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THE GAME

Forward modeling

distance, time,…
observation

observable X

Multi-D cosmological 
parameter / model space

…

‣Efficiently cover the space 
‣Controlled error
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LSS JUST LIKE CMB…?
• This is quite well established in case of CMB analyses. 

• Thanks to the smallness of fluctuations -> linear Boltzmann 
• Typically Markov-Chain Monte Carlo works comfortably 

• Can we do the same for large scale structure?

�3

http://background.uchicago.edu/~whu © Wayne Hu

Vary Ωmh2 Vary 1 - Ωm
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LARGE SCALE STRUCTURE

�4

PLANCK2015
gravity !

• Complementarities to CMB 
• Dark energy dominates the nearby 

universe 
• Equation of state? 

• Gravity is the driver of structure growth 
• Test of GR? 

• Understanding nonlinearity is the key
SDSS III DR12
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BIAS IS ANNOYING
• Luminous things are “tracers” of the 

underlying matter field (Kaiser ’84) 
• No first-principle analytical 

approach available (but hydro sims) 
• Have to introduce many (really 

many!!) nuisance parameters?

�5

Yoshikawa+’01
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BIAS IS DIFFICULT

�6

Illustris TNG project 
(PI: V Springel)

Volume coverage is rather limited 
Just for 1 model 

convergence against resolution unclear
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Galaxy observablesX

HOD parameters

N(M): Mmin, M1, α, …

Halos

Statistics of halos based on N-
body and Machine Learning

Analytical calculation

If you are a big fun of halo approach …

Can be updated if you want, e.g., off-centering, 
incompleteness, or more complex parameterization

Cosmological parameters

…

Ωm, Ωb, H0, As, ns, w, …

HOW TO DO IT?
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BIAS IS STILL TRICKY 
(EVEN AT THE LEVEL OF HALOS AND AT LINEAR SCALE)

�8k [h/Mpc]

P(
k)

 [(
M

pc
/h

)3
]

z = 1, Mh ~ 1013h-1Msolor

σ8 = 0.842 σ8 = 0.926σ8 =0.765

Real space
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COSMIC STRUCTURE SIM ENSEMBLE IN 6D PARAM SPACE
DARK QUEST PROJECT

�9

Zoom of a 2048^3-body simu
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M = 1013Msolar/hM = 1014Msolar/hM = 1015Msolar/h

Extract halo statistics

Prediction

~ 100 mili sec / one model 
with accuracy (~3%)

~300 simulations for 100 
parameter sets (a few hundred 
TB; ~3 years) following a Latin 
Hypercube Design in 6D 
parameter space

Machine learning

arXiv:1811.09504

ωb = Ωbh2: ±5% 

ωc = Ωch2: ±10% 

ΩΛ: ±20% 

ln(1010 As): ±20% 

ns: ±5% 

w: ±20%
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HOW DO WE SET UP THE ML ARCHITECTURE?

• Deep architectures are popular 
• Availability of large ensemble of data 
• Flexibility of the function 
• Tricks to avoid overfitting, i.e., regularization

�10

Input Layer

Output Layer

Cosmology Galaxy params.

G-G lensing G-G auto corr.

?

...

... ...

Cosmology Galaxy params.

Lensing Clustering

6 10+

~100

Input OutputHidden layers

?
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HOW DO WE SET UP THE ML ARCHITECTURE?

• Deep architectures are popular 
• Availability of large ensemble of data -> not enough!  
• Flexibility of the function 
• Tricks to avoid overfitting, i.e., regularization

�11

Cosmology

Lensing Clustering

Cosmology

H-G connection

Hidden1 Hidden2 Hidden3 Hidden4

PCA1 PCA2 PCA3 PCA4

mass func. H-M corr. H-H corr. propagator

G-G lensing G-G auto corr.

...

... ... ... ...

... ... ... ...

... ... ... ...

... ...

Galaxy params.
Halo statistics

PCA basis

GPR

Analytic

6

10+

~100

~10,000

~10

Inf
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• Latin Hypercube Designs 
• one and only one in every row and column 
• Good projection properties 

• Hierarchical LHD (Ba, Myers, Brenneman '15) 
• Each symbol forms an LHD 
• All the points together form an LHD 
• Space filling property is ensured by

SLICED LATIN HYPERCUBE DESIGN

�12

minimizing

Cost function for all the samples within the t-th slice
• Useful 

• for a stringent cross-validation test 
• by splitting the sample into training and validation sets

with some large r
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Cost function for all the samples within the t-th slice
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DIMENSION REDUCTION
• Mass function 

• Sheth-Tormen type functional form 
• b and c from Tinker 
• (A, a) at 21 redshifts = 42 component vector -> 6 PCs 

• Halo-matter cross correlation 
• (r-bin, n-bin, z-bin) = (66, 13, 21) 
• 18,018 components -> 5 PCs 

• Halo auto correlation 
• (r-bin, n1-bin, n2-bin, z-bin) = (21, 8, 8, 21) 
• 28,224 components -> 8 PCs 

• Propagator 
• 3 parameters at 21 redshifts = 63 components -> 3PCs

�13

f(�) = A[��a + b] exp
h
� c

�2

i

G(k) = [c0 + c2k
2 + c4k

4] exp
⇥
�k2�2

d/2
⇤

fitting

fitting

Cosmology

H-G connection

Hidden1 Hidden2 Hidden3 Hidden4

PCA1 PCA2 PCA3 PCA4

mass func. H-M corr. H-H corr. propagator

G-G lensing G-G auto corr.

...

... ... ... ...

... ... ... ...

... ... ... ...

... ...HERE
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• Take the limit of infinite # of nodes 
• Regularize the coefficients (i.e., L2 norm) s.t. the outputs follow 

i.i.d. -> multivariate Gaussian (c.f., central limit theorem) 
• Specified by the correlation (kernel) function 
• works as a non-parametric regressor or classifier

Prior Posterior
A=1, σ=0.01

A=1, σ=1

A=B=1, Γ=4, σ=1

GAUSSIAN PROCESS 
REGRESSION

Cosmology

H-G connection

Hidden1 Hidden2 Hidden3 Hidden4

PCA1 PCA2 PCA3 PCA4

mass func. H-M corr. H-H corr. propagator

G-G lensing G-G auto corr.

...

... ... ... ...

... ... ... ...

... ... ... ...

... ...

HERE

Input

O
ut

p
ut

Input

O
ut

p
ut

A exp[-r2/2σ2]

+B exp[-Γsin2(πr/P)]
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GAUSSIAN PROCESS 
REGRESSION

Posterior (before optimization) Posterior (after optimization)

• All the quantities are analytic thanks 
to Gaussianity 

• “Hyperparameters” can be ``trained’’
�15
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matrix for the vector tN+1 ≡ (t1, . . . , tN+1)T. We define submatrices of CN+1

as follows:
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The posterior distribution (45.34) is given by

P (tN+1 | tN ) ∝ exp
[
−1

2
[
tN tN+1

]
C−1

N+1

[
tN

tN+1

]]
. (45.36)

We can evaluate the mean and standard deviation of the posterior distribution
of tN+1 by brute-force inversion of CN+1. There is a more elegant expression
for the predictive distribution, however, which is useful whenever predictions
are to be made at a number of new points on the basis of the data set of size
N . We can write C−1

N+1 in terms of CN and C−1
N using the partitioned inverse

equations (Barnett, 1979):

C−1
N+1 =

[
M m
mT m

]
(45.37)

where

m =
(
κ− kTC−1

N k
)−1 (45.38)

m = −m C−1
N k (45.39)

M = C−1
N +

1
m

mmT . (45.40)

When we substitute this matrix into equation (45.36) we find

P (tN+1 | tN ) =
1
Z

exp

[
−(tN+1 − t̂N+1)2

2σ2
t̂N+1

]
(45.41)

where

t̂N+1 = kTC−1
N tN (45.42)

σ2
t̂N+1

= κ− kTC−1
N k. (45.43)

The predictive mean at the new point is given by t̂N+1 and σt̂N+1
defines the

error bars on this prediction. Notice that we do not need to invert CN+1 in
order to make predictions at x(N+1). Only CN needs to be inverted. Thus
Gaussian processes allow one to implement a model with a number of basis
functions H much larger than the number of data points N , with the com-
putational requirement being of order N 3, independent of H. [We’ll discuss
ways of reducing this cost later.]

The predictions produced by a Gaussian process depend entirely on the
covariance matrix C. We now discuss the sorts of covariance functions one
might choose to define C, and how we can automate the selection of the
covariance function in response to data.

45.4 Examples of covariance functions

The only constraint on our choice of covariance function is that it must gen-
erate a non-negative-definite covariance matrix for any set of points {xn}N

n=1.
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CROSS VALIDATION STUDIES
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• Train the network 
using 80 points in 4 
different colors. 

• Validate the prediction 
of the network using 
the remaining 20 
points in cyan.
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ACCURACY: HALO MASS FUNCTION

�17

Training set

Validation set

Red shades: scatter of 28 fiducial runs

Spread in HMF among the 100 models

Upper: Model fitting w/ Sheth-Tormen 
type function (2 free parameters)

Lower: Compress the 42 (=2 x 21 
redshifts) coefficients into 6 PCs

Gaussian Process Regression

Example plot at z = 0.55
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ACCURACY: CROSS CORRELATION

�18

Training set

Validation set

Red shades: scatter of 28 fiducial runs

Spread in xi_hm among the 100 models

Upper: Sample fewer number of data 
points using cubic spline interpolation

Lower: Compress the 18,018 (= 66x13x21 
radial x number density x redshift bins) 

coefficients into 5 PCs

Gaussian Process Regression

Example plot at z = 0.55 for a halo sample with 10-4 (h-1Mpc)-3
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ACCURACY: AUTO CORRELATION
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Training set

Validation set

Red shades: scatter of 14 fiducial runs

Spread in xi_hh among the 100 models

Upper: Sample fewer number of data 
points using cubic spline interpolation

Lower: Compress the 28,224 (= 21x8x8x21 
radial x number density 1 x number density 2 

x redshift bins) coefficients into 8 PCs

Gaussian Process Regression

Example plot at z = 0.55 for a halo sample with 10-4 (h-1Mpc)-3
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ACCURACY: PROPAGATOR
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Training set

Validation set

Red shades: scatter of 14 fiducial runs

Spread in G(k) among the 100 models

Upper: Model fitting with Gaussian 
+ corrections (3 free params)

Gaussian Process Regression

Lower: Compress the 63 (=3 x 21 
redshifts) coefficients into  PCs

Example plot at z = 0.55 for a halo sample with 10-4 (h-1Mpc)-3
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OVERVIEW
DARK EMULATOR: WHAT IT CAN DO

�21

Halo mass function Halo-Matter Cross CF Halo-Halo Auto CF

1 curve ~ 100 mili secs on a typical laptop computer
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DARK EMULATOR: WHAT IT CAN DO

�22Separation x [h-1Mpc]BA
O
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Scale-dependent bias around BAO

Large-scale bias

log10 (peak height)

b h

LARGE SCALES

1

bh

s
⇠hh(x)

⇠mm(x)
<latexit sha1_base64="/ol1R+NiG9xcxdNly99I1rAjbxk="></latexit>



/27Takahiro Nishimichi, YITP Kyoto

SMALL SCALES
DARK EMULATOR: WHAT IT CAN DO

�23

Mass profile of halos

Splashback radius

Concentration-mass relation

Halo exclusion effect

peak height peak height
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BREAK THE DEGENERACY

�24

Galaxy-galaxy lensing Galaxy (projected) clustering

Hyper Suprime Cam (HSC)
Subaru Measurement of Images and Redshifts (SuMIRe) Project

Prime Focus Spectrograph (PFS)

From ~2021
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BREAK THE DEGENERACY

�24

Galaxy-galaxy lensing Galaxy (projected) clustering

Hyper Suprime Cam (HSC)
Subaru Measurement of Images and Redshifts (SuMIRe) Project

SDSS BOSS (CMASS + LOWZ)
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BREAK THE DEGENERACY

�24

Galaxy-galaxy lensing Galaxy (projected) clustering

Hyper Suprime Cam (HSC)
Subaru Measurement of Images and Redshifts (SuMIRe) Project

SDSS BOSS (CMASS + LOWZ)
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CROSS-CORRELATION COEFFICIENT

�25

Halos galaxies

Separation x [h-1Mpc] Separation x [h-1Mpc]

Cosmology

H-G connection

Hidden1 Hidden2 Hidden3 Hidden4

PCA1 PCA2 PCA3 PCA4

mass func. H-M corr. H-H corr. propagator

G-G lensing G-G auto corr.

...

... ... ... ...

... ... ... ...

... ... ... ...

... ...

HERE

Halo

Satellites galaxies

Central galaxies

Correlation 
functions 

(matter & tracers)

Bias

Correl. coeff.



MOCK UNIVERSE VS EMULATOR

COSMO GALAXY (HOD + extra)



MOCK UNIVERSE VS EMULATOR

COSMO GALAXY (HOD + extra)

Different satellite profiles

Substructures 
instead of HODBaryonic effects
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SUMMARY
• Modeling halo clustering signal based on simulations 

• Dark Quest simulation suite with Latin Hypercube Design 
• Nonparametric regression based on Gaussian Process 
• currently 2~3% accuracy and hopefully this gets better 
• “Dark emulator” public after the HSC g-g lensing analysis 

• HSC (g-g lensing) + BOSS (w_p) analysis 
• Break the degeneracy! 
• “Galaxy parameters” on small scales (g-g lensing) 
• Cosmology on large scale (g-g clustering) 
• Mock challenge shows good results 

• To follow 
• Redshift-space distortions 

• Expand the input parameter space
�27


