Prospects of the Hyper-Kamiokande project

Yasuhiro Nakajima (ICRR, the University of Tokyo) August 6, 2019 15th Rencontres du Vietnam "Three Neutrinos and Beyond"

Contents

- The Hyper-Kamiokande Project
- Physics capabilities
- Project status
- Summary

The Hyper-Kamiokande Project

- Next-generation large water Cherenkov Detector
 - 190 kton fiducial volume: ~x8 of Super-K
 - 40% photo-coverage with highefficiency 20" PMTs
- Vast range of physics programs:
 - Neutrino oscillation study with > 1.3 MW J-PARC beam and upgraded near and intermediate detector complex from T2K
 - Atmospheric, solar and astrophysical neutrino studies
 - Search for nucleon decays

Details in Hyper-K Design Report (arXiv: 1805.04163)

International Hyper-K Proto-Collaboration

15 + 2 countries, ~80 institutes, ~300 members

Candidate site

8 km south of Super-K 650 m rock overburden

Physics targets of HK

- Study unresolved property of neutrinos
 - CP violation in the lepton sector
 - Determination of mass ordering, θ_{23} octant
 - Precision test of the tension of $\Delta m^2{}_{21}$ between reactor and solar neutrino data
- Observation of astrophysical neutrinos w/ much extended range
 - Precise measurement of supernova (relic) neutrinos
- Search for proton decay

HK can study all of those items with an order of magnitude better sensitivity than currently running experiments

Accelerator neutrinos

- T2K observed a hint of CP-violation
 - Current T2K statistics: 90 v_e and 15 $\overline{v_e}$ candidates
- HK can study further with O(1000) v_µ→v_e and v_µ→v_e appearance events: ~3% statistical precision!
- Better control of systematics is crucial
 - Current T2K systematics: 6-7%
 - Upgraded near-detector and new intermediate detector to constrain flux+interaction systematics to <4%
- Even further study with a second detector in Korea actively considered

Expected signal

10 years (10yrs×1.3MW×10⁷s), v : vbar = 2.5yrs : 7.5yrs

CPV sensitivity

- Exclusion of sin $sin\delta_{CP} = 0$
 - 8σ for $\delta = -90^{\circ}$ (current T2K best fit)
 - ~80% coverage of δ parameter space for >3σ discovery of CPV
- Precision measurement of δ_{CP} :
 - ~22° uncertainty for $\delta = \pm 90^{\circ}$
 - ~7° uncertainty for $\delta = 0^\circ$ or 180°
- Further enhancement with combined analysis with atmospheric neutrino data

Precise measurement of Δm_{32}^2 and θ_{23}

Expected precision:

 $m_{32}^2 [eV^2/c^4]$

 $2.6 \sum_{\square}^{\times 10^{-3}}$

2.55

2.5

2.45

2.4

2.35

2.3

2,2^{E⊥} 0.35

0.4

2.25

- Δm²₃₂: 1.5 x 10⁻⁵ eV² (0.6%)
- $\sin^2\theta_{23}$: 0.006 (0.017) at $\sin^2\theta_{23} = 0.45$ (0.50) •

0.5

 $\sin^2\theta_{23}$

0.45

Reactor constraints help resolving θ_{23} octant

 $\sin^2\theta_{23}$

Atmospheric neutrinos

- Unique source to study neutrino oscillation with:
 - Wide energy range: ~100 MeV to ~10 GeV
 - Large variety of baseline (10 km to 13000 km) and matter effect
- Sensitive to Mass ordering, θ_{23} octant and δ_{CP}

Beam + atmospheric combination

Solar neutrinos

- Unresolved tension between solar and reactor (KamLAND) Δm²₂₁ values
- Super-K's sensitivity to Δm²₂₁ come from spectrum distortion around a few MeV and day-night flux asymmetry
- Hyper-K can independently test this tension with much higher statistics

Solar neutrino day/night sensitivity

- Significance for non-zero day/night asymmetry with current solar Δm^2_{21} - Significance to distinguish current solar and KamLAND Δm^2_{21}

Capable to distinguish the current solar and KamLAND best fit Δm_{21}^2 values with 4-5 σ significance with ~10 years of data

Solar spectrum upturn measurement

- 3σ (5σ) detection of spectrum upturn possible with 4.5 MeV (3.5 MeV) threshold.
- Achievable energy threshold depends on many factors:
 - Radioactive backgrounds (especially Rn in water)
 - PMT dark rate
 - Energy resolution
 - Spallation backgrounds

Pee versus v Energy

Significance of upturn detection at HK

Supernova neutrinos

- Supernova Burst Neutrinos
 - 50k-70k events (mostly inverse beta decay) expected from bursts at 10 kpc (galactic center)
 - Unprecedented statistics to study supernova burst models
- Supernova Relic Neutrinos
 - Diffused neutrinos from the past supernova explosions
 - Retain history of supernova bust in the history of universe from its rate and energy spectrum.
 - Aiming for first detection in SK-Gd
 - HK can make precise study of its energy spectrum with >100 observed events

Proton decay sensitivities

Project status (situation in Japan)

- In the end of Aug. 2018, MEXT has decided to request the budget to Ministry of Finance for *"funding for feasibility study"*
 - Super-Kamiokande also received the "funding for feasibility study" in 1990, and the construction budget was approved in 1991
- Then, the President of the Univ. of Tokyo, in recognition of both the project's importance and value both nationally and internationally, *pledged to ensure construction of the Hyper-Kamiokande detector commences as scheduled in April 2020.*

Hyper-K construction shall start in 2020 (aim to start operation in ~2027)

Summary

- The Hyper-Kamiokande project: Next generation neutrino and nucleon decay experiment with
 - Huge water Cherenkov Detector with ~190 kton FV
 - High-intensity neutrino beam from 1.3 MW proton beam at J-PARC
 - Upgraded near detector system
- Unique capability of studying wide variety of physics
 - Precision study of neutrino oscillation and CP violation in the lepton sector
 - Neutrino astrophysics
 - Search for nucleon decays
- Construction to start in 2020, aiming to start observation in 2027