The MilliQan Experiment and More Searches for Milli-charges

FR

Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore

3rd/ Julky 2019

RENCONTRES VIETNAM

S icife 1-5 July 2019 ICISE Conference Center, Quy Nhan, Vietnam New Physics with Exotic and Long-Lived Particles A Joint ICISE-CBPF Workshop

Particles with Milli-Charges?

Idea -> Hunting for particles with charges ~ 0.3-0.001e Baseline paper: arXiv:1410.6816 Proposal for a new experiment/CMS subdetector. Demonstrator (1%) taking data since mid-2017

A Letter of Intent to Install a Milli-charged Particle Detector at

arXiv:1607.04669

0.500

0.100

0.050

0 0 1 0

0.001 0.01

0.005 SLAC MilliQ

0.10

= Q/e

LHC P5

Austin Ball,¹ Jim Brooke,² Claudio Campagnari,³ Albert De Roeck,¹ Brian Francis,⁴
Martin Gastal,¹ Frank Golf,³ Joel Goldstein,² Andy Haas,⁵ Christopher S. Hill,⁴ Eder
Izaguirre,⁶ Benjamin Kaplan,⁵ Gabriel Magill,^{7,6} Bennett Marsh,³ David Miller,⁸ Theo
Prins,¹ Harry Shakeshaft,¹ David Stuart,³ Max Swiatlowski,⁸ and Itay Yavin^{7,6}

MilliQan Experiment

 $\sqrt{s} = 14 \text{ TeV}$

Total

50.0 100.0

Proposals for New Experiments @LHC

fam. and manian

MilliQan: searches for millicharged particles MAPP: Same from MoEDAL

CODEX-b: searches for long lived weakly interacting neutral particles

MATHUSLA: searches for long lived weakly interacting neutral particles

FASER: searches for long lived dark photons-like particles

New: AL3X ('ALICE' for LLP arXiv.1810.03636)...

Milli-Charges

Fractionally charged particles

Posit the existence of a new hidden U(1) with massless field A'_{μ} :

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm dark-sector}$$

$$\mathcal{L}_{\rm dark-sector} = -\frac{1}{4}A'_{\mu\nu}A'^{\mu\nu} - \frac{\kappa}{2}A'_{\mu\nu}B^{\mu\nu} + \frac{1}{2}m_{A'}^2(A'_{\mu})^2$$

$$+i\bar{\psi}\left(\partial \!\!\!/ + ie'A' + iM_{\rm mCP}\right)\psi$$

- ψ is a Dirac particle of mass M_{mCP} , charged under a new U(1) with charge e', and field-strength $A'_{\mu\nu} = \partial_{\mu}A'_{\nu} \partial_{\nu}A'_{\mu}$
- ψ is charged under hypercharge with charge $\kappa e'$, a milli-charge
- ψ couples to γ and Z⁰ with $\kappa e' \cos \theta_w \& -\kappa e' \sin \theta_w$, respectively.
- Fractional charge is therefore $\epsilon \equiv \kappa e' \cos \theta_w / e$, where $\epsilon << 1$

 \rightarrow milli-charged particles (mCP) are a natural consequence of extra U(1)

Basic Idea for the MilliQan Experiment

- Proposal to add detector that would be sensitive to milli-charged particles produced in LHC collisions
 - With Q down to ~10⁻³e, dE/dx is 10⁻⁶ MIP -> need long, sensitive, active length to see signal, Ø(1) PE.
- Install ~1 m x 1 m x 3 m scintillator array, pointing back to IP, in well shielded area of Point 5
- With triple coincidence, random background is controlled

Looking for milli-charged particles with a new experiment at the LHC

Andrew Haas,¹ Christopher S. Hill,² Eder Izaguirre,³ and Itay Yavin^{3, 4} ¹Department of Physics, New York University, New York, NY, USA ⁸Department of Physics, The Ohio State University, Columbus, OH, USA ³Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada ⁴Department of Physics, McMaster University, Hamilton, ON, Canada

We propose a new experiment at the Large Hadron Collider (LHC) that offers a powerful and model-independent probe for milli-charged particles. This experiment could be sensitive to charges in the range $10^{-3}e - 10^{-1}e$ for masses in the range 0.1 - 100 GeV, which is the least constrained part of the parameter space for milli-charged particles. This is a new window of opportunity for exploring physics beyond the Standard Model at the LHC.

arXiv:1410.6816v1 [hep-ph] 24 Oct 2014

Where to put such a Detector

Constraints:

- Behind at least 5 m of concrete/rock from the IP
- Space to accommodate the detector (~1m x 1m x 3m)
- Floor loading compatible with detector+support structure (up to 6000 kg)
- Power available, with possibility to add other services
- Selected experimental area should remain clear of "visitors" during data taking

ATLAS did not have an adequate space

- MoEDAL experiment (based on our paper) is planning on placing a similar detector at LHC Point 8 (opposite LHCb), but this location receives only a small fraction of the luminosity delivered by the LHC But more favorable acceptance..
- With help of CMS physicists in technical roles in early 2016 we identified/selected an appropriate site at LHC Point 5
 - PX56 observation and drainage "gallery" (aka tunnel)

Detector Location

Detector Location

Detector Concept

- Basic element is a 5 cm² x 80 cm bar pf plastic scintillator (BC 408) + PMT (HPK R7725)
- Arranged in a 20 x 20 x 3 array

- Supported by movable mechanical structure
 - Alignment to IP + retraction to allow passage through gallery

Experimental Set-up

Basic element is a 5 cm² x 80 cm bar pf plastic scintillator (BC 408) + PMT (HPK R7725)

Projective scintillator array requiring multi-layer coincidence and ToF
Located in tunnel above CMS experiment (33m, φ ~ 43°, η ~ 0.7)

Allignment to CMS

Final alignment using muons from IP

Simulation and Expected Sensitivity

- Use madGraph + madOnia to simulate production via modified Drell-Yan
- Propagate particles through parameterized simulation of material interactions with CMS & rock
- Count rate of incidence on 1 m² face of milliQan detector
- GEANT simulation of milliQan detector response
- Sensitive to wide range of well-motivated, unexplored, parameter space
 - Q/e down to nearly 0.001
 - Masses from 100 MeV to 100 GeV

Expected Backgrounds

- Expect 17 m of rock will shield particles form pp collision (except muons) to negligible levels
- Muons (from LHC or cosmics) not actually a background since will be very bright (~1M photons in scintillator)
 - They will be a small source of dead time though
- Expect irreducible background to be from dark current pulses in PMTs
 - Assuming dark rate of ~1kHz, triple-incidence in 15 ns window reduces this to ~10⁻⁶ Hz
 - 0(50) bkg events in 3000 fb⁻¹
- Expect additional sub-dominant, reducible, backgrounds from activity in the scintillator, background radiation, and photo-multiplier after pulsing
- Background rate can be monitored in situ during beam-off periods
- Best way to understand backgrounds prior to this is via a concept "demonstrator" detector prototype in drainage gallery
 - We installed a 1/100 scale such device about 2 years ago

Experimental Set-up

Detector must simultaneously operate as a very low background experiment, while also functioning as a sort of "beam telescope."

- Shielding from beam particles from LHC
- Long (0.6m 0.8m) active material: $\frac{dE}{dx} \propto Q^2$
- Multi-layer coincidence in 15 ns to mitigate random tracks

Dominant background: dark current pulses in the PMTs in coincidence with environmental radioactivity and cosmic rays New design: 3×80 cm $\rightarrow 4 \times 60$ cm scintillator bars

- In order to verify the feasibility and optimize the design of the experiment thoroughly, ~1% of the detector is installed as a "demonstrator"
- 3 layers of 2x3 scintillator+PMT

- In order to verify the feasibility and optimize the design of the experiment thoroughly, ~1% of the detector is installed as a "demonstrator"
- 3 layers of 2x3 scintillator+PMT
- Scintillator slabs and lead bricks
 - Tag thru-going particles, shield radiation

- In order to verify the feasibility and optimize the design of the experiment thoroughly, ~1% of the detector is installed as a "demonstrator"
- 3 layers of 2x3 scintillator+PMT
- Scintillator slabs and lead bricks
 - Tag thru-going particles, shield radiation
- Scintillator panels to covering top and sides
 - Tag/reject cosmic muons

- In order to verify the feasibility and optimize the design of the experiment thoroughly, ~1% of the detector is installed as a "demonstrator"
- 3 layers of 2x3 scintillator+PMT
- Scintillator slabs and lead bricks
 - Tag thru-going particles, shield radiation
- Scintillator panels to covering top and sides
 - Tag/reject cosmic muons
- Hodoscope packs
 - "Tracks" of beam/cosmic muons

Mechanical Structure

- Supports weight of "final" milliQan
- Rotates out of position to allow passage

Demonstrator Installed in TS2 of 2017

Upgraded during 2017 YETS

In the Gallery

In Situ Charge Calibration

- Important because it allows us to study efficiency for small charge depositions
 - Is it sufficient to be able to see milli-charged pls?
 - Want to know number of photoelectrons (N_{PE}) that mCP will produce
- Two ingredients:
 - Select cosmic muons from vertical paths
 - Get single photoelectron (SPE) charge from afterpulses
 - (SPE pulse area measurement also done on the bench as a validation)
- With these can calculate N_{PE} for cosmic muon (Q=1e)
 - N_{PE} (Q=1e) = Pulse area (cosmic muon) / Pulse area (SPE)
- Extrapolate this to NPE for fractional charges by Q²

Results are consistent with full Geant4 simulations

SPF

Demonstrator Analysis

- Have performed multiple *in situ* measurements important to inform the full detector design and operation.
 - Charge calibration using ratio of cosmic muon pulse to single photo-electrons
 - Angular resolution and timing using LHC *pp* muons
 - Beam muon occupancy and luminosity dependence

Demonstrator Analysis

Directly verified milli*Q*an capabilities as a charged particle telescope for particles produced in the CMS IP. Next stop, fractionally charged particles!

Collaboration

- ~20 people, 12 institutes, 6 countries
- 9 "CMS" groups
 - The Ohio State University (C. Hill*, B. Francis)
 - University of California, Santa Barbara (D. Stuart, C. Campagnari)
 - The University of Nebraska (F. Golf)
 - CERN (A. Ball, A. De Roeck, M. Gastal)
 - The University of Bristol (J. Brooke, J. Goldstein)
 - Karlsruhe Institute of Technology (R. Ulrich)
 - Lebanese University (H. Zaraket)
 - University of Virginia (C. Neu)
 - · FNAL (J. Hirschauer)

+VUB, Brussels (S. Lowette)

- 2 "ATLAS" groups
 - New York University (A. Haas*, B. Kaplan)
 - University of Chicago (D. Miller, M. Swiatlowski)

C. Hill 2018: not quite complete person list

More Milli-Charge Hunting

A proposal for milli-charges at FNAL @ MINOS near detector

FerMINI: Fermilab Search for Milicharged Particle

J. F. Hirschauer, (Principle Investigator) and Y.-D. Tsai (Co-Investigator)

Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

A. Haas (Co-Investigator)

New York University, New York, NY 10003, USA

C. Hill (Co-Investigator)

Ohio State University, Columbus, OH 43210, USA

D. Miller (Co-Investigator)

University of Chicago, Chicago, IL 60637, USA

D. Stuart (Co-Investigator)

University of California, Santa Barbara, CA 93106-9530, USA

See also: arXiv:1806.03310

Based on the MilliQan design

See also MoEDAL talk for another proposal

More Milli-charge Activities

LArTPC study

Physics Beyond Collider Study

arXiv:1901.09966

Physics Beyond Colliders at CERN Beyond the Standard Model Working Group Report

 J. Beacham¹, C. Burrage^{2,*}, D. Curtin³, A. De Roeck⁴, J. Evans⁶, J. L. Feng⁶, C. Gatto⁷, S. Gninenko⁸, A. Hartin⁹, I. Irastorza¹⁰, J. Jaeckel¹¹, K. Jungmann^{12,*}, K. Kirch^{13,*},
 F. Kling⁶, S. Knapen¹⁴, M. Lamont⁴, G. Lanfranchi^{4,18,*,*}, C. Lazzeroni⁴⁶, A. Lindner¹⁷,
 F. Martinez-Vidal¹⁸, M. Moulson¹⁵, N. Neri¹⁹, M. Papueei^{4,20}, I. Pedraza²¹, K. Petridis²², M. Pospelov^{23,*}, A. Rozanov^{24,*}, G. Ruoso^{25,*}, P. Schuster²⁶, Y. Semertzidis²⁷, T. Spadaro¹⁸, C. Vallée²⁴, and G. Wilkinson²⁸.

 10^{3}

 m_{χ} (MeV)

milliQan

 10^{4}

 10^{5}

Millicharged Particles in Liquid Argon Neutrino Experiments

Status of the Various Projects

Lifetime frontier

Based on Simon Knapen FNAL seminar fall 2018 (*)

Supplementary detectors

		Higgs Decay	B meson decay	π,η - decay dark photon	Progress	Cost	
FASER			(√)	V	First phase approved and funded	\$	
CODEX-b		\checkmark	\checkmark		Sub-collaboration formed	n \$	
MilliQan			(√)		Sub-collaboratior formed	n \$	
AL3X		\checkmark	\checkmark	\checkmark	Proof of concept	\$\$	
MATHUSLA		\checkmark	(√)		Letter of Intent	\$\$	
SHIP			\checkmark	\checkmark	Conceptual design report	\$\$\$	
Run2	LS2	Run3	LS3	HL-LF		SER1/MilliOar	n(2)
2018 Initial BG study	20 <mark>20</mark> Mini insta	202 II BG mea- surements	3 install	2027	→ in ● M F/	ASER1/Philipan Istallation by 2 ATHUSLA, CO ASER2 for HL-I	DEX-b,

(*) Experiments have different capabilities for measuring the LLPs

Summary

- MilliQan aims to search for milli-charges in the regime 0.1< Q < 0.003
- MilliQan demonstrator installed in mid-2017 and taking data since (1% of a full module). First physics with the demonstrator results?
- Funding requests under evaluation (NSF-MRI, European requests). Expect outcome soon.
- Detector ready to be constructed, as soon as funding becomes available, for run-III
- More initiatives for milli-charge searches, at CERN and FNAL in progress