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Introduction

* Our universe is accelerating now.

=> The source of this acceleration is dubbed “dark energy (DE)”

GR « ACDM model = cosmological constant, HO tension...

spin0 | « Scalar-tensor theories = scalar field coupled to gravity

(e.g.) Horndeski theories

spinl | = Vector-tensor theories = vector field coupled to gravity

(e.g.) Generalized Proca theories

1/18




Horndeski theories: a scalar field coupled to gravity

The most general scalar-tensor theories with 2nd-order EoMs:
Lg=Go(m,X)~+ Gs(m, X) O+ Gu(m, X) R+ Gy x (, X)[(Om)? — T ]

. 1 . o
+G5(m, X )G mH” — 5 Gs.x (m, X)[(On)? — 3(On)m, 0t + 27, ™ T |

where

7 :scalar field with kinetic energy X = -V, 7#V¥7 /2,
G, G3, G4, G5 : arbitraly function

R : Ricci scalar, G : Einstein tensor

DOFs: 2 tensors + 1 scalar
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Horndeski theories: a scalar field coupled to gravity

The most general scalar-tensor theories with 2nd-order EoMs:

L = Ga(m, X) + Ga(m, X) Or + Ga(m, %) R +-Gctr O Em2—militn ]
1 3

e i AVAVA v yal [ Y\ L/
R SAAUREA WA TTZL 6 U5, X 70, AT

A N e Lo V]
I_II(}/l;IL”//l T A//l;’uylt /" ,O'J

The GW170817 event constrained
the speed of gravitational waves
to be very close to that of light.

Demanding that CT =— C

Lg = GQ(?T,X) —|—G3(7T,X) 7T—|—G4(7T)R
InGR, G4 = M§1/2
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Degrees of freedom for vector fields (Minkowski space-time)

- U(1) gauge field (massless)
1

L=—1FuF™, Fu=0,A, - 0,4,

=> DOFs: 2 transverse polarizations.

= If we keep U(1) gauge symmetry,
Galileon-like interactions are forbidden. ™ ———p

C. Deffayet, A. E. Gumrukcuoglu,
S. Mukohyama and Y. Wang (2014)




Degrees of freedom for vector fields (Minkowski space-time)

- U(1) gauge field (massless)
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L=—1FuF™, Fu=0,A, - 0,4,

=> DOFs: 2 transverse polarizations.

= If we keep U(1) gauge symmetry,
Galileon-like interactions are forbidden. ™ ———p

C. Deffayet, A. E. Gumrukcuoglu,
S. Mukohyama and Y. Wang (2014)

*| Proca field (massive) | (3 DOFs)

T T
L=~ FuF" = SmPA, A",

=> U(1) symmetry is broken. \

> DOFs:2 transverse polarizations [ longitudinal mode ]
+ 1 longitudinal mode.
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Generalized Proca theories: a vector field coupled to gravity

6 G. Tasinato (2014), L. Heisenberg (2014), J.B.lJimenez and L. Heisenberg (2016)
Lop =) L;,
i=2 Intrinsic vector mode

Lo = G2(X,|FY]),

The EOMs are second-order on general space-time
G3(X)V, A" with 5 DOFs.
Gi(X)R+ Gy x(X) [(V,AM)? = V,A, V7 AP]

I

1
Ls = G5(X)G,,VIAY — 6(;5,X(X)[(V,W)?’ — 3V, AFY A,V AP + 2V A,V APV A

L3
Ly

—g5(X)FFB YV, Ag
Intrinsic
1 N
Lg = G6(X)L“”O‘ﬁVMA,,VaA5 - §G6,X(X)FO‘3FWVQAMVﬁAV , vector modes
Where X — _AMQA“ 7 F— _Fuyfﬂ’/ , Y — AMAVFuaFyay ﬁwu — %guuaﬁFaﬁ’ L/wozﬁ — ig,uupagaﬂ’yéRparyé.

e’ + | evi-Civita tensor

* DOFs: 2 tensors + 2 vectors + 1 scalar

* In the limit (Ax = Vu® ), Lcp reduces to the shift-symmetric Horndeski theories.
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Generalized Proca theories: a vector field coupled to gravity

6 G. Tasinato (2014), L. Heisenberg (2014), J.B.lJimenez and L. Heisenberg (2016)

Lop =) L;,
i=2 Intrinsic vector mode
L2 = Ga(X|FY]), The EOMs are second-order on general space-time
L3 =G3(X)V, A" with 5 DOFs.
Ly = G4(76) R +-CotX A — N7 A N7 AP CT = C
v 1 3 , o o
éﬁ%%%%%%%—%%%%
—g5(X)FFB YV, Ag
1 Intrinsic

Ls = Go(X)LF*PV AN o Ag + §G6,X(X)F“ﬂﬁ’“”VQAMV5A,, , vector modes

VL R )

128 naet % 1 vo 1 g
where X = — e _ -, Y = A*AYF,°F,,, F" :§gu 'BFaﬁ, L/wocB:Zg/wp 504/3’75Rp075_

e’ + | evi-Civita tensor

* DOFs: 2 tensors + 2 vectors + 1 scalar

* In the limit (Ax = Vu® ), Lcp reduces to the shift-symmetric Horndeski theories.
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Cosmological background in Generalized Proca theories

M2
Action: S = [ d'ay=g| =2 + Ga(X.F.Y) + Ga(X)V, 4" + L +Sur.
Metric: ds® = —dt* + a” (t)éz-jd.rida:j. cr =¢C
A vector field with the perturbations: X=-A,A0)2 =42

1 |
AF = (qb(t) + 00, ?523 Oixv + EZ) < From isotropy of the background




Cosmological background in Generalized Proca theories

]V{Q
Action: S = [ d'ay=g| =2 + Ga(X.F.Y) + Ga(X)V, 4" + L +Sur.
Metric: ds® = —dt* + a” (t)éijda:ida:j. cr =¢C
A vector field with the perturbations: X=-A,A0)2 =42

1 |
AF = (qb(t) + 00, ?523 Oixv + Ez) < From isotropy of the background

The background equations of motion: »=¢(H)
goo - 3M§1H2 — _GQ + Pom + pr, AF: ¢ (GQ,X + 3G3,XH¢) — 07

* Intrinsic vector modes do not appear at the background level.

- © #0 = There exist de Sitter solutions characterized by
¢ = constant gnd H = constant.
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A simple dark energy model in vector-tensor theories

M
TPIRJF F+Gy(X) + G3(X)V,A*| + S,

where
G2 (X) — bQsz ] Gg — ngp3 ] b2, b3, p2, D3 : constants.

=) The cubic vector Galileon corresponds to the case with p2 = p3 =1,

When ¢ # 0, there are the solutions characterized by

¢P H = constant with p=1—2py +2p3 >0

=) ¢ grows with the decrease of I to give rise to
the late-time cosmic acceleration.
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Dark energy equation of state in our model

3(1 0 Radiation era : Wpg = —1 — 45/3
+s)+s
WpE = — :(3 0 ===  Matterera : Wpg = —1 — s
+ S
( DE) de Sitter era : Wpg = —1
s e AR B
| (s=t ||
S = po/p : Deviation from ACDM model . | etz ]
2. Radiation density parameter 12 c—09 Tl
QpE : DE density parameter a4 L A
== e | s=05 |
The ACDM limit: s = 0 :
-1.8
Smaller S
20 |-
. 3 s=1
The sqlutlons converge to 2 | (Vector Galileon]
a de Sitter attractor. ]
. 10 100 1000 10* 10° 10°
A. De Felice et al (2016) 1+7
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Integrated Sachs-Wolfe (ISW) effect

Constant potential \/ = \/

M

Potential decays ~_
(e.g., A\CDM model) \/ =

p | A0
otential grows =
(e.g., cubic Galileon) \/ \/

=) Detection of late-time ISW effect in a flat universe is
independent evidence for dark energy.

= Taking the cross-correlation between the CMB anisotropy and
the galaxy distributions, we can separate the ISW signal from
the CMB anisotropy.
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Dark energy model with ¢ = ¢

The cross-correlation between ISW effect in CMB and galaxy distributions

is given by ATigw(#) AN ) © 1
ISw (71 Galaxy (V') \ +1 1c
< T N > = Z yp C;7Pi(cosb),
e ~ (=0
CMB temperature anisotropy Galaxy number density fluctuations

This cross-correlation can distinguish the different dark energy models:

GR | * ACDM model =) The ISW-galaxy cross-correlation is positive.

spin0 |  Cubic-order scalar-tensor theories
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Example: Kinetic Gravity Braiding (scalar-tensor theories)

R. Kimura, T. Kobayashi and K. Yamamoto (2012)

M? ~ -
S:/d4x\/—g TI)lR-I—K(X)—G(X)DQO + S

Where 1.0—||||||||_-|-||||—|||||||||||||_|||||IIIIIIII
K(X)=-X, GX)xX" :

@ :scalar field
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cross-correlation constrain
the power in range

n 2 O(100)

T T T
=
>
[@p]
09]
1
w2
-
[@p]
0]
a2
&
2.
o
.
@D
th

20 F T

CCF (8) [uK]

=) Cubic Galileon (n =1)
is excluded.
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Dark energy model with ¢ = ¢

The cross-correlation between ISW effect in CMB and galaxy distributions

is given by ATigw(#) AN ) © 1
ISw (71 Galaxy (V') \ +1 1c
< T N > = Z yp C;7Pi(cosb),
e ~ (=0
CMB temperature anisotropy Galaxy number density fluctuations

This cross-correlation can distinguish the different dark energy models:

GR | * ACDM model =) The ISW-galaxy cross-correlation is positive.

spin0 |  Cubic-order scalar-tensor theories

=) The ISW-galaxy cross-correlation can be negative.

spinl | = Cubic-order vector-tensor theories =) positive or negative?
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Evolution of matter density perturbations

We introduce gauge-invariant gravitational potentials: ¥, ®

In Fourier space with the comoving wave number &,
these potential are related with the matter density contrast 9, as

132
Newtonian potential: — W = —47G (100, 1= Gesr/G
a

}62
Weak lensing potential: — et = 8TG X ppd, Yo = ® — W
a

The density contrast obeys 5—|— 2H5 — 477G,u,0m5 ~ O\[ In GR, 1 = P 1]
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Cross-correlation amplitude

. o >
<ATISW (n) ANGalaxy (n ) > _ Z 20+ 1 ClIG'Pl(COS 9) ,

T N

ATisw(f) _ / "l e = / " gz 20t
Ny 0 0z

Under the small angle approximation, the cross-correlation amplitude
is given by

3Q H2 l12 = + 1/2
C'ZIG o l2m;)2 0 /dNe_NHWbS DY F P(ly2) w: window function
1270 bs: bias
N =Ina(t) D: growth factor
DY P : the matter power
-7:51_5_5 =1 - (InDX)’ spectrum

This quantity determines the sign of the cross-correlation power spectrum.
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Gravitational coupling related to light bending

M? »
In our mOde|S, S:/d433\/—_g TI)IR+F+b2Xp2 —|—b3X3VMA“’

+ Sum,

9 1/(1+s) 1 1
S=1+1/ |f(s,p, QpE) + (W) Ny QU]
DE

where My is associated with the intrinsic vector mode such that

\ [( & )’p H]2/[P(1+S)] gbocH_l/p
v=gv |(— ) =

My /) m s qv : coefficient of kinetic term
of vector perturbation

=) |nthe limit \yy — 0,
the evolution of perturbation is similar to that in ACDM.

=) Inthe limit \yy — 00,
this model reduces to a subclass of scalar-tensor theories.
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ISW-galaxy cross-correlations in concrete models

. R 9 \L/(+s) {17} SN, A. De Felice, R. Kase and S. Tsujikawa (2018)
as = 1+ s (31/P) N . .
Cross-correlation function
2.4 _today 1.0
S —— ACDM | ]
22 | N |=-—. (@) Ay=0.01 | 0.8 |
* o I (b) Ay=0.1 | 0.6 |
2.0 || Smaller Ayo| |[— -+ (@) ay=1 - :
| oo () Ay=10 0.4 b i ||
1.8 ’ \\‘ * g 0.2 7 e 5‘?@?_#1@___
s g ool Tl
1.4 N\ %y 02 B ]
I . \ 0.4 , — ACDM
12| . ; —.—- (a) A\y=0.01
B N , 06F (b) Ay=0.1
1.0 o 08 | | Smaller Ay | — - (©) Ay=1
, , © S - (d)Ay=10
08 L . L . _10 [ 1 . ! . ! . . ! . ! . L]
102 107 10° 10° 102 o 2 4 6 8 10 12
1+2 6 [deg]

The intrinsic vector mode can give rise to positive cross-correlations
compatible with the data.
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Observational constraints

SN, A. De Felice, R. Kase and S. Tsujikawa (2018)

We use the data of CMB, BAO, SN |la, Hubble expansion rate,
| HJHLH RSD, and the ISW-galaxy cross-correlations with the catalogues
of 2MASS and SDSS.

0.006
Qo = 0.3017 0006 5

h = 0.697" 506

0.100

p=3.078T4317 o HTUP

Ay < Ay < 0.015, (95% CL)

The model with s > 0 still fits the data
better than the ACDM model.

Best-fit: BIC = 651.2
ACDM: BIC = 655.6




Best-fit case in massive vector dark energy model

Qo =0.301, A =0.697, s = 0.185, p = 3.078, log;; A\vy = —7.359 = BIC = 651.2

The background dynamics in our model is different from that in ACDM,
while the perturbation dynamics is almost the same as that in ACDM.
3(1 Q, . .

wpp = — S0 &)+ Cross-correlation function
3(1 + SQDE) .
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Summary

- We studied observational constraints on a dark energy model
in cubic-order generalized Proca theories by using the data of
CMB, BAO, SN la, RSD and ISW-galaxy cross-correlation.

* Due to the existence of intrinsic vector mode, the ISW-galaxy
cross-correlation can be positive even for cubic interactions
unlike that in scalar-tensor theories.

- The model withs > 0 still fits the data better than the ACDM model
even by including the ISW-galaxy cross-correlation data.

* |t remains to be seen whether future high-precision observations show
some evidence that the dark energy model in the vector-tensor theories
is favored over the ACDM model.

18/18



