Axion-like-particles at ATLAS/CMS, LHCb, and Kaon factory

July 4, 2019

Kohsaku Tobioka Florida State University&KEK

Refs.

[arXiv:1710.01743]Phys.Lett. B783(2018)13 A. Mariotti, D. Redigolo, F. Sala, KT [arXiv:1810.09452]JHEP1901(2019)113 X. Cid Vidal, A. Mariotti, D. Redigolo, F. Sala, KT preliminary work with Stefania Gori, Gilad Perez

Introduction

PBC target: Axion and Axion-Like Particles

Axion = Pseudo-Nambu Goldstone Boson associated to Peccei-Quinn symmetry, a global U(1), introduced to address the Strong QCD problem. Vast range of masses and couplings possible, with fixed relation.

Axion-Like Particle (ALP): a generalized version of the axion (at the cost of the original motivation from the strong CP problem). No direct relation between coupling and mass.

Introduction

Outline

Theoretical Motivation

- * Axion-like-Particles and Heavy Axion
- Search at
 - * ATLAS/CMS for 10GeV-50GeV
 - * LHCb for O(1)GeV-20GeV
 - * KOTO for <350MeV
- Summary

Theoretical Motivation

Expect light resonance?

Yes. pNGB: pseudo Nambu Goldstone bosons are common among BSM models, mass can be arbitrary light, e.g. π

Focus: Axion-like-particles(ALPs) e.g.

- Hierarchy problem
- R-axion from low-scale SUSY

E.g. Bellazzini, Mariotti, Redigolo, Sala, Serra(1702.02152)

pNGB from composite Higgs

Barnard, Gherghetta, Ray('13), Ferretti('16)...

- Simply new QCD
- New pion from TeV QCD' Kilic, Okui, Sundrum('09), Nakai, Sato, KT ('16) ...
- Strong CP problem

 Heavy Axion/Visible Axion

Rubakov{'97}, Fukuda, Harigaya, Ibe, Yanagida ('15), P. Agrawal, K. Howe('17)

Unlike QCD axion case, $m_a \sim m_{\pi} f_{\pi}/f_a$, mass and coupling (1/ f_a) are independent

Strong CP problem and Axion

Phase promoted to axion field, and settled at minimum

[Peccei, Quinn] [Weinberg; Wilczek; Kim-Shifman-Vainshtein-Zakharov; Dine–Fischler–Srednicki–Zhitnitsky]

Axion window

$$4 \times 10^8 \,\mathrm{GeV} \lesssim f_a \lesssim 10^{12} \,\mathrm{GeV}$$

Constraints(e.g. Astro,SN1987) push to **very high f**_a *Over DM abundance&problem in inflation with f_a>10¹²GeV

Peccei-Quinn symmetry quality problem

Global symmetry explicitly broken by gravity or cutoff \rightarrow PQ symmetry should be extremely robust

[S. M. Barr, D. Seckel ('92); M. Kamionkowski, J. March-Russell ('92)]

$$\Delta V_{
m PQ} = \lambda_{\Delta} rac{\Phi^{\Delta}}{\Lambda_{
m UV}^{\Delta-4}} + {
m h.c.}$$
 $V_a \simeq -\Lambda_{
m QCD}^4 \cos rac{Na}{f} + rac{1}{2^{rac{\Delta}{2}-1}} rac{|\lambda_{\Delta}| f^{\Delta}}{\Lambda_{
m UV}^{\Delta-4}} \cos \left(lpha_{\Delta} + \Delta rac{a}{f}
ight)$

Even gravity breaking with Δ =12 shifts min. (f_a~10¹²GeV) $\delta\theta$ >10⁻¹⁰

- With $\Delta < 12$ operators, strong CP problem is not solved
- Standard scenario requires complex UV

Extended gauge group, discrete symmetry, extra dimension...

[Dine('92); R. Holman et al('92); Randall ('92); E. Chun and A. Lukas('92); HC Cheng, D.E.Kaplan('01), Dias, Pleitez, Tonasse ('12),... K. Harigaya, et al ('13); M. Redi, R. Sato('16), Fukuda, Ibe, Suzuki('17)...]

PQ quality problem motivates Heavy Axion

Effective Lagrangian

$$\mathcal{L}_{\text{int}} = \frac{a}{4\pi f_a} \left[\alpha_s c_3 G \tilde{G} + \alpha_2 c_2 W \tilde{W} + \alpha_1 c_1 B \tilde{B} \right]$$

$$f_a \sim 0.1 - 10$$
 TeV and $c_3 \neq 0$
Loops of gluinos, tops. Necessary to solve strong CP problem
benchmark $c_1 = c_2 = c_3 = 10$

- production@LHC is gluon fusion,
- prompt decay to dijet or diphoton due to $(m_a < m_Z)$

Effective Lagrangian

$$\mathcal{L}_{\text{int}} = \frac{a}{4\pi f_a} \left[\alpha_s c_3 G \tilde{G} + \alpha_2 c_2 W \tilde{W} + \alpha_1 c_1 B \tilde{B} \right]$$

$$f_a \sim 0.1 - 10$$
 TeV and $c_3 \neq 0$
Loops of gluinos, tops. Necessary to solve strong CP problem
A benchmark $c_1 = c_2 = c_3 = 10$

- production@LHC is gluon fusion,
- prompt decay to dijet or diphoton due to (m_a<m_z)

Many previous ALP studies with $c_3=0$ (Br_{a $\rightarrow\gamma\gamma$}~100%)

Photonphilic ALP: LEP[Jaeckel, Spannowsky('15)] Heavy-ion[Knapen et al('16)], Beamdump with NA62 [B. Dobrich et al ('16)], Sub 10GeV, ALP-W int. induces FCNC(B->Ka) [Izaguirre, Lin, Shuve('16)], etc.

Search at ATLAS/CMS m_a=10-50GeV

Existing constraints from LEP to LHC

Experiment	Process	Lumi	\sqrt{s}	low mass reach	ref.
LEPI	$e^+e^- \to Z \to \gamma a \to \gamma jj$	12 pb^{-1}	Z-pole	$10 { m GeV}$	[29]
LEPI	$e^+e^- \to Z \to \gamma a \to \gamma \gamma \gamma$	$78 \mathrm{~pb}^{-1}$	Z-pole	$3~{ m GeV}$	[30]
LEPII	$e^+e^- \to Z^*, \gamma^* \to \gamma a \to \gamma jj$	$9.7,10.1,47.7 \text{ pb}^{-1}$	$161,\!172,\!183~{\rm GeV}$	$60 {\rm GeV}$	[31]
LEPII	$e^+e^- \to Z^*, \gamma^* \to \gamma a \to \gamma \gamma \gamma$	$9.7,10.1,47.7 \text{ pb}^{-1}$	$161,\!172,\!183~{\rm GeV}$	$60 {\rm GeV}$	[31, 32]
LEPII	$ e^+e^- \to Z^*, \gamma^* \to Za \to jj\gamma\gamma $	$9.7,10.1,47.7 \text{ pb}^{-1}$	$161,\!172,\!183~{\rm GeV}$	$60 {\rm GeV}$	[31]
D0/CDF	$p\bar{p} ightarrow a ightarrow \gamma\gamma$	$7/8.2 { m ~fb}^{-1}$	$1.96 { m ~TeV}$	$100 { m ~GeV}$	[33]
ATLAS	$pp \rightarrow a \rightarrow \gamma \gamma$	20.3 fb^{-1}	$8 { m TeV}$	$65 {\rm GeV}$	[34]
CMS	$pp \rightarrow a \rightarrow \gamma \gamma$	$19.7 { m ~fb}^{-1}$	$8 { m TeV}$	$80 {\rm GeV}$	[35]
CMS	$pp \rightarrow a \rightarrow \gamma \gamma$	$19.7 { m ~fb}^{-1}$	$8 { m TeV}$	$150 { m ~GeV}$	[36]
CMS	$pp \to a \to \gamma \gamma$	35.9 fb^{-1}	$13 { m TeV}$	$70 {\rm GeV}$	[37]
CMS	$pp \rightarrow a \rightarrow jj$	$18.8 { m ~fb}^{-1}$	8 TeV	$500 { m GeV}$	[38]
ATLAS	$pp \rightarrow a \rightarrow jj$	$20.3 {\rm ~fb^{-1}}$	$8 { m TeV}$	$350~{\rm GeV}$	[39]
CMS	$pp \rightarrow a \rightarrow jj$	$12.9 { m ~fb}^{-1}$	$13 { m TeV}$	$600 {\rm GeV}$	[40]
ATLAS	$pp \rightarrow a \rightarrow jj$	3.4 fb^{-1}	$13 { m TeV}$	$450 {\rm GeV}$	[41]
CMS	$pp \rightarrow ja \rightarrow jjj$	35.9 fb^{-1}	$13 { m TeV}$	$50 { m GeV}$	[42]

Below lowest mass, smooth background structure is lost. Sideband not possible

CMS [arXiv:1710.00159]

CMS Boosted dijet

. Trigger ISR 2. Jet substructure

Krohn et al ('10); Dasgupta et al ('13); Larkoski et al ('14)

Diphoton x-section measurements

D0 $(\sigma_{\gamma\gamma})$	$p \overline{p} ightarrow a ightarrow \gamma \gamma$	4.2 fb^{-1}	1.96 TeV	$p_{T_1,T_2} > 21, 20 \text{ GeV}$	$m_a > 8.2 \text{GeV}$
$CDF(\sigma_{\gamma\gamma})$	$p \bar{p} ightarrow a ightarrow \gamma \gamma$	$5.36 \ {\rm fb}^{-1}$	$1.96 { m ~TeV}$	$p_{T_1,T_2} > 17,15 \text{ GeV}$	$(m_a > 6.4 \text{ GeV})$
ATLAS	$pp ightarrow a ightarrow \gamma \gamma$	$4.9 { m fb}^{-1}$	$7 { m TeV}$	$ p_{T_1,T_2} > 25, 22 \text{ GeV} $	$m_a > 9.4 \text{ GeV}$
ATLAS	$pp ightarrow a ightarrow \gamma \gamma$	20.2 fb^{-1}	8 TeV	$ p_{T_1,T_2} > 40, 30 \text{ GeV} $	<i>m</i> _{<i>a</i>} >13.9 GeV
CMS	$pp \rightarrow a \rightarrow \gamma \gamma$	$5.0 {\rm ~fb}^{-1}$	$7 { m TeV}$	$ p_{T_1,T_2} > 40, 25 \text{ GeV} $	<i>m</i> _a >14.2 GeV

They report lower mass!

Diphoton x-section measurements

ALP parameter space

A. Mariotti, D. Redigolo, F. Sala, KT ('17)

Trigger and Isolation

Trigger and Isolation

almost same rejection rate for fake photon

LHC bound +Projections

Study monojet(>500GeV)+Boosted Diphoton w/ mod Iso

one w/ mono photon trigger goes below 10GeV (in progress)

Future Prospect

Search at LHCb m_a=O(1)-20GeV

Diphoton resonance at LHCb

Diphoton resonance at LHCb

LHCb+Babar+Belle2

*Also Babar/Belle2 Y(3S)

LHCb/Belle II projection

Search at KOTO m_a<350MeV

$K_L \to \pi^0 a \to 4\gamma$ at KOTO

$K_L \to \pi^0 a \to 4\gamma$ at KOTO

Heavy Axion EFT=ALP EFT

$$\frac{a}{4\pi f_a} \left[\underbrace{\alpha_s c_3 G \tilde{G} + \alpha_2 c_2 W \tilde{W} + \alpha_1 c_1 B \tilde{B}}_{\bullet} \right]$$

Induce K_L/K^+ decay to axion by π -a mixing or FCNC with W

$$\mathbf{K}_{\mathbf{L}} \rightarrow \pi^{0} \mathbf{a} \qquad \mathbf{K}^{+} \rightarrow \pi^{+} \mathbf{a}$$

$$\operatorname{BR}(K \rightarrow \pi a) \sim \left(\frac{0.1f_{\pi}}{f_{a}/c_{3}}\right)^{2} \operatorname{BR}(K \rightarrow \pi \pi^{0})$$

$$\operatorname{E. Izaguirre, T. Lin, B. Shuve ('16)}$$

Only decay channel is $a \rightarrow 2\gamma$, ($a \rightarrow 3\pi$ kinematically forbidden) KOTO can search for $K_L \rightarrow \pi^0 a$ with N_{KL}~10^13

ALP hunt at KOTO

Challenges • decay point unknown (only Ecal, no tracker) • combinatorics of yy pairs

[G. Perez, S. Gori, **KT** (Preliminary)]

ALP hunt at KOTO

Expected bound on $Br(K_L \rightarrow \pi^0 a) \sim 10^{-8}$ Translated to $f_a/c_3 \sim 10 \text{GeV}$ or $f_a/c_2 \sim 100 \text{GeV}$

KOTO projection

Summary

- Axion-like-particles with gluon coupling and low f_a is motivated by various models.
- The heavy axion with low f_a is a good guidepost for experiments.
- ATLAS/CMS covers >10 GeV mass region with diphoton or mono-triggers.
- LHCb covers O(1)-20GeV with diphoton trigger
- KOTO covers <350MeV with N_{KL} ~10^13
- Long-lived particle searches are relevant for sub-GeV mass and higher fa region.

Summary

