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Focus of This Talk: LBN Beamlines

o Current and future long-baseline neutrino beamlines
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Long-Baseline Neutrino Experiments

-

_ Create intense

Vi and V, beams
by shooting proton
beams on target,
focusing hadrons,
and letting them
decay to neutrinos

Dinitial

_ Flux and cross-section constraint for
far detector prediction

_~ Near detector physics measurements
(e.g. neutrino-nucleus cross-sections)
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My talk focuses on this part
to precisely know a priori neutrino flux
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How to Make a Neutrino Beam

target

Primary
protons

;K taret

Hadron productions ofwiond Kithrough primary interactions in the target
(p+C, p+Be)

—> Primary contribution to the neutrino flux



How to Make a Neutrino Beam

Primary > .
protons

Q"

magnetic horn

Hadron production process can be more complex: e
- Secondary interactions in the target (hadrons + C/Be) T2K horn
- Secondary interactions with horn or beamline materials (hadrons + X)

> Neutral hadron decay (p+ C/Be —> W + X)
—>Non-negligible contribution to the neutrino flux




Fractional Error

Why Hadron Production Measurements?

Hadron Production is the leading uncertainty source of the flux prediction

J-PARC beamline (T2K flux)
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T2K: Phys. Rev. D87, 012001 (2013)

Fractional Uncertainties

NuMI beamline (MINERVA flux)
(low energy configuration)
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Why Hadron Production Measurements?

- We rely on hadronic interaction models for the neutrino flux predictions
o FLUKA (J-PARC/T2K), Geant4 FTFP_BERT (NuMI experiments)

© Precision neutrino flux prediction is a key for:
> neutrino oscillation measurements (Pnp -0, Prp - o)
o various near detector measurements (direct ®np )
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Hadron Production Experiments

NAGS61/SHINE (about 150 collaborators) EMPHATIC (about 20 collaborators) Former
) - I Experiments
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B_> e | I "l | | ~ MIPP
m e Fermilab
C e v e 7N | | - HARP
[ i S i « CERN PS
CERN SPS North Area | © Fermilab Test Beam Facility (FTBF) | © NAS6/SPY
e Hadron beam: 13-350 GeV/c » Hadron beam: 0.2-120 GeV/c * CERNSPS
Large acceptance |V Forward precision measurement | .
e TPCs as the main tracking detector e Silicon and emulsion detectors as .
e Momentum measurement the tracking detectors | .
e Particle ID with TPC and ToF e NO momentum measurement yet
o Thin and Replica target measurements I ~ Thin target measurements I

o Completed approved data taking
e Program extension for 2021-2024

Iv Completed test data taking in 2018 |
e Upgrade is under consideration



Thin Target Measurements

1.5 cm thin graphite target
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Strategy of Thin Target Measurements

+
o, K 7, © Thin target: a few % of A nuclear targets to study single interactions
T,

> > P . Oinel — Ototal — Oel
0 e Measurement of total cross sections
Ks Oprod — Oinel — Oqe
thin target A 1% 9
(C, Be, Al,

« Measurement of differential cross sections d2(7/dp db

etc...)

Thin target measurements are used to re-weight hadron interaction model predictions

Correction is applied for each interaction (23¢)

Primary T dat

protons e Interaction rate tuning: 1)/ — —98% ,—z(0data—0oMC)p
OMC

( x: travel distance, p: target material density )

N(pa Q)Data
N(p7 H)MC 11

e Differential production tuning: W (p, 8) =



Thin Target: Total Cross section

o Not all experiments use same definition for total cross section
P P

Coherent elastic process:
interaction on the nucleus —> 0 g]

Oinel — Ototal — Oel

Quasi-elastic process: o

interaction on bound nucleons —> O'qe Oprod = Oinel — Oge
Production process: —>Oinel Use this definition through the talk
interaction with new hadron production (T2K uses this definition)

—> Oprod

o NuMI flux tuning definition: |Uine1 — Ototal — Oel — Oge —>O0prod in our definition |

|Uabsorption — Ototal — Oel —> Ojinel inour definitionl

o Earlier experiments: mixed up inelastic and production cross sections

e.g. Denisov, et. al (1973): |Uabsorption = Ototal — Oel —> Oinel in our definition |

e.g. Carroll, et. al (1979): |Uabsorption = Ototal — Oel — Oge —> Oprod in our definition | 12




NAG61/SHINE: Total Cross section (z*, K)
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NA61/SHINE: Phys. Rev. D98, No.5 052001 (2018)

o Precision of new measurements: 2~3%
—> NuMI simulation assumes an uncertainty of 5% for pion reinteractions and
10-30% for kaon reinteractions

—> Greatly reduce the uncertainty, especially for kaon interactions 13



NAG61/SHINE: Total Cross section (protons)

NA61/SHINE Preliminary NA61/SHINE Preliminary
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NA61/SHINE: Paper under preparation | Brand new results!!

> Precision of measurements: 2-3% (stat. + syst.), ~1% (el model), 2-8% (ge, inel model)

—> Improved precision for 60 GeV protons, first measurement for 120 GeV protons

—> Future measurement to reduce model uncertainty is desirable
(one of the EMPHATIC's physics goal)



d*n/(dpd6) [(rad.GeV/c)']
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NAG61/SHINE: Differential Cross section (protons)
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Negative pions and kaons, and VO particles( K%, A)
production have been measured as well 15



NAG6 1/SHINE: Differential Cross section ()
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Measured negative pions and kaons, protons, and VO particles (A ,K) as well
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Replica (Thick) Target Measurements

NuMlI replica target
(120cm graphite fins, 2.5 A)

17



Strategy of Replica Target Measurements

o /{é J— o Replica (thick) target: 12K (90 cm graphite), NuMI (120 cm graphite)
/

—>

\ \ e Measurement of hadron production yields dgn/dp dl dz

replica target —Lnoprod

* Measurement of beam survival probability| Psyrvival = €

position Z .
(L: length of target, n: number of atoms per unit volume)

Replica target measurements are used to re-weight hadron yield predictions

Correction is applied to each exiting point ()

Primary 9
protons O/\ / » Differential production tuning: W (p, 0, z) = (ZO’ H’z))Data
p7 sy ©)MC

/ \ In addition, measurement of beam survival probability will
K+ \ be used to study beam interaction rate in target
: \ —> This will be important to understand thin vs replica

based tuning discrepancy (discussed later) 18




NA61/SHINE: T2K Replica Target

+ 4+
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Negative pions and kaons have been measured as well

8 B-bins for 0 < 0 < 260 mrad (Z6)
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NA61/SHINE: T2K Replica Target (Systematic)

backward
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- What was limitation of measurements?
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= ToL Syst. | Track position uncertainty on the target surface.
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=== Had. Loss —> Future detector upgrade is necessary
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T2K Flux Uncertainty with Hadron Production Data Set

é o — H;dron InlteractlionsI I — Mamlm M(I’deml‘g I
u‘j 03 = Proton Beam Profile & Off-axis Angle Number of Protons —
= [~ Hom Current & Field — Replica Tuning Error .
g : - Hom & Target Alignment = = = Thin Tuning Error :
‘3 [ ] ®xE,,Arb.Nom. o
S 02 T2K Work in Progress —
a8 B o
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© Thin target measurements improved T2K flux uncertainty down to 10%

o Replica target measurements will improve uncertainty down to ~5%
(Replica tuning in figure only considers pions.
Result will further improve with kaons and protons taken into account ! )



NAG61/SHINE: NuMI Replica Target

Complete data taking in 2018 with NuMI Replica Target (NOvVA configuration)
> Data analysis will start soon

NuMI replica target a typical event with
(120cm, 2.5 A) p + NuMl replica @ 120 GeV




Flux Ratio

Thin vs Replica Data Flux Tuning
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T2K (T. Vladisavljevic): arXiv:1804.00272 MINERVA: Phys. Rev. D94, 092005 (2016)

o Difference observed for both T2K and NuMI| beamlines
—> Due to beam interaction rate?
~ This issue needs to be understood
—> Measurements of beam attenuation, further precision total cross section 23



Future Prospect

http://www.hyperk.org

Hyper-Kamiokande

A gigantic detector to confront
elementary particle unification theories
and the mysteries of the Universe’s evolufion

https://www.dunescience.org

Sanford Underground
Research Facility

Fermilab

-------


http://www.hyperk.org
https://www.dunescience.org

Requirements for Future LBN Experiments

- Towards J-PARC/Hyper-K (off-axis) and LBNF/DUNE (on-axis)
o “Total” systematic uncertainty: below 5% for neutrino oscillation measurements
—> goal for flux: 2-3% on flux uncertainty for broad range of energiesl!!
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Future Hadron Production Measurements

> What do we need before the start of next generation LBN experiments?

Thin Target —
e Uncovered materials
—> With various nuclear targets (Al, Fe, Ti, Water, etc...)
—> With new target material (SiC, Super-Sialon)
e Uncovered phase-space
—> T2K: low momentum (1-5 GeV/c) hadron interactions
—> DUNE: 7T and K= re-interactions (30-60 GeV/c)

e Improved precision
—> More statistics to reduce statistical uncertainty

Main players

e NA61/SHINE in 2021-2024
e EMPHATIC upgrade

—> Direct measurement of Oel, Oqe, Oinel —

Replica Target )

e New replica target
—> Hyper-K and DUNE targets are under development
e Improved precision

—> Tracking detector upgrade is necessary _

e NA61/SHINE in 2021-2024

26




Future Hadron Production Experiments
NAS61/SHINE EMPHATIC

Replacement of thg TPC I RPC ToF Lead glass
' read-out electronics counter calorimeter
Construction of Vertex Detector (VD) to increase data rate to 1 kHz 400mrad
for D°, DY decay reconstruction I
(mainly for heavy ion program) Aerogel RICH S00mrad
A Permanent
magnet B 200mrad
I (aperture) [~ _,

Target‘ o ”’/:’j( ‘] . N

o | J&Hﬂ”ﬁ{ H‘ i

sSD  ¢op

J I \ sSD Lh
New trigger and data / I

acquisition system Upgrade of Projectile

~200mrad

A N |

23-60mrad

iAOOmrad

New Time-of-Flight Spectator Detector I
detectors (mainly for heavy -
- Facility upgrades in progress fon program) | | 1000 |
e DAQ upgrade: ~1kHz TPC readout

o Facility upgrades under consideration
* Beam particle ID below 15 GeV/c
e Large acceptance
* Momentum measurement with magnet 55

* new ToF walls with mRPC |
- Various ideas under consideration

e Construction of low momentum beamline |

e New target tracking detector



Summary

_ Precise hadron production measurements are essential to reduce the leading
systematic uncertainty on the neutrino flux prediction
e Thin and replica measurements reduce flux uncertainty down to < 5% (12K)
* Rich hadron production data has been collected and being analyzed
(NA61/SHINE)
e Dedicated forward measurement has started to understand total cross
sections more precisely (EMPHATIC)
~ More precise hadron production measurement is necessary for future LBN
o Significant facility upgrades are planned and ongoing (NA461/SHINE,
EMPHATIC), which allows new measurements with thin target (NA461/SHINE,
EMPHATIC) and replica target (NA61/SHINE)






