Present status and future prospect of the solar neutrino measurements for completing the PMNS picture and beyond

Yusuke Koshio

Okayama University

XVth Rencontres du Vietnam "3 neutrinos and Beyond" ICISE center, Quy Nhon, Vietnam, 4-10 August, 2019

Contents

- Introduction of Solar neutrino
- Current experiments
 - Super-Kamiokande
 - Borexino
- Future prospects
 - Hyper-Kamiokande

Solar neutrino

 \rightarrow ~10⁷years radiated from the center to the surface.

Particle physics : Neutrino oscillations Astrophysics : Still open issues on our Sun

This reaction is actually realized via pp-chain and CNO cycle.

Solar neutrino

pp-chain

Dominant process in the Sun (~99% of the energy)

W.Fowler

CNO cycle

Small ratio (<1%) in the Sun, poorly know yet

H.A.Bethe

Standard Solar Model

7 Aug., 2019

Solar neutrino in PMNS picture

Spectrum predicted by non-standard models

Astrophysics : Metallicity puzzle

Flux (cm ⁻² s-1)	GS98 (HZ)	AGSs09met (LZ)	diff. (HZ-LZ)/HZ
pp (10 ¹⁰)	5.98(1±0.006)	6.03(1±0.005)	-0.8%
pep (10 ⁸)	1.44(1±0.01)	1.46(1±0.009)	-1.4%
⁷ Be (10 ⁹)	4.94(1±0.06)	4.50(1±0.06)	8.9%
⁸ B (10 ⁶)	5.46(1±0.12)	4.50(1±0.12)	17.6%
¹³ N (10 ⁸)	2.78(1±0.15)	2.04(1±0.14)	26.6%
¹⁵ O (10 ⁸)	2.05(1±0.17)	1.44(1±0.16)	29.7%
¹⁷ F (10 ⁶)	5.29(1±0.20)	3.261±0.18)	38.3%

Metallicity determines the opacity of the solar plasma, which affects the central temperature of the sun.

Super-Kamiokande (1996~)

neutrino-electron elastic scattering

$$v + e^- \rightarrow v + e^-$$

✓ Find solar direction \checkmark Realtime measurements - day-night flux differences - seasonal variation ✓ Energy spectrum

Super-Kamiokande (1996~)

7 Aug., 2019

Motivation of the measurement

Rencontres du Vietnam

11

Neutrino oscillation

Day/Night asymmetry

Recoil electron spectrum

BOREXINO (2007~)

Solar neutrinos in BOREXINO

Detection principle

Elastic scattering (ES)

$$v + e^- \rightarrow v + e^-$$

 High light yield (~500p.e./MeV)
 lowering energy threshold
 good energy resolution
 Realtime measurements
 No neutrino directional inf.
 background reduction and understanding are critical

Radiopurity is crucial

Recent results in BOREXINO

B. Caccianiga, DOI: 10.5281/zenodo.2672266

Energy spectrum (TFC subtracted)

Recent results in BOREXINO

B. Caccianiga, DOI: 10.5281/zenodo.2672266

Solar ν	Borexino results Rate [cpd/100 t]
pp	$134 \pm 10 {}^{+6}_{-10}$
$^{7}\mathrm{Be}$	$48.3 \pm 1.1 \stackrel{+0.4}{_{-0.7}}$
pep (HZ)	$2.43 \pm 0.36 \stackrel{+0.15}{_{-0.22}}$
pep (LZ)	$2.65 \pm 0.36 \stackrel{+0.15}{_{-0.24}}$

total uncertainties 2.7%

 5σ evidence

Solar ν	Borexino results Flux $[cm^{-2}s^{-1}]$	Expected-HZ Flux $[cm^{-2}s^{-1}]$	$\begin{array}{c} \text{Expected-LZ} \\ \text{Flux} \left[\text{cm}^{-2} \text{s}^{-1} \right] \end{array}$
pp	$(6.1 \pm 0.5 \ ^{+0.3}_{-0.5}) \times 10^{10}$	$5.98(1\pm0.006) imes10^{10}$	$6.03(1\pm0.005) imes10^{10}$
⁷ Be	$(4.99 \pm 0.13 {}^{+0.07}_{-0.10}) \times 10^9$	$4.93(1\pm0.06) imes10^9$	$4.50 (1 \pm 0.06) \times 10^9$
pep (HZ)	$(1.27 \pm 0.19 {}^{+0.08}_{-0.12}) \times 10^8$	$1.44(1\pm0.009)\times10^{8}$	$1.46(1\pm0.009)\times10^{8}$
pep (LZ)	$(1.39 \pm 0.19 \stackrel{+0.08}{_{-0.13}}) \times 10^8$	$1.44(1\pm0.009)\times10^{8}$	$1.46(1\pm0.009)\times10^{8}$

Survival probability

7 Aug., 2019

Metallicity puzzle

B. Caccianiga, DOI: 10.5281/zenodo.2672266

BX results seem to give a hint towards the HZ hypothesis in spite of the large theoretical error

7 Aug., 2019

Hyper-Kamiokande

(See also "Hyper-Kamiokande Design Report", arXiv : 1805.04163)

Next generation of large water Cherenkov detector (~2027 -)

190kton Fiducial volume : ~10 x Super-K
40% photo coverage with high-efficicency PMTs :

~2 x Super-K

(~40000 for inner detector)

Rencontres du Vietnam

60m

Solar neutrinos in Hyper-K

Sensitivity of Day/Night flux asymmetry

Solar neutrinos in Hyper-K

Sensitivity of spectrum upturn

Summary

- Solar neutrino experiments are important for both particle physics and astrophysics.
- Current running detectors of solar neutrino experiment are Super-Kamiokande and Borexino.
 - Indication of Day-Night asymmetry has been found in Super-K at 3 σ level.
 - Precise measurements of pp, ⁷Be, pep has succeeded in Borexino. Metallicity puzzle is still remaining.
 - 2σ tension between solar and KamLAND Δm_{21}^2 is seen. Future experiments, Hyper-K, JUNO, DUNE etc., are possible to solve this problem.