Present status and future prospect of the solar neutrino measurements for completing the PMNS picture and beyond

Yusuke Koshio
Okayama University

XVth Rencontres du Vietnam “3 neutrinos and Beyond”
ICISE center, Quy Nhon, Vietnam, 4-10 August, 2019
Contents

- Introduction of Solar neutrino
- Current experiments
 - Super-Kamiokande
 - Borexino
- Future prospects
 - Hyper-Kamiokande
Solar neutrino

How does the Sun shine?

Nuclear fusion reactions can occur deep inside the Sun.

\[4p \rightarrow ^{4}\text{He} + 2\ e^{+} + 2\ \nu_{e} + 26.7\text{MeV} \]

\(~\sim6.6\times10^{10}\ \text{neutrinos}/\text{sec}/\text{cm}^{2}\)

Particle physics: Neutrino oscillations
Astrophysics: Still open issues on our Sun

Photon-measured luminosity

\(\rightarrow \sim10^{7}\text{years radiated from the center to the surface.}\)
Solar neutrino

pp-chain

Dominant process in the Sun (~99% of the energy)

W. Fowler

CNO cycle

Small ratio (<1%) in the Sun, poorly known yet

H. A. Bethe
Standard Solar Model

Flux (cm\(^{-2}\) sec\(^{-1}\) MeV\(^{-1}\))

- pp: ±0.5%
- \(^{13}\)N: +15% - 14%
- \(^{15}\)O: +16% - 15%
- \(^{17}\)F: +19% - 17%
- \(^{7}\)Be: ±5.8%
- pep: ±1.1%
- \(^{8}\)B: ±11.3%
- hep: ±15.5%

Neutrino energy (MeV)

(Bahcall-Pena-Garay-Serenelli 2008)

Super-K, SNO

BOREXINO

Hyper-K

J.N. Bahcall

Rencontres du Vietnam
Solar neutrino in PMNS picture

\[
\begin{align*}
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix}
&=
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{pmatrix}
\begin{pmatrix}
\cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\
0 & 1 & 0 \\
-\sin \theta_{13} e^{-i\delta} & 0 & \cos \theta_{13}
\end{pmatrix}
\begin{pmatrix}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\end{align*}
\]

Atm. and Acc. \hspace{1cm} Reactor and Acc. \hspace{1cm} Solar and KamLAND

\(\theta_{23} \sim 45 \pm 5^\circ\) \hspace{1cm} \(\theta_{13} \sim 9^\circ\) \hspace{1cm} \(\theta_{12} \sim 34 \pm 3^\circ\)

\[\Delta m_{21}^2 = 7.54 \hspace{1cm} \text{for KamLAND}\]
\[\Delta m_{21}^2 = 4.82 \hspace{1cm} \text{for Solar}\]

~2 \(\sigma\) tension
Spectrum predicted by non-standard models

Sterile neutrino

MaVaN

Non-standard interaction

Unparticle

Astrophysics : Metallicity puzzle

<table>
<thead>
<tr>
<th>Flux (cm(^{-2}) s(^{-1}))</th>
<th>GS98 (HZ)</th>
<th>AGSs09met (LZ)</th>
<th>diff. (HZ-LZ)/HZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp (10(^{10}))</td>
<td>5.98(1±0.006)</td>
<td>6.03(1±0.005)</td>
<td>-0.8%</td>
</tr>
<tr>
<td>pep (10(^{8}))</td>
<td>1.44(1±0.01)</td>
<td>1.46(1±0.009)</td>
<td>-1.4%</td>
</tr>
<tr>
<td>(^{7})Be (10(^{9}))</td>
<td>4.94(1±0.06)</td>
<td>4.50(1±0.06)</td>
<td>8.9%</td>
</tr>
<tr>
<td>(^{8})B (10(^{6}))</td>
<td>5.46(1±0.12)</td>
<td>4.50(1±0.12)</td>
<td>17.6%</td>
</tr>
<tr>
<td>(^{13})N (10(^{8}))</td>
<td>2.78(1±0.15)</td>
<td>2.04(1±0.14)</td>
<td>26.6%</td>
</tr>
<tr>
<td>(^{15})O (10(^{8}))</td>
<td>2.05(1±0.17)</td>
<td>1.44(1±0.16)</td>
<td>29.7%</td>
</tr>
<tr>
<td>(^{17})F (10(^{6}))</td>
<td>5.29(1±0.20)</td>
<td>3.261±0.18</td>
<td>38.3%</td>
</tr>
</tbody>
</table>

Metallicity determines the opacity of the solar plasma, which affects the central temperature of the sun.
Super-Kamiokande (1996~)

50000 tons of Water Cherenkov detector

- Neutrino-electron elastic scattering
 $\nu^+ + e^- \rightarrow \nu^+ + e^-$

- Find solar direction
- Realtime measurements
 - day-night flux differences
 - seasonal variation
- Energy spectrum

41.4 m
39.3 m

Cherenkov light
Charged particle

Neutrino
Super-Kamiokande (1996~)

Typical event

\[\nu^+ e^- \rightarrow \nu^+ e^- \]

- Find solar direction
- Realtime measurements
 - day-night flux differences
 - seasonal variation
- Energy spectrum

Detector performance

<table>
<thead>
<tr>
<th>resolution (10 MeV)</th>
<th>information</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertex</td>
<td>55cm</td>
</tr>
<tr>
<td>direction</td>
<td>23deg.</td>
</tr>
<tr>
<td>energy</td>
<td>14%</td>
</tr>
<tr>
<td>~ 6 hits/MeV</td>
<td># of hits.</td>
</tr>
</tbody>
</table>

well calibrated by LINAC and DT within 0.5% precision

E_e = 8.6 MeV (kin.)
\[\cos \theta_{sun} = 0.95 \]
Motivation of the measurement

See the neutrino oscillation MSW effect directly

Spectrum distortion

Day-Night flux asymmetry

Super-K can search for the spectrum “upturn” expected by neutrino oscillation MSW effect
Neutrino oscillation

\[\sin^2(\theta_{12}) = 0.316^{+0.034}_{-0.026} \]
\[\Delta m^2_{21} = 7.54^{+0.19}_{-0.18} \]

\[\sin^2(\theta_{12}) = 0.310 \pm 0.014 \]
\[\Delta m^2_{21} = 4.82^{+1.20}_{-0.60} \]

\[\sin^2(\theta_{12}) = 0.310 \pm 0.012 \]
\[\Delta m^2_{21} = 7.49^{+0.19}_{-0.17} \]

The unit of \(\Delta m^2_{21} \) is \(10^{-5} \) eV\(^2\)

\[\sin^2 \theta_{13} = 0.0219 \pm 0.0014 \]
Day/Night asymmetry

expected time variation as a function of $\cos\theta_z$

Day/Night Amplitude was fitted to $-3.3\pm1.0\pm0.5\%$

Non-zero significance was 2.9σ

in SK-I to IV (4499 days)
Recoil electron spectrum

Solar+KamLAND parameter
Solar global parameter
Quadratic spectrum best-fit
Exponential spectrum best-fit

SK spectrum data is consistent within 1σ for the Solar best fit parameters, while marginally consistent within 2σ for the Solar+KamLAND best fit parameters.
BOREXINO (2007~)

Liquid scintillator:
270 t PC+PPO (1.5g/l) in a 150 \(\mu \)m thick *Inner nylon vessel* (R=4.25m)

Buffer region:
PC+DMP quencher (5g/l) 4.25m<R<6.75m

Outer nylon vessel:
R=5.50m (*\(^{222}\)Rn Barrier)

Stainless Steel Sphere:
R=6.75m 2212 8” PMTs with light guide cone. 1350m\(^3\)

Experimental target:
- Solar Neutrinos
- Geo Neutrinos
- SuperNova neutrinos
- Long/Short base line neutrinos
- etc…

The wide energy range in real time are measurable.
Solar neutrinos in BOREXINO

Detection principle

Elastic scattering (ES)

\[\nu^+ + e^- \rightarrow \nu^+ + e^- \]

✓ High light yield (~500 p.e./MeV)
 - lowering energy threshold
 - good energy resolution
✓ Realtime measurements
✓ No neutrino directional inf.
 - background reduction and understanding are critical

Radiopurity is crucial
Recent results in BOREXINO

B. Caccianiga, DOI: 10.5281/zenodo.2672266

Energy spectrum (TFC subtracted)
Recent results in BOREXINO

B. Caccianiga, DOI: 10.5281/zenodo.2672266

<table>
<thead>
<tr>
<th>Solar ν</th>
<th>Borexino results Rate [cpd/100 t]</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>$134 \pm 10^{+6}_{-10}$</td>
</tr>
<tr>
<td>7Be</td>
<td>$48.3 \pm 1.1^{+0.4}_{-0.7}$</td>
</tr>
<tr>
<td>pep (HZ)</td>
<td>$2.43 \pm 0.36^{+0.15}_{-0.22}$</td>
</tr>
<tr>
<td>pep (LZ)</td>
<td>$2.65 \pm 0.36^{+0.15}_{-0.24}$</td>
</tr>
</tbody>
</table>

Total uncertainties 2.7%
5 σ evidence

<table>
<thead>
<tr>
<th>Solar ν</th>
<th>Borexino results Flux $[\text{cm}^{-2}\text{s}^{-1}]$</th>
<th>Expected-HZ Flux $[\text{cm}^{-2}\text{s}^{-1}]$</th>
<th>Expected-LZ Flux $[\text{cm}^{-2}\text{s}^{-1}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>$(6.1 \pm 0.5)^{+0.3}_{-0.5}) \times 10^{10}$</td>
<td>$5.98 (1 \pm 0.006) \times 10^{10}$</td>
<td>$6.03 (1 \pm 0.005) \times 10^{10}$</td>
</tr>
<tr>
<td>7Be</td>
<td>$(4.99 \pm 0.13)^{+0.07}_{-0.10}) \times 10^{9}$</td>
<td>$4.93 (1 \pm 0.06) \times 10^{9}$</td>
<td>$4.50 (1 \pm 0.06) \times 10^{9}$</td>
</tr>
<tr>
<td>pep (HZ)</td>
<td>$(1.27 \pm 0.19)^{+0.08}_{-0.12}) \times 10^{8}$</td>
<td>$1.44 (1 \pm 0.009) \times 10^{8}$</td>
<td>$1.46 (1 \pm 0.009) \times 10^{8}$</td>
</tr>
<tr>
<td>pep (LZ)</td>
<td>$(1.39 \pm 0.19)^{+0.08}_{-0.13}) \times 10^{8}$</td>
<td>$1.44 (1 \pm 0.009) \times 10^{8}$</td>
<td>$1.46 (1 \pm 0.009) \times 10^{8}$</td>
</tr>
</tbody>
</table>
Survival probability

(averaged) vacuum oscillation dominant

Matter effect is dominant

P_{ν_e}

Δm^2_{21}

$\sin^2 \theta_{12} = 0.308$

$\Delta m^2_{21} = 7.50 \times 10^{-5} \text{eV}^2$

$\sin^2 \theta_{12} = 0.311$

$\Delta m^2_{21} = 4.85 \times 10^{-5} \text{eV}^2$

M. Ikeda, Neutrino 2018
DOI: 10.5281/zenodo.1286857
Metallicity puzzle

B. Caccianiga, DOI : 10.5281/zenodo.2672266

BX results seem to give a hint towards the HZ hypothesis in spite of the large theoretical error
Hyper-Kamiokande

(See also “Hyper-Kamiokande Design Report”, arXiv: 1805.04163)

Next generation of large water Cherenkov detector

(~2027 -)

- 190 kton Fiducial volume:
 ~10 x Super-K
- 40% photo coverage with high-efficiency PMTs:
 ~2 x Super-K
 (~40,000 for inner detector)
Solar neutrinos in Hyper-K

Sensitivity of Day/Night flux asymmetry

- b/w zero D/N and Solar of Δm_{21}^2
- b/w Solar and KamLAND of Δm_{21}^2

Systematic error:
- 0.3 %
- 0.1 %
- 0.3 %
Solar neutrinos in Hyper-K

Sensitivity of spectrum upturn

- 3.5MeV energy threshold
- 4.5MeV energy threshold
Summary

- Solar neutrino experiments are important for both particle physics and astrophysics.
- Current running detectors of solar neutrino experiment are Super-Kamiokande and Borexino.
 - Indication of Day-Night asymmetry has been found in Super-K at 3σ level.
 - Precise measurements of pp, ⁷Be, pep has succeeded in Borexino. Metallicity puzzle is still remaining.
 - 2σ tension between solar and KamLAND Δm²¹² is seen. Future experiments, Hyper-K, JUNO, DUNE etc., are possible to solve this problem.