

Precision Measurement of Neutrino Mixing at JUNO

Reactor \bar{v}_e Production and Detection

Reactor Neutrinos Oscillation

Daya Bay Recent Result

Jiajie Ling (SYSU)

Precision Measurement from Daya Bay

Jiajie Ling (SYSU)

Open Questions of Massive Neutrinos

- Are neutrinos responsible for the matter anti-matter asymmetry?
- What's the neutrino mass ordering?
- Are neutrinos Dirac or Majorana particles?
- What is the neutrino mass?
- Do sterile neutrinos exist?
- Why neutrino mass is so tiny?

Neutrino Mass Ordering (NMO)

Neutrino oscillation can cause different oscillation frequencies at different L and E

The JUNO Site

NPP	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan	
Status	Operational	Planned	Planned	Under construction	Under construction	
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	18.4 GW	
A.		14		b	y 2020: 26.6 GW	
	Kaiping	Jiangme • Photosome	ang Zhou Shen Zhe n	بالتعليمة. Huizhou Al Daya Bay NPP Allous Kons	u NPP Lufeng NPP	
700 m	overburden	and the part of th	Hong	Kong		
J	UNO 53	8 km				
5 Yang	3 km gjiang NPP	Taishan N	PP			

Jiajie Ling (SYSU)

Neutrino Oscillation at Jiangmen Underground Neutrino Observatory (JUNO)

S.T. Petcov et al., PLB533(2002)94
S.Choubey et al., PRD68(2003)113006
J. Learned et al., PRD78, 071302 (2008)
L. Zhan, Y. Wang, J. Cao, L. Wen, PRD78:111103, 2008, PRD79:073007, 2009
J. Learned et al., arXiv:0810.2580
Y.F Li et al, PRD 88, 013008 (2013)

Sensitivity of NMO Determination

J. Phys. G43:030401 (2016)

Assume NO as true MO, and fit the spectrum with false and true MO cases respectively, and we get $\Delta \chi^2 = \chi^2$ (false)- χ^2 (true)

JUNO Detector Design

	KamLAND	Borexino	Daya Bay	JUNO
LS Mass [kt]	1	0.278	~0.04 x 8	20
E resolution@ 1 MeV	6%	5%	8%	3%
Photo-coverage	34%	30%	12%	77%
E calibration	1.4%	1%	0.5%	<1%

Sensitivity of NMO Determination

Event type	Rate (per day)	Rate uncertainty (relative)	Shape uncertainty
IBD candidates	60	_	
Geo-vs	1.1	30%	5%
Accidental signals	0.9	1%	negligible
Fast-n	0.1	100%	20%
⁹ Li– ⁸ He	1.6	20%	10%
$^{13}C(\alpha, n)^{16}O$	0.05	50%	50%

JUNO MO sensitivity with 6 years' data assuming full reactor power

	Size	$\Delta \chi^2_{MO}$
Ideal	52.5 km	+16
Core distr.	Real	-3
DYB & HZ	Real	-1.7
Spectral Shape	1%	-1
B/S (rate)	6.3%	-0.6
B/S (shape)	0.4%	-0.1

NMO Sensitivity with External ν_{μ} Constraints

Mass ordering degeneracy at a certain L and E: $|\Delta m_{32}^2(IO)| = |\Delta m_{32}^2(NO)| + \Delta m_{\phi}^2$

Sensitivity with 100k events (20k ton LS + 6 years with $36GW_{th}$ reactor power)

- 3% energy resolution@1 MeV, <1% energy calibration
- $\overline{\Delta \chi^2} > 9$ ($\overline{\Delta \chi^2} > 16$ with external 1% | $\Delta m_{\mu\mu}^2$ | constraint)

Fine Structure in Reactor Spectrum

Fine structure calculation depends on the ab-initio calculation using nuclear database and can not be precisely determined.

Jiajie Ling (SYSU)

JUNO-TAO

- Taishan Antineutrino Observatory (TAO), a ton-level, high energy resolution LS detector at 30 m from the core, a satellite exp. of JUNO.
- Measure reactor neutrino spectrum w/ sub-percent E resolution.
 - model-independent reference spectrum for JUNO
 - a benchmark for investigation of the nuclear database
- Ton-level Liquid Scintillator (Gd-LS)
- Full coverage of SiPM w/ PDE > 50%
- Operate at -50 °C (SiPM dark noise)
- 4500 p.e./MeV
- Taishan Nuclear Power Plant, 30-35 m from a 4.6 GW_th core
- 2000 IBD/day (4000)
- Online in 2021

Precision Measurement

		Δm_{21}^2	$ \Delta m^2_{31} $	$\sin^2 \theta_{12}$	$\sin^2 heta_{13}$	$\sin^2 \theta_{23}$	δ
Current presision	Dominant Exps.	KamLAND	T2K	SNO+SK	Daya Bay	$NO\nu A$	T2K
current precision	Individual 1σ	2.4%	2.6%	4.5%	3.4%	5.2%	70%
	Nu-FIT 4.0	2.4%	1.3%	4.0%	2.9%	3.8%	16%

Probing the unitarity of U_{PMNS} to ~1%, more precise than CKM matrix elements!

Other Physics for JUNO

The JUNO Collaboration

77 Institutions, ~600 collaborators

- China (34), Taiwan, China (3), Thailand (3), Pakistan, Armenia
- Italy (8), Germany (7), France (5), Russia (3), Belgium, Czech, Finland, Slovakia, Latvia
- Brazil (2), Chile (2), USA (3)

Collaboration established on July 2014

JUNO Schedule

Summary

- Neutrino physics has entered the precision era.
- Daya Bay has the world best measurement on θ_{13} .
- JUNO can have independent determination of neutrino mass hierarchy at >3 σ .
- JUNO also can have sub-percent measurement on $\theta_{12}, \Delta m^2_{21}, \Delta m^2_{32}$
- JUNO will largely advance the reactor neutrino physics and liquid scintillator technology.