v_{SM}$ mixing for $M_K < M_N < M_B$

HNL production

• Both leptonic and semileptonic *B* decays $B \to X \ell N$

where: $\ell = e$, X = D, D^* , μ light meson (π , ρ , η ,...), 'nothing' (leptonic decay)

Detector Signature

- HNL decays to $e\pi/\mu\pi$ after a very long flight length e.g M_N = 1 GeV, $|U_{e,\mu}|^2 = 10^{-4}$, $\Rightarrow c\tau \approx 20m!$
- Final state: $X\ell\ell\pi$
 - eem, $\mu\mu\pi$ or e $\mu\pi$ (Majorana \Rightarrow OS or SS leptons)
 - $e\pi$ or $\mu\pi$ originate from a **displaced vertex**

Reconstruction and selections

- Partial reconstruction technique
 - Partial *B* decay candidate $\Rightarrow \ell_2 \ell_1 \pi$
 - HNL candidate \Rightarrow OS charge $\ell_1 \pi$ from **displaced vertex**
- Analysis split into two M_N regimes
 - low-mass (<2 GeV): targets dominant $B \to D^{(*)} \ell \nu$ mode
 - high-mass (2-5 GeV): inclusive production

≈ 20 efficiency, ⁶ **Displaced Vertex Selections** • $\ell_1 \pi$ is fit to common vertex • ≥4 tracks, p_T > 0.5 GeV $\pi \ell N$ 14 $\Rightarrow \chi^2/ndof < 16$ tight lepton ID (ee, μμ or eμ) 12 • then $\ell_1 \ell_2 \pi$ is fit with IP - lepton veto for π 10 constraint • Low-mass regime: $D^{(*)}$ 8 $\Rightarrow \chi^2/ndof < 4$ - $B \rightarrow D^{(*)} \ell \nu$ selected via recoil mass (1.4-2.4 GeV) • cuts on track dr, $d\phi$, dz_{vtx}, that vary with nCDCHits and rvtx $M_X^2 = (E_{CM} - E_{\ell\ell\pi})^2 - P_{\ell\ell\pi}^2 - P_B^2$ • $dr_{fh} = min(r_{\ell}, r_{\pi}) - r_{vtx}$ above -2 cm, for large r_{vtx} - proton veto 0.5 4.5 5 1.5 2 2.5 3 3.5 $\mathbf{4}$ GeV/c $M(v_{k})$

M_N distributions

- Signal MC: 500k signal events for each production mode
- **Background MC**: known SM $B\overline{B}$ decays from b \rightarrow c processes (3× data stats)

Requirement	Applied	Supp.	Signal	Syst.
	to	eff., $\%$	eff., $\%$	error, $\%$
$\chi_1^2/ndf < 16$	All	35	99	2.9
$\chi_2^2/ndf < 4$	All	27	85	10.1
$\mathcal{R}_e(\ell_1) > 0.9$	All	40	45	2.2
$\mathcal{R}_{\mu}(\ell_1) > 0.99$	All	17	35	4.9
$\mathcal{R}_e(\ell_2) > 0.9$	All	38	53	3.0
$\mathcal{R}_{\mu}(\ell_2) > 0.9$	All	25	38	3.1
Lepton veto	All	86	99	1.8
$d\phi < 0.03{\rm cm}$	Type I	39	95	``
$d\phi < 0.03{\rm cm}$	Type II	5	80	
$d\phi < 0.04{\rm cm}$	Type III	11	85	5.8
$d\phi < 0.09{\rm cm}$	Type IV	66	96	
$d\phi < 0.15{\rm cm}$	Type V	51	94	
$dr > 0.09 \mathrm{cm}$	Type I	5	97	
$dr>0.1{\rm cm}$	Type II	7	98	
$dr>3{\rm cm}$	Type III	1	79	3.7
$dr>3{\rm cm}$	Type IV	10	94	
$dr > 5\mathrm{cm}$	Type V	42	95	
$dz_{\rm vtx} < 0.4{\rm cm}$	Type I	37	94	
$dz_{\rm vtx} < 0.4{\rm cm}$	Type II	17	74	
$dz_{\rm vtx} < 0.5{\rm cm}$	Type III	21	75	10.0
$dz_{\rm vtx} < 0.9{\rm cm}$	Type IV	36	80	
$dz_{\rm vtx} < 2{\rm cm}$	Type V	68	83)
$dr_{\rm fh} > -2{\rm cm}$	$r_{\rm vtx} > 6{\rm cm}$	32	84	2.9
Recoil mass	Small mass	24	99	4.1
Proton veto	Small mass	94	97	1.6

Limits on $N \leftrightarrow v_{e,\mu}$ mixing

• Number of HNL decays detected by Belle:

$$n(\nu_h) = 2N_{BB} \ \mathcal{B}(B \to \nu_h) \ \mathcal{B}(\nu_h \to \ell\pi) \int \frac{m\Gamma}{p} \exp\left(-\frac{m\Gamma R}{p}\right) \varepsilon(R) dR$$
$$= |U_{\alpha}|^2 |U_{\beta}|^2 \ 2N_{BB} \ f_1(m) \ f_2(m) \ \frac{m}{p} \int \exp\left(-\frac{m\Gamma R}{p}\right) \varepsilon(R) dR$$

 \Rightarrow solved for $|U|^2$ to obtain upper limits

- Total systematic uncertainty of **25.0%** and **25.4%** for small and large-mass regimes. Largest contributions:
 - χ^2 /ndof and dz vertex cuts (10.1%, 10.0%)
 - tracking of HNL daughter particles (8.7% per-track)
 - Maximum sensitivity at $M_N \simeq 2 \text{ GeV}$
 - + 3.0×10⁻⁵ for $|U_{eN}|^2$ and $|U_{\mu N}|^2$
 - 2.1×10⁻⁵ for $|U_{eN}| |U_{\mu N}|$

$$\mathcal{B}(B \to X \ell \nu_h) \times \mathcal{B}(\nu_h \to \ell \pi^+) < 7.2 \times 10^{-7}$$

Comparison with other experiments

• Results are shown from Belle, CHARM, CHARMII, DELPHI, NuTeV, BEBC and NA3

$B \rightarrow \mu N$ search at Belle

- Recent result on SM B→µvµ from Belle (talk @ Moriond EW 2019, *M. Prim* et al.)
- µ recoil against HNL (N→invisible) would shift momentum spectrum
 ⇒ SM result recast with M_N scan

$$\mathcal{B}(\mathsf{B}
ightarrow \mu
u_{\mu}) = (\mathsf{5.3} \pm \mathsf{2.0} \pm \mathsf{0.9}) imes \mathsf{10}^{-7}$$
 @ 2.8 σ

 $SM = 4.26 \times 10^{-7}$

$$\mathcal{B}(\mathsf{B} \to \mu + \text{missing energy}) = \mathcal{B}(\mathsf{B} \to \mu \nu_{\mu}) + \mathcal{B}(\mathsf{B} \to \mu \mathsf{N})$$

LHCb and Belle II Prospects

Since the Belle result, LHCb has also performed a Majorana HNL search B. Shuve et al: arXiv:1607.04258 0.100 with displaced vertex in *B* decays revised limit h • 3fb⁻¹ of pp data at \sqrt{s} =7,8 TeV ر 10.001 الح 14 2 0.010 W^{-} B Approaching the Belle limits • LHCb stated limit Updated results are expected 10-4 π^+ Belle limit using the Run 2 dataset at $\sqrt{s}=13$ TeV 2 3 4 m_N (GeV) $\times 10^3$ Belle II 2019 Preliminary Events/(0.02) MeV/c² B-physics @ Belle II is in the 600**⊦** в^{*} \rightarrow D(K π , K $\pi\pi^0$, K 3π) π^{\mp} Belle II 600F • Y(4S) data → D(Kπ, Kππ⁰, K3π)ρ^{*} 2019 (preliminary) early stages $Ldt = 2.63 \text{ fb}^{-1}$ $\rightarrow D^{*0}(D^{0}(K\pi, K\pi\pi^{0}, K3\pi)\pi^{0})\pi^{+}$ 1.5 - BB 500F 500 L dt = 2.62 fb⁻¹ $\rightarrow \mathbf{D}^{\star \pi}(\mathbf{D}^{0}(\mathbf{K}\pi,\mathbf{K}\pi\pi^{0},\mathbf{K}3\pi)\pi^{\star})\pi^{\star})$ per off-resonance B $\rightarrow \mathbf{D}^{\dagger}(\mathbf{K}\pi\pi)\pi^{\dagger}$ Rediscovery of known BB 400 400 F Candidates $\rightarrow \mathbf{D}^{\dagger}(\mathbf{K}\pi\pi)\mathbf{0}^{\dagger}$ decays using Phase 2 and → D[∓](K^⁰π)π 300 300 early Phase 3 data 200 200 Belle II will be a major player • 100 100 in HNL physics via *B*-decays 0 0 5.2 in the near future! 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 0.2 0.6 0.8 0.4 1.2 R_2 M_{hc} (GeV/c²)

5

Constraints on $N \leftrightarrow v_{\tau}$ mixing

- Tight limits already exist on HNL mixing with v_e and v_μ
- Limits on $|U_{\tau N}|^2$ are weaker, motivating $|U_{\tau N}|^2 \gg |U_{eN}|^2$, $|U_{\mu N}|^2$
 - Global constraints \Rightarrow below $\mathcal{O}(10^{-2} 10^{-1})$, for M_N > 200 MeV
 - **CHARM** \Rightarrow below $\mathcal{O}(10^{-4} 10^{-1})$, for 20 MeV < M_N < 300 MeV
 - **DELPHI** \Rightarrow below $\mathcal{O}(10^{-5} 10^{-3})$, for 1 GeV < M_N < 60 GeV

- By studying τ decays at Belle and Belle II, we can improve existing limits for M_N < M_τ
- No measurement yet!

Sensitivity studies will be shown in coming slides.

HNL in τ decay kinematics

- Proposed search for HNL in $\tau \rightarrow 3\pi v$ decays *A. Kobach et al.* **arXiv:1412.4785v2**
- Phase space of 3π -system could be superposition of massless neutrinos and HNL

 $\frac{d\Gamma_{\rm tot}(\tau^- \to \nu h^-)}{dm_h dE_h} = \left(1 - |U_{\tau 4}|^2\right) \frac{d\Gamma(\tau^- \to \nu h^-)}{dm_h dE_h}\Big|_{m_\nu = 0} + |U_{\tau 4}|^2 \frac{d\Gamma(\tau^- \to \nu h^-)}{dm_h dE_h}\Big|_{m_\nu = m_4}$

- Kinematics of τ decay will contain info on whether 3π recoiled against HNL
- General idea:

Measure a crescent-shaped endpoint in the $E_{3\pi}\text{-}M_{3\pi}$ plane

- Method is insensitive to details of HNL decay, lifetime or whether it is Majorana/Dirac
- Would require large data statistics and excellent E/M resolution
 - ⇒ Possible at Belle and Belle II!

HNL in τ decay kinematics

- Sensitivity estimate based on pseudo-data study
- MC sample of $ee \rightarrow \tau \tau$ with $\tau \rightarrow 3\pi v \text{ decay}(s)$
 - assuming Belle lumi, \sqrt{s} =11 GeV
 - smearing to mimic typical Belle resolution
 - both optimistic and conservative scenarios wrt systematics
- Belle may be able to place stringent limits on $|U_{\tau N}|^2$ as low as $\mathcal{O}(10^{-7} - 10^{-3})$ for 100 MeV $\leq M_N \leq 1.2 \text{ GeV}$

Belle vs upcoming experiments

Search for HNL vertex with taus

- Proposed search for displaced HNL vertex in $ee \rightarrow \tau \tau \rightarrow 1x3$ prong
- For $|U_{\tau N}|^2 \gg |U_{eN}|^2$, $|U_{\mu N}|^2$ and $m_N < m_{\tau}$, decay occurs via $N \rightarrow v_{\tau}(Z^* \rightarrow X^0)$
- For this preliminary sensitivity study:
 - X_1 restricted to π or $\pi\pi^0$
 - X_2 restricted to $\mu\mu$ or ee (hadronic X_2 could enter final analysis)
- Long lifetime $(c\tau \propto |U_{\tau N}|^{-2} m_{N}^{-5}) \Rightarrow$ tiny background but low signal efficiency

- Bkg suppression driven by N→ee/µµ vertex-based constraints and flight length > 10 cm
- Signal yields extracted from fit to reconstructed M_N distribution
- Assumption of zero background search
 - achievable based on studies with official Belle II MC
 - more comprehensive bkg studies are ongoing

In this channel alone, Belle or Belle II could exceed DELPHI limits!

Constraints from LFV τ decays

 10^{4}

Tau leptons in early Belle II data

- As with *B*-physics, the τ -physics program at Belle II is in the early stages
- Rediscovery of $ee \rightarrow \tau \tau$ targeting 3-by-1 prong decay: $\tau_{tag} \rightarrow \ell^{\pm} \nu_{\ell} \overline{\nu}_{\tau}$ $\tau_{signal} \rightarrow 3\pi^{\pm} \nu_{\tau} + n\pi^{0}$
- We observe clear evidence of τ -pair production in the Phase 2 data
- First measurement of m_τ @ Belle II by fitting M_{min} to an empirical edge pdf from 1.7-1.85 GeV

$$M_{min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})}$$

 $e^+e^- \rightarrow \tau^+\tau^-$ event candidate

Summary and Outlook

- Belle searched for HNL produced in *B* decays with displaced vertex
- Limits were set on $|U_{e,\mu N}|^2$ below $\mathcal{O}(10^{-4}-10^{-5})$ for $0.5 < M_N < 5.0 \text{ GeV}$
- M_N scan in recent B→µv_µ result (N→invisible), no significant excess

- Existing constraints on N↔v_τ mixing are much weaker, motivating scenario where |U_{τN}|² » |U_{eN}|², |U_{µN}|².
 No results yet from Belle or Belle II with τ decays. Sensitivity studies show promise.
- B- and τ -physics programs at Belle II are in the early stage. Rediscoveries of known SM processes.
- Belle II will become a major player in HNL physics in the near future.
 Exciting times ahead!

