INFLATION VIA HIGGS-DILATON POTENTIAL IN TWO TIME PHYSICS

Vo Quoc Phong, Le Minh Ngoc

Department of Theoretical Physics Ho Chi Minh City University of Science

Based on Itzhak Bars, arXiv:1004.0688v2

15th Rencontres du Vietnam: Cosmology, 2019

Overview

- 1 Two-Time physics (2T)
- Inflation
- 3 Inflation via Higgs-Dilaton potential in 2T

What is Two-Time Physics (2T)?

I. TWO-TIME PHYSICS

a. Tensor metric in 2T

2T model is based on symplectic group $\mathrm{Sp}(2,\mathbf{R})$ which relates to the symmetry between position and momentum.

Position-momentum doublet $X_i^M = (X_1^M, X_2^M)$

$$\begin{cases} X_1^M = X^M & \text{is the space-time in 2T,} \\ X_2^M = P^M & \text{is the energy-momentum in 2T.} \end{cases} \tag{1}$$

1T

(d-1) spacelike dimensions and 1 timelike dimension.

$$g_{\mu\nu} = \operatorname{diag}(-1, 1, 1, 1),$$

 $\mu, \nu = 0, 1, 2, 3.$

2T

d spacelike dimensions and 2 timelike dimensions.

$$\eta_{MN} = \text{diag}(-1, 1, -1, 1, 1, 1),$$

 $M, N = \mathbf{0'}, \mathbf{1'}, 0, 1, 2, 3.$

Why do we need 2T?

Shadows from 2T-physics → hidden info in 1T-physics

Hidden Symm. SO(d,2), (d=4) $C_2=1-d^2/4=-3$ singleton

Emergent spacetimes and emergent parameters: mass, couplings, curvature, etc. transfording the sale transfording

Massless relativistic particle $(p_{\mu})^2$ =0 conformal sym Dirac

Robertice by Nather Spanding

Free or interacting systems with/without mass in flat/curved 3+1 spacetime

Analogy: object in room, many shadows on walls observers stuck on wall:

Harmonic oscillator 2 space dims mass = 3rd dim SO(2,2)xSO(2) 2T-physics
Sp(2,R) gauge symm.
generators Q_{ij}(X,P) vanish
simplest example
X-P=X²=P²=0 → gauge inv.
space: flat 4+2 dims

Massive

relativistic $(p_{\mu})^2 + m^2 = 0$ Non-relativistic $H = \mathbf{p}^2/2m$ Different Hamiltonians in 3+1 (on walls) created by perspectives of observers in phase space

2T-physics predicts hidden symmetries and dualities (with parameters) among the shadows

Single Pace A Property of the Property of the

H-atom

SO(4,2) symmetry

3 space dims H=p²/2m -a/r SO(4)xSO(2) SO(3)xSO(1,2) Main points

1) no ghosts:

2T-physics is
compatible
with 1T-physics
2) Systematic new
info & insight
absent in
1T physics

Shadows emerge for ∞ choices of the Q_{ii}(X,P) & in 2T-field theory

b. Lagrangian of Standard Model in 2T

The Lagrangian of Standard Model in 4+2 dimensions

$$L(A, \Psi^{L,R}, H, \Phi) = L(A) + L(A, \Psi^{L,R}) + L(\Psi^{L,R}, H) + L(A, H, \Phi). \tag{2}$$

where A are gauge bosons, $\Psi^{L,R}$ are fermions, H is Higgs and Φ is Dilaton.

- Resolution of the strong CP violation problem of QCD.
- Dilaton driven electroweak spontaneous breakdown.

c. Higgs-Dilaton potential from 2T to 1T

$$L(A, H, \Phi) = \frac{1}{2}\Phi\partial^{2}\Phi + \frac{1}{2}\left[H^{\dagger}D^{2}H + (D^{2}H)^{\dagger}H\right] - \lambda(H^{\dagger}H - \alpha^{2}\Phi^{2})^{2} - V(\Phi), \quad (3)$$

The Higgs-Dilaton potential

$$V(H,\Phi) = \lambda (H^{\dagger}H - \alpha^2 \Phi^2)^2 + V(\Phi). \tag{4}$$

The reduced formulations, using gauge fixing technology

$$\begin{cases} \Phi(X) & \longrightarrow \frac{1}{\kappa} \phi(x), \\ H(X) & \longrightarrow \frac{1}{\kappa} h(x). \end{cases}$$
 (5)

The reduced Higgs-Dilaton potential from 2T to 1T

$$V(H,\Phi) \longrightarrow \frac{\lambda}{\kappa^4} (h^2 - \alpha^2 \phi^2)^2 + V(\phi).$$
 (6)

II. INFLATION

Two Slow-roll conditions: $\dot{\varphi}^2 \ll V(\varphi)$ and $\ddot{\varphi} \ll 3H\dot{\varphi}$.

Two slow-roll parameters $\varepsilon, \eta \ll 1$.

Figure: Slow-roll (New) inflation $V(\varphi) = -\frac{\lambda}{4}\varphi^4 + \frac{m^2}{2}\varphi^2 + V(0).$

Figure: Chaotic inflation $V(\varphi) = \frac{1}{2}m^2\varphi^2$.

Figure: Hybrid inflation
$$\begin{split} V(\varphi,\sigma) &= \tfrac{1}{4\lambda} M^4 + \tfrac{1}{4} \lambda \sigma^4 + \\ \tfrac{1}{2} (-M^2 + g^2 \varphi^2) \sigma^2 + \tfrac{1}{2} m^2 \varphi^2. \end{split}$$

How about Inflation in 2T?

III. Inflation via Higgs-Dilaton potential in 2T

i. Higgs-Dilaton potential in New Inflation

Dilaton field ϕ plays the role of inflaton in New inflation.

$$V(\phi) = \frac{\lambda}{4} (\phi^2 - \phi_0^2)^2.$$
 (7)

The two potential slow-roll parameters

$$\begin{cases} \varepsilon_V = 8M_P^2 \frac{\phi^2}{(\phi^2 - \phi_0^2)^2}, \\ \eta_V = 4M_P^2 \left[\frac{2\phi^2}{(\phi^2 - \phi_0^2)^2} + \frac{1}{\phi^2 - \phi_0^2} \right]. \end{cases}$$
(8)

Satisfy!!!

ii. Higgs-Dilaton potential in Chaotic Inflation

Dilaton also plays the role of inflaton in Chaotic inflation.

$$V(\phi) = \lambda \phi^4. \tag{9}$$

The initial values of two slow-roll parameters

$$\begin{cases} \varepsilon_i = \frac{1}{1-N}, \\ \eta_i = \frac{3}{2(1-N)}. \end{cases} \tag{10}$$

Satisfy!!!

iii. Higgs-Dilaton potential in Hybrid Inflation

Higgs plays the non-inflation role and Dilaton plays the inflation role. Unitary gauge for Higgs-Dilaton potential in Eq.(4) with electroweak scale v

$$\begin{cases} H^0(x) = \frac{1}{\kappa} \left[v + h(x) \right], \\ \Phi(x) = \frac{1}{\alpha \kappa} \left[v + \alpha \phi(x) \right]. \end{cases}$$
 (11)

The 1T Higgs-Dilaton potential

$$V(h,\phi) = \frac{\lambda}{4}h^4 + \lambda vh^3 + \frac{\lambda}{2}(-\alpha^2\phi^2 - 2v\alpha\phi + 2v^2)h^2 - \lambda(v\alpha^2\phi^2 + 2v^2\alpha\phi)h$$
$$+ \frac{\lambda}{4}\alpha^4\phi^4 + \lambda v\alpha^3\phi^3 + \lambda v^2\alpha^2\phi^2. \tag{12}$$

Unsatisfied:(

Summary

- Two-Time physics is hopefully an answer for the problems with One-Time.
- Two-Time physics can be a good candidate for studying extra-dimension in the early stage of our Universe.

Outlook

For further discuss

- Testing the reduced Higgs-Dilaton potential with other recent inflation models.
- Using the other higher-dimensional models.

THANKS FOR LISTENING