

Experimental status of T2K and NOvA

Davide Sgalaberna (CERN) XVth Rencontres du Vietnam 5th August 2019

T2K off-axis design principle

- 30 GeV proton beam on 90 cm long graphite target
- v_{μ} and \overline{v}_{μ} produced by pion and kaon decay:
 - $\pi^+ \rightarrow \mu^+ + \nu_\mu$
 - $\pi^- \rightarrow \mu^- + \overline{\nu}_{\mu}$
- Invert magnet polarity to produce a \overline{v}_{μ} beam
- First off-axis neutrino beam experiment 2.5° (44 mrad)
 - narrow spectrum peaked at 0.6 GeV, on the expected oscillation maximum,

(Anti)Neutrino interactions at T2K

π

Δ

N

π

Δ

N

Ν

Ν

Charged-Current

Quasi-Elastic (CCQE)

(Anti)Neutrino interactions at T2K

T2K near detector complex

NIM A 659 (2011) 106–135

- Muon monitor:
 - + Spill-by-spill monitoring of the beam
- On-axis detector (INGRID)
 - + measure beam intensity / direction
- Off-axis detector (ND280):
 - + 2.5° off-axis magnetized detector
 - Fine Grained Detector (plastic scintillator and water), TPCs, ECAL, P0D, SMRD
 - precise measurement of neutrino flux and cross section
 - + measure wrong-sign background (20-30% v_{μ} in \overline{v}_{μ} beam after interaction)

Constraining the systematic uncertainties at ND280

• A joint fit of the following samples is performed: CC-0 pions, CC-1 pion, CC-Other for v beam, CC-1 track, CC N-tracks for \overline{v} beam

- Most of the parameters fall within 1σ of their assigned prior uncertainty
- The goodness-of-fit test shows a p-value for the model of 0.47

T2K far detector: Super-Kamiokande

- Located in Mozumi mine
 - 2700 m.w.e overburden
- Water Cherenkov detector (50 kton)
- Fiducial mass 22.5 kton
- Inner detector
 - 11129 20-inch PMTs
- Outer veto detector
 - 1885 8-inch PMTs
 - determine fully-contained events

Far Detector v_{μ} / \overline{v}_{μ} event samples

• Data collected: 3.16 x 10²¹ POT (v - 1.51 x 10²¹ POT, v - 1.65 x 10²¹ POT)

Oscillation Analysis results

Best-fit	Normal Ordering	Inverted Ordering
sin²θ ₂₃	0.532	0.532
IΔm ² ₃₂ I (×10 ⁻³ eV ²)	2.45	2.43

- Consistent with maximal disappearance
- Agreement with reactor measurements
- Preference for $\delta_{CP} \sim -\pi/2$

Confidence intervals of δ_{CP}

- Confidence intervals were computed with Feldman-Cousins method
- Integrate over θ_{13} using the PDF from reactors' measurement (PDG-2018)

- The best-fit is $\delta_{CP} = -1.89$ radians and Normal Ordering
- Both δ_{CP} = 0 and π are excluded at 2σ CL
- Allowed 2σ CL region: Normal Ordering: [-2.97,-0.63]
 - Inverted Ordering: [-1.80,-0.98]
- Preference for maximal CP violation and Normal Ordering

Comparison between sensitivity and data results

• Toy MC study to compare the experiment sensitivity to the observed data set

- Less than ~5% of toy MC experiments show stronger exclusion than T2K data
- If Nature is $\delta_{CP} = -\pi/2$ and Normal Ordering:
 - + The # of MC experiments that exclude $\delta_{CP}=0,\pi$ (both) at 2σ is 24%

Long-baseline neutrino oscillation experiment based in US

- + Measurement of Mass Hierarchy with significance better than 3σ
- + Hint of CP violation in the leptonic sector

- Intense muon (anti)neutrino beam from NuMI in Fermilab
- Measure muon (anti)neutrino disappearance and electron (anti)neutrino appearance

Long-baseline neutrino oscillation experiment based in US

- + Measurement of Mass Hierarchy with significance better than 3σ
- + Hint of CP violation in the leptonic sector

- Off-Axis angle = 14 mrad
- 120 GeV proton beam
- Tuned with NA49 and

MIPP experimental data 13

Long-baseline neutrino oscillation experiment based in US

- + Measurement of Mass Hierarchy with significance better than 3σ
- + Hint of CP violation in the leptonic sector

Long-baseline neutrino oscillation experiment based in US

- + Measurement of Mass Hierarchy with significance better than 3σ
- + Hint of CP violation in the leptonic sector

The NOvA Near and Far Detectors

Same detector technology at Near and Far detectors

The NOvA Near and Far Detectors

- PVC extrusion + Liquid Scintillator (minerail oil + 5% pseudocumene)
- Read out via wavelength-shifting fiber to Avalanche PhotoDiode (APD)
- ~344k channels at Far Detector

6 ch

3.87 cm↓

3.87_{cm}

6.0cm

Scintillator cell with looped WLS Fiber.

15.6m

Plane of horizontal cells

Plane of vertical cells

Effect of CP violation and Mass Hierarchy

• About 30% effect both in δ_{CP} and Mass Hierarchy

(Anti)Neutrino interactions at NOvA

- Higher energy compared to T2K
- NC background: EM shower from $\pi^0 \rightarrow \gamma \gamma$
- Nuclear effects and 2p-2h are important components

NOvA event topologies

Convolutional Visual Network technique to identify the event topology (Aurisano, et al., JINST 11 (2016) no.09, P09001)

Joint Neutrino and Anti-Neutrino analysis

• Data collected: 2.12 x 10²¹ POT (v - 0.89 x 10²¹ POT, v - 1.23 x 10²¹ POT)

• Observe 113 v_{μ} (expect 730) and 102 \overline{v}_{μ} (expect 476)

- Observed 58 v_e (expect 15) and 27 \overline{v}_e (expect 10.3)
- Wrong-sign background is ~ 3% in beam and 11% \overline{v}

Confidence region $sin^2\Theta_{23}$ and Δm^2_{32}

Confidence interval of δ_{CP}

- Preference for Normal Hierarchy, Inverted Hierarchy excluded 1.9σ
- All values for Normal Hierarchy are allowed at 1.1σ (NH, upper octant)
- Region around $\delta_{CP} \sim +\pi/2$ and Inverted Hierarchy is excluded at $>4\sigma$
- Results are in agreement with T2K

Comparison of different experimental results

Prospects for the future

T2K data taking will be extended to phase II up to 2025 Increased beam intensity up to ~1 MW in 2021

NOvA expected improvements: beam intensity, test beam for detector response

NOvA+T2K joint data fit foreseen for 2021

Conclusions

- T2K and NOvA are currently the most sensitive experiments for the measurement of the neutrino CP violating phase and mass ordering
- Similar in the concept but the different configurations (water Cherenkov vs plastic scintillator, different vs identical ND-FD technologies, different energies) make any comparison of the oscillation comparison more robust
- Latest results are in good agreement
- Future improvements are foreseen, i.e. T2K Near Detector upgrade and NOvA test beam data analysis to characterize the detector response
- Plan for combined NOvA+T2K data analysis

BACKUP

Effect of CP violation and Mass Hierarchy at T2K

• Asymmetric effect on $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$:

- $\delta_{CP} = -\pi/2 \rightarrow \text{maximizes P}(v_{\mu} \rightarrow v_{e})$ and minimizes P $(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$

- $\delta_{CP} = +\pi/2 \rightarrow \text{minimizes P}(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})$ and maximizes P $(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})$

- Effect of δ_{CP} on $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{\mu} \rightarrow \nu_{e}$ is about ±20-30%
- Effect of Mass Hierarchy is about $\pm 10\% 295$ km baseline not long enough

Prospects for the future: T2K-II

- Expect to reach the approved T2K statistics (7.8x10²¹ POT) around 2021
- T2K-II phase: proposed to extend T2K run to 20x10²¹ POT by 2025 (Stage-I status at summer JPARC PAC)
- Plan to gradually increase the beam intensity up to \sim 1 MW in 2021
- \bullet Aiming for >1 MW intensity for 2021 and 1.3 MW in ~2026: accelerator and beam-line upgrade is needed
- Demonstrated 3.41x10¹³ protons per beam operation \rightarrow 1MW equivalent

u_e/ u_μ event selection with CVN

L. Kolupaeva @EPS 2019

- * We use convolutional neural network called CVN (Convolutional Visual Network).
- * Particle identification technique based on ideas from GoogLeNet (computer vision and deep learning).
- * Multi-label classifier the same network used in multiple analyses: can classify ν_e , ν_{μ} , ν_{τ} , NC and cosmic.

A. Aurisano et. al, JINST 11, P09001 (2016)

Neutrino beam

L. Kolupaeva @EPS 2019

* 120 GeV protons on a carbon target, produce mesons which yield neutrinos.
Beam purity with ν(ν): 95% ν_μ, 4% ν_μ, 1% ν_e (93% ν_μ, 6% ν_μ, 1% ν_e).
* NOvA is designed for the 700 kW NuMI beam, with 6 × 10²⁰ POT/year (POT = Protons On Target).

* Running at 700 kW since January 2017.

