Constraints on massive vector dark energy models from ISW-galaxy cross-correlations

Shintaro Nakamura (Tokyo University of Science)

In collaboration with A. De Felice (YITP), R. Kase (TUS), and S. Tsujikawa (TUS)

Based on PRD 99, 063533 (2019)

Outline

- Introduction to vector-tensor theories
- ISW effect as probe of dark energy models
- Observational constraints
- Summary

Introduction

- Our universe is accelerating now.
 - ⇒ The source of this acceleration is dubbed "dark energy (DE)"
- GR
- ∧CDM model ⇒ cosmological constant, H0 tension...
- spin0
- Scalar-tensor theories ⇒ scalar field coupled to gravity
 (e.g.) Horndeski theories
- spin1
- Vector-tensor theories ⇒ vector field coupled to gravity
 (e.g.) Generalized Proca theories

Horndeski theories: a scalar field coupled to gravity

The most general scalar-tensor theories with 2nd-order EoMs:

$$\mathcal{L}_{H} = G_{2}(\pi, X) + G_{3}(\pi, X) \square \pi + G_{4}(\pi, X) R + G_{4,X}(\pi, X) [(\square \pi)^{2} - \pi^{;\mu\nu} \pi_{;\mu\nu}]$$
$$+ G_{5}(\pi, X) G_{\mu\nu} \pi^{;\mu\nu} - \frac{1}{6} G_{5,X}(\pi, X) [(\square \pi)^{3} - 3(\square \pi) \pi_{;\mu\nu} \pi^{;\mu\nu} + 2\pi_{;\mu\nu} \pi^{;\mu\sigma} \pi^{;\nu}_{;\sigma}]$$

where

 π : scalar field with kinetic energy $X=-\nabla_{\mu}\pi\nabla^{\mu}\pi/2,$

 $G_2,\,G_3,\,G_4,\,G_5:$ arbitraly function

R: Ricci scalar, $G_{\mu\nu}$: Einstein tensor

DOFs: 2 tensors + 1 scalar

Horndeski theories: a scalar field coupled to gravity

The most general scalar-tensor theories with 2nd-order EoMs:

$$\mathcal{L}_{H} = G_{2}(\pi, X) + G_{3}(\pi, X) \square \pi + G_{4}(\pi, X) R + G_{4,X}(\pi, X) [(\square \pi)^{2} - \pi^{;\mu\nu} \pi_{;\mu\nu}]$$

$$+ G_{5}(\pi, X) G_{\mu\nu} \pi^{;\mu\nu} - \frac{1}{6} G_{5,X}(\pi, X) [(\square \pi)^{3} - 3(\square \pi) \pi_{;\mu\nu} \pi^{;\mu\nu} + 2\pi_{;\mu\nu} \pi^{;\mu\sigma} \pi^{;\nu}_{;\sigma}]$$

The GW170817 event constrained the speed of gravitational waves to be very close to that of light.

Demanding that $c_T=c$

$$\mathcal{L}_H=G_2(\pi,X)+G_3(\pi,X)\Box\pi+G_4(\pi)R$$
 In GR, $G_4=M_{
m pl}^2/2$

Degrees of freedom for vector fields (Minkowski space-time)

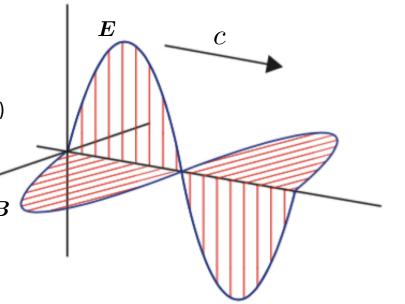
• U(1) gauge field (massless)

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \,, \quad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$$

- ⇒ DOFs: 2 transverse polarizations.
- ⇒ If we keep U(1) gauge symmetry, Galileon-like interactions are forbidden.

C. Deffayet, A. E. Gumrukcuoglu,

S. Mukohyama and Y. Wang (2014)



Degrees of freedom for vector fields (Minkowski space-time)

U(1) gauge field (massless)

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \,, \quad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$$

- ⇒ DOFs: 2 transverse polarizations.
- \Rightarrow If we keep U(1) gauge symmetry, Galileon-like interactions are forbidden.

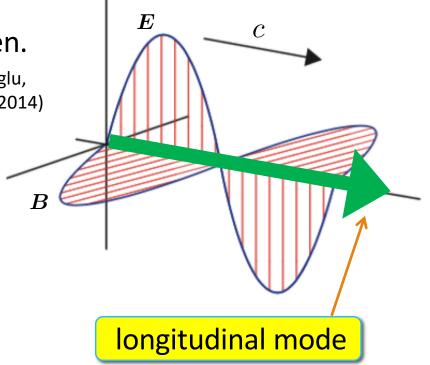
C. Deffayet, A. E. Gumrukcuoglu,

S. Mukohyama and Y. Wang (2014)

Proca field (massive) (3 DOFs)
$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2}m^2A_{\mu}A^{\mu}\,,$$

- \Rightarrow U(1) symmetry is broken.
- ⇒ DOFs:2 transverse polarizations

+ 1 longitudinal mode.



Generalized Proca theories: a vector field coupled to gravity

$$\mathcal{L}_{\mathrm{GP}} = \sum_{i=2}^{6} \mathcal{L}_i \,,$$
 Intrinsic vector mode
$$\mathcal{L}_2 = G_2(X, F, Y) \,,$$
 The EOMs are second-order on general space-time with 5 DOFs.

$$\mathcal{L}_2 = G_2(X, F, Y) \,,$$

$$\mathcal{L}_3 = G_3(X) \nabla_{\mu} A^{\mu} ,$$

$$\mathcal{L}_4 = G_4(X)R + G_{4,X}(X) \left[(\nabla_\mu A^\mu)^2 - \nabla_\rho A_\sigma \nabla^\sigma A^\rho \right],$$

$$\mathcal{L}_5 = G_5(X)G_{\mu\nu}\nabla^\mu A^\nu - \frac{1}{6}G_{5,X}(X)[(\nabla_\mu A^\mu)^3 - 3\nabla_\mu A^\mu \nabla_\rho A_\sigma \nabla^\sigma A^\rho + 2\nabla_\rho A_\sigma \nabla^\gamma A^\rho \nabla^\sigma A_\gamma]$$

$$-g_5(X)\tilde{F}^{\alpha\mu}\tilde{F}^\beta{}_\mu\nabla_\alpha A_\beta,$$

$$\mathcal{L}_6 = G_6(X)L^{\mu\nu\alpha\beta}\nabla_\mu A_\nu \nabla_\alpha A_\beta + \frac{1}{2}G_{6,X}(X)\tilde{F}^{\alpha\beta}\tilde{F}^{\mu\nu}\nabla_\alpha A_\mu \nabla_\beta A_\nu,$$

$$Intrinsic$$
vector modes
$$\mathbf{X} = -\frac{A_\mu A^\mu}{2}, \quad F = -\frac{F_{\mu\nu}F^{\mu\nu}}{4}, \quad Y = A^\mu A^\nu F_\mu{}^\alpha F_{\nu\alpha}, \quad \tilde{F}^{\mu\nu} = \frac{1}{2}\mathcal{E}^{\mu\nu\alpha\beta}F_{\alpha\beta}, \quad L^{\mu\nu\alpha\beta} = \frac{1}{4}\mathcal{E}^{\mu\nu\rho\sigma}\mathcal{E}^{\alpha\beta\gamma\delta}R_{\rho\sigma\gamma\delta}.$$

$$X = -\frac{A_{\mu}A^{\mu}}{2}$$

$$F = -\frac{F_{\mu\nu}F^{\mu\nu}}{4} \,,$$

$$, \quad Y = A^{\mu} A^{\nu} F_{\mu}{}^{\alpha} F_{\nu\alpha} \,,$$

$$\tilde{F}^{\mu\nu} = \frac{1}{2} \mathcal{E}^{\mu\nu\alpha\beta} F_{\alpha\beta} \,,$$

$$L^{\mu\nu\alpha\beta} = \frac{1}{4} \mathcal{E}^{\mu\nu\rho\sigma} \mathcal{E}^{\alpha\beta\gamma\delta} R_{\rho\sigma\gamma\delta} .$$

 $\mathcal{E}^{\mu\nu\alpha\beta}$: Levi-Civita tensor

- DOFs: 2 tensors + 2 vectors + 1 scalar
- In the limit ($A_{\mu} \to \nabla_{\mu} \phi$), \mathcal{L}_{GP} reduces to the shift-symmetric Horndeski theories.

Generalized Proca theories: a vector field coupled to gravity

$$\mathcal{L}_{ ext{GP}} = \sum_{i=2}^6 \mathcal{L}_i$$
 , G. Tasinato (2014), L. Heisenberg (2014), J. B. Jimenez and L. Heisenberg (2016)

$$\mathcal{L}_2 = G_2(X, F, Y) \,,$$

$$\mathcal{L}_3 = G_3(X) \nabla_{\mu} A^{\mu} ,$$

Intrinsic vector mode $\mathcal{L}_2 = G_2(X, F, Y) \,, \qquad \text{The EOMs are second-order on general space-time} \\ \mathcal{L}_3 = G_3(X) \nabla_\mu A^\mu \,, \qquad \text{with 5 DOFs.}$

$$\mathcal{L}_4 = G_4(X)R + G_{4,X}(X) \left[(\nabla_\mu A^\mu)^2 - \nabla_\rho A_\sigma \nabla^\sigma A^\rho \right], \qquad \qquad \mathcal{C}_T = \mathcal{C}$$

$$\mathcal{L}_5 = G_5(X)G_{\mu\nu}\nabla^\mu A^\nu - \frac{1}{6}G_{5,X}(X)[(\nabla_\mu A^\mu)^3 - 3\nabla_\mu A^\mu \nabla_\rho A_\sigma \nabla^\sigma A^\rho + 2\nabla_\rho A_\sigma \nabla^\gamma A^\rho \nabla^\sigma A_\gamma] - g_5(X)\tilde{F}^{\alpha\mu}\tilde{F}^\beta{}_\mu\nabla_\alpha A_\beta, \qquad \qquad \text{Intrinsic}$$

$$\mathcal{L}_6 = G_6(X)L^{\mu\nu\alpha\beta}\nabla_\mu A_\nu\nabla_\alpha A_\beta + \frac{1}{2}G_{6,X}(X)\tilde{F}^{\alpha\beta}\tilde{F}^{\mu\nu}\nabla_\alpha A_\mu\nabla_\beta A_\nu \,, \qquad \text{vector modes}$$
 where
$$X = -\frac{A_\mu A^\mu}{2}, \quad F = -\frac{F_{\mu\nu}F^{\mu\nu}}{4}, \quad Y = A^\mu A^\nu F_\mu{}^\alpha F_{\nu\alpha}, \quad \tilde{F}^{\mu\nu} = \frac{1}{2}\mathcal{E}^{\mu\nu\alpha\beta}F_{\alpha\beta}, \quad L^{\mu\nu\alpha\beta} = \frac{1}{4}\mathcal{E}^{\mu\nu\rho\sigma}\mathcal{E}^{\alpha\beta\gamma\delta}R_{\rho\sigma\gamma\delta}.$$

- DOFs: 2 tensors + 2 vectors + 1 scalar
- In the limit ($A_{\mu} o
 abla_{\mu} \phi$), $\mathcal{L}_{\mathrm{GP}}$ reduces to the shift-symmetric Horndeski theories.

 $\mathcal{E}^{\mu\nu\alpha\beta}$: Levi-Civita tensor

Cosmological background in Generalized Proca theories

Action:
$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm pl}^2}{2} + G_2(X, F, Y) + G_3(X) \nabla_{\mu} A^{\mu} + \mathcal{L}_6 \right] + \mathcal{S}_M$$

Metric:
$$ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^idx^j$$
.

 $c_T = c$

A vector field with the perturbations:

$$X \equiv -A_{\mu}A^{\mu}/2 = \phi^2/2$$

$$A^{\mu} = \left(\phi(t) + {\color{red}\delta\phi}, \ \frac{1}{a^2} \delta^{ij} \partial_j {\color{red}\chi_{\pmb{V}}} + {\color{red}E^i}\right) \Leftrightarrow {\color{red} {\rm From \ isotropy \ of \ the \ background}}$$

Cosmological background in Generalized Proca theories

Action:
$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm pl}^2}{2} + G_2(X, F, Y) + G_3(X) \nabla_{\mu} A^{\mu} + \mathcal{L}_6 \right] + \mathcal{S}_M$$

Metric:
$$ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^idx^j$$
.

 $c_T = c$

A vector field with the perturbations:

$$X \equiv -A_{\mu}A^{\mu}/2 = \phi^2/2$$

$$A^{\mu} = \left(\phi(t) + \frac{\delta \phi}{a^2}, \ \frac{1}{a^2} \delta^{ij} \partial_j \chi_V + \underline{E^i}\right) \Leftrightarrow \underline{\text{From isotropy of the background}}$$

The background equations of motion:

$$\phi = \phi(H)$$

$$g_{00}: 3M_{\rm pl}^2 H^2 = -G_2 + \rho_m + \rho_r, \quad A^{\mu}: \phi(G_{2,X} + 3G_{3,X}H\phi) = 0,$$

- Intrinsic vector modes do not appear at the background level.
- $\phi \neq 0 \Rightarrow$ There exist de Sitter solutions characterized by $\phi = {\rm constant}$ and $H = {\rm constant}$.

A simple dark energy model in vector-tensor theories

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm pl}^2}{2} R + F + G_2(X) + G_3(X) \nabla_{\mu} A^{\mu} \right] + S_M,$$

where

$$G_2(X) = b_2 X^{p_2} \,, \quad G_3 = b_3 X^{p_3} \,, \quad b_2, \, b_3, \, p_2, \, p_3$$
 : constants.

 \rightarrow The cubic vector Galileon corresponds to the case with $p_2=p_3=1$.

When $\phi \neq 0$, there are the solutions characterized by

$$\phi^p H = \text{constant}$$
 with $p = 1 - 2p_2 + 2p_3 > 0$

 \rightarrow ϕ grows with the decrease of H to give rise to the late-time cosmic acceleration.

Dark energy equation of state in our model

$$w_{\rm DE} = -\frac{3(1+s) + s\Omega_r}{3(1+s\Omega_{\rm DE})} \longrightarrow$$

 $s \equiv p_2/p$: Deviation from ACDM model

 Ω_r : Radiation density parameter

 $\Omega_{\rm DE}$: DE density parameter

The Λ CDM limit: s=0

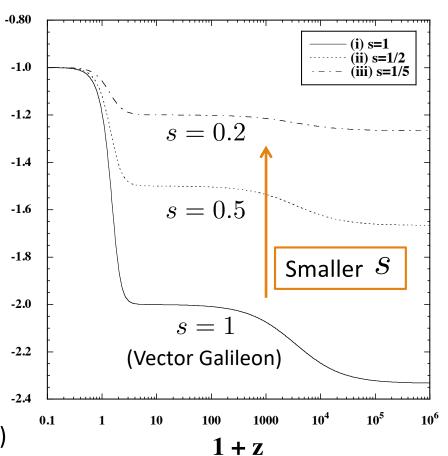
The solutions converge to a de Sitter attractor.

A. De Felice et al (2016)

Radiation era : $w_{\rm DE} = -1 - 4s/3$

Matter era : $w_{\rm DE} = -1 - s$

de Sitter era : $w_{\rm DE}=-1$



Outline

- Introduction to vector-tensor theories
- ISW effect as probe of dark energy models
- Observational constraints
- Summary

Integrated Sachs-Wolfe (ISW) effect



- → Detection of late-time ISW effect in a flat universe is independent evidence for dark energy.
- Taking the cross-correlation between the CMB anisotropy and the galaxy distributions, we can separate the ISW signal from the CMB anisotropy.

Dark energy model with $c_T = c$

The cross-correlation between ISW effect in CMB and galaxy distributions is given by

$$\left\langle \frac{\Delta T_{\rm ISW}(\hat{n})}{T} \frac{\Delta N_{\rm Galaxy}(\hat{n}')}{N} \right\rangle = \sum_{l=0}^{\infty} \frac{2l+1}{4\pi} C_l^{\rm IG} \mathcal{P}_l(\cos \theta),$$

CMB temperature anisotropy Galaxy number density fluctuations

This cross-correlation can distinguish the different dark energy models:

GR

↑ ACDM model → The ISW-galaxy cross-correlation is positive.

spin0

Cubic-order scalar-tensor theories

Example: Kinetic Gravity Braiding (scalar-tensor theories)

R. Kimura, T. Kobayashi and K. Yamamoto (2012)

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm pl}^2}{2} R + K(\tilde{X}) - G(\tilde{X}) \Box \varphi \right] + S_M$$

where

$$K(\tilde{X}) = -\tilde{X}, \quad G(\tilde{X}) \propto \tilde{X}^n$$

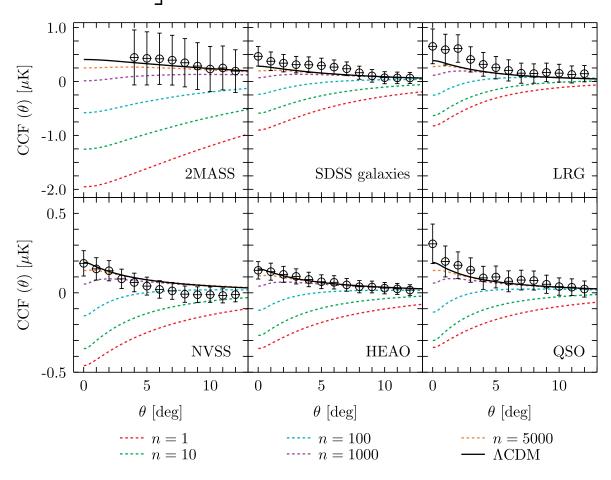
 φ : scalar field

$$\tilde{X} \equiv -\partial_{\mu}\varphi \partial^{\mu}\varphi/2$$

The data of ISW-galaxy cross-correlation constrain the power in range

$$n \gtrsim \mathcal{O}(100)$$

Cubic Galileon (n = 1) is excluded.



Dark energy model with $c_T = c$

The cross-correlation between ISW effect in CMB and galaxy distributions is given by

$$\left\langle \frac{\Delta T_{\rm ISW}(\hat{n})}{T} \frac{\Delta N_{\rm Galaxy}(\hat{n}')}{N} \right\rangle = \sum_{l=0}^{\infty} \frac{2l+1}{4\pi} C_l^{\rm IG} \mathcal{P}_l(\cos \theta),$$

CMB temperature anisotropy Galaxy number density fluctuations

This cross-correlation can distinguish the different dark energy models:

GR

↑ ACDM model → The ISW-galaxy cross-correlation is positive.

spin0

Cubic-order scalar-tensor theories

The ISW-galaxy cross-correlation can be negative.

spin1

Cubic-order vector-tensor theories
 positive or negative?

Evolution of matter density perturbations

We introduce gauge-invariant gravitational potentials: Ψ, Φ

In Fourier space with the comoving wave number k, these potential are related with the matter density contrast δ , as

Newtonian potential:
$$\frac{k^2}{a^2}\Psi = -4\pi G \mu \rho_m \delta \,, \quad \mu \equiv G_{\rm eff}/G$$

Weak lensing potential:
$$\frac{k^2}{a^2}\psi_{\rm eff}=8\pi G \frac{\Sigma}{\Gamma} \rho_m \delta\,,\quad \psi_{\rm eff}\equiv\Phi-\Psi$$

The density contrast obeys
$$\ddot{\delta}+2H\dot{\delta}-4\pi G\mu\rho_m\delta\simeq 0$$
 In GR, $~\mu=\Sigma=1$

Cross-correlation amplitude

$$\left\langle \frac{\Delta T_{\rm ISW}(\hat{n})}{T} \frac{\Delta N_{\rm Galaxy}(\hat{n}')}{N} \right\rangle = \sum_{l=0}^{\infty} \frac{2l+1}{4\pi} \frac{C_l^{\rm IG}}{\ell} \mathcal{P}_l(\cos\theta),$$

$$\frac{\Delta T_{\rm ISW}(\hat{n})}{T} \equiv \int_{n}^{\eta_0} d\eta \frac{\partial}{\partial n} \left[\Psi - \Phi \right] = \int_{0}^{z_r} dz \frac{\partial \psi_{\rm eff}}{\partial z}$$

Under the small angle approximation, the cross-correlation amplitude is given by

$$C_l^{\rm IG} \simeq \frac{3\Omega_{m0}H_0^2}{l_{12}^2D_0^2}\int d\mathcal{N}e^{-\mathcal{N}}H\,\mathcal{W}\,b_s\,D\,\Sigma\,\mathcal{F}\,P(l_{12}) \qquad \qquad \mathcal{N} \equiv \ln a(t) \qquad \qquad \mathcal{D} \colon \text{growth factor} \\ \mathcal{F} \equiv 1 - \frac{D'}{D} - \frac{\Sigma'}{\Sigma} = 1 - (\ln D\Sigma)' \qquad \qquad \qquad \text{spectrum}$$

This quantity determines the sign of the cross-correlation power spectrum.

Gravitational coupling related to light bending

In our models,
$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm pl}^2}{2} R + F + b_2 X^{p_2} + b_3 X^{p_3} \nabla_{\mu} A^{\mu} \right] + S_M$$
,

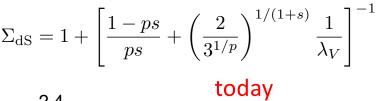
$$\Sigma = 1 + 1 / \left[f(s, p, \Omega_{DE}) + \left(\frac{2}{3^{1/p}} \right)^{1/(1+s)} \frac{1}{\lambda_V} \frac{1}{\Omega_{DE}^{1/[p(1+s)]}} \right]$$

where λ_V is associated with the intrinsic vector mode such that

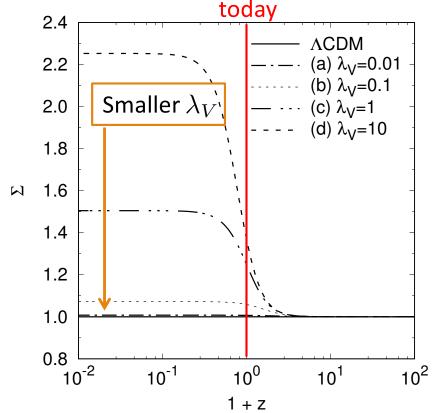
$$\lambda_V \equiv q_V \left[\left(\frac{\phi}{M_{\rm pl}} \right)^p \frac{H}{m} \right]^{2/[p(1+s)]}, \quad \frac{\phi \propto H^{-1/p}}{q_V : \text{coefficient of kinetic term}}, \quad \text{of vector perturbation}$$

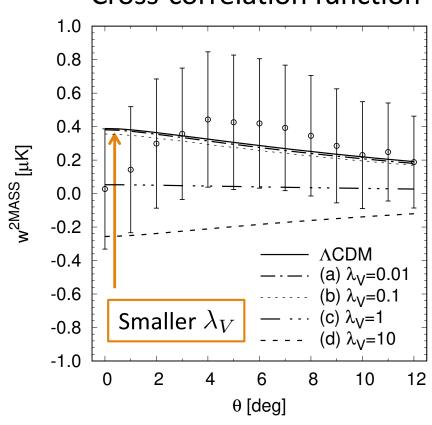
- In the limit $\lambda_V \to 0$, the evolution of perturbation is similar to that in Λ CDM.
- ightharpoonup In the limit $\lambda_V
 ightharpoonup \infty$, this model reduces to a subclass of scalar-tensor theories.

ISW-galaxy cross-correlations in concrete models



SN, A. De Felice, R. Kase and S. Tsujikawa (2018)





The intrinsic vector mode can give rise to positive cross-correlations compatible with the data.

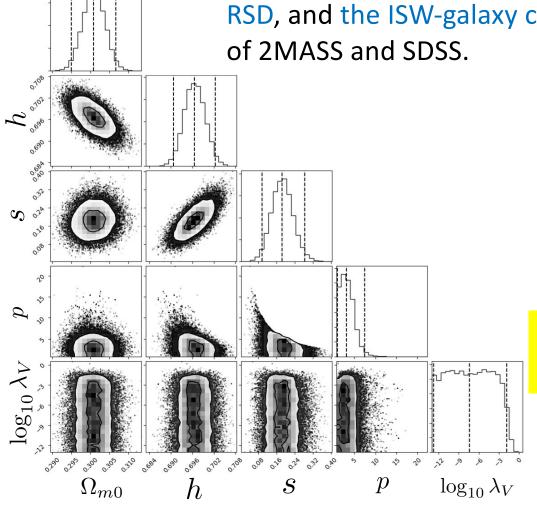
Outline

- Introduction to vector-tensor theories
- ISW effect as probe of dark energy models
- Observational constraints
- Summary

Observational constraints

SN, A. De Felice, R. Kase and S. Tsujikawa (2018)

We use the data of CMB, BAO, SN Ia, Hubble expansion rate, RSD, and the ISW-galaxy cross-correlations with the catalogues of 2MASS and SDSS.



$$\Omega_{m0} = 0.301^{+0.006}_{-0.006},
h = 0.697^{+0.006}_{-0.006},
s = 0.185^{+0.100}_{-0.089},
p = 3.078^{+4.317}_{-2.119},
\bar{\lambda}_{V} \le \lambda_{V} < 0.015, (95\% CL)$$

The model with s>0 still fits the data better than the Λ CDM model.

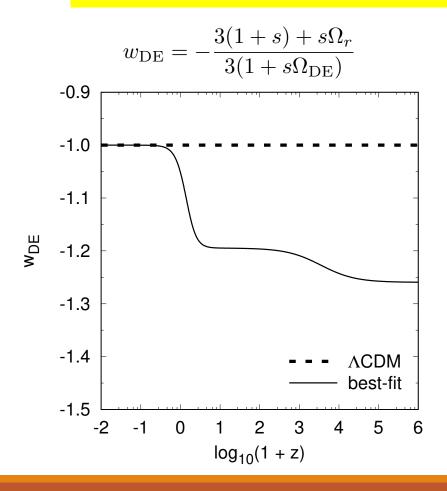
Best-fit: BIC = 651.2

ACDM: BIC = 655.6

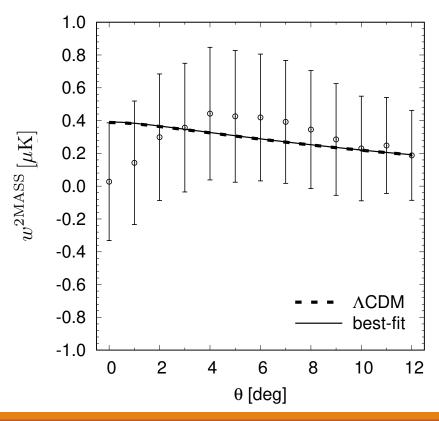
Best-fit case in massive vector dark energy model

$$\Omega_{m0} = 0.301, h = 0.697, s = 0.185, p = 3.078, \log_{10} \lambda_V = -7.359 \implies \text{BIC} = 651.2$$

The background dynamics in our model is different from that in Λ CDM, while the perturbation dynamics is almost the same as that in Λ CDM.



Cross-correlation function



Summary

- We studied observational constraints on a dark energy model in cubic-order generalized Proca theories by using the data of CMB, BAO, SN Ia, RSD and ISW-galaxy cross-correlation.
- Due to the existence of intrinsic vector mode, the ISW-galaxy cross-correlation can be positive even for cubic interactions unlike that in scalar-tensor theories.
- The model with s>0 still fits the data better than the Λ CDM model even by including the ISW-galaxy cross-correlation data.
- It remains to be seen whether future high-precision observations show some evidence that the dark energy model in the vector-tensor theories is favored over the ΛCDM model.