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Unified Origin of 
Dark Matter and Baryons



Reasons to go Beyond the Standard Model

• Observational: 
• neutrino masses

• cold dark matter

• baryon asymmetry of the Universe


• Theoretical:  
• in the language of the SM, Quantum Field Theory, it is hard to 

describe gravitation

• Aesthetical: the structure of the SM is very peculiar
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Reasons to go Beyond the Standard Model

• Observational: 
• neutrino masses

• cold dark matter

• baryon asymmetry of the Universe


• Theoretical:  
• in the language of the SM, Quantum Field Theory, it is hard to 

describe gravitation

• Aesthetical: 


• flavor puzzle: the structure of the SM is very peculiar

• gauge hierarchy problem - stability of Higgs mass
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MSSM

• Many attractive features


• partial solution to the gauge hierarchy problem


• gauge coupling unification


• dark matter candidate


• Many deficiencies


• mu problem:   μ << Mpl


• proton decay through dim-4, dim-5 operators 


• dim-4 operators: forbidden by imposing R-parity

• dim-5 operators: severe experimental constraints on the models



Cosmological Moduli Problems

• SUSY: predict many scalars

• concrete models have many flat directions before SUSY breaking

• moduli mass ~ SUSY breaking scale

• Planck suppressed interactions ⇒ never thermalized


• EW scale moduli: decay after BBN

• destroy light elements

• entropy productions: dilute nB/s  ⇒ no baryogenesis


• gravity-mediated SUSY breaking m3/2 ~ 102-3 GeV

• neutralino dark matter

• late time moduli decay 

• dilute nB/s by large order of magnitude



Cosmological Moduli ProblemsModuli at finite temperature Constraints on flavons

Moduli problems
Coughlan, Fischler, Kolb, Raby, and Ross (1983); de Carlos, Casas, Quevedo, and Roulet (1993)
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Avoiding Cosmological Moduli Problems

• raising moduli mass: Anomaly/Mirage-mediated SUSY breaking


          m3/2 > (10 - 100) TeV ⇒ moduli decay before BBN


• LSP: Wino or Higgsino ⇒ too small dark matter thermal abundance


• entropy production diluting produced baryon asymmetry
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• LSP: Wino or Higgsino ⇒ too small dark matter thermal abundance


• entropy production diluting produced baryon asymmetry

non-thermal abundance due to moduli decay
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Avoiding Cosmological Moduli Problems

• Basic idea: chiral superfield  


𝜙-number asymmetry


• Evolution of the moduli field


negligible density. The standard BBN takes place after φ has decayed at sufficiently high

temperature. The dark matter is produced by the φ decay and the correct abundance is

obtained in the W ino/Higgsino LSP scenario due to pair annihilation [23] which is less

effective than in the so-called thermal scenarios. The baryon asymmetry is also generated

in φ decays. The decay channel of a φ field into two gravitinos is forbidden by R-parity,

and we assume that the decay into a gravitino and the fermionic superpartner of φ

(φ̃) is kinematically forbidden. Interestingly, by unifying the origin of dark matter and

baryon asymmetry, this scenario explains the one of the puzzling issues of our Universe

that the energy densities of dark matter and baryon asymmetry are close to each other,

Ωb ∼ ΩCDM.1

The paper is organized as follows: in Section 2 we present the baryogenesis mechanism,

and show that it is indeed possible to generate the observed amount of baryon asymmetry

while satisfying the BBN constraints on the reheating temperature after the φ decay. In

Section 3, we discuss the abundance of the dark matter from the φ decay. In particular,

in our preferred scenario the ratio ΩCDM/Ωb ∼ 5 implies a large gravitino mass, m3/2 ∼

100TeV which fits nicely to the W ino/Higgsino LSP scenario.

2 Baryogenesis

2.1 Basic idea

We consider a chiral superfield Φ = (φ, φ̃, Fφ) which couples to the matter fields via a

higher-dimensional term in the superpotential [20],

W ⊃
1

M
ΦU DD , (1)

with U = (ũc, uc, Fu) and D = (d̃c, dc, Fd) denoting the up- and down-type quark su-

perfields. Here, we suppressed color and generation indices, and absorbed dimension-

less couplings into M which will be taken to be of the of order of the Planck scale,

M ∼ MP = 2.44 × 1018 GeV, unless stated otherwise. Due to this operator φ effectively

carries baryon number (+1).

Let us now define the φ number asymmetry

qφ := i
(
φ̇∗φ− φ∗φ̇

)
. (2)

qφ is given by the difference between the number densities nφ and nφ∗ of particles φ and

antiparticles φ∗. qφ can be interpreted as angular momentum of the φ field rotating in

the complex plane [29].

The scenario we shall describe in the following consist of the following sequence of

steps: first, a positive qφ is generated. Then there is an era of coherent φ oscillations where

a significant fraction of the energy density of the universe is carried by these oscillations,

1 See, for example, [24, 25, 26, 27, 21, 28] for earlier attempts to explain the similarity: Ωb ∼ ΩCDM.
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and qφ is conserved. Finally, φ number is converted into the baryon number by its decay,

and it reheats the universe up to O(100MeV) consistently with nucleosynthesis.

Before we describe the mechanism in detail, let us briefly explain the main differences

to Ref. [20]. For the mechanism to work, one has make sure that dangerous φ-number

violating interaction terms are absent or sufficiently suppressed. One can forbid these

terms by imposing a symmetry. In Ref. [20], a model with a 4R symmetry is presented,

which ensures the φ-number conservation at a sufficient level and also prevents φ from

dominating the universe. Below, we will consider a different model with an anomaly-free

9 discrete baryon symmetry in addition to the usual R-parity (see Table 1), and will,

as already stated, assume that that φ dominates the universe at an early epoch.

In order to obtain the baryon asymmetry before BBN, in Ref. [20] enhanced couplings

of φ to the baryons are assumed such that the φ lifetime is short enough. Moreover, in

the case of the φ mass of the order 100GeV, the universe would be always matter (φ

or dark matter) dominated once φ dominates the universe at an early time. This is

not compatible with the requirement of successful BBN and, therefore, a model without

(early) φ domination is constructed there.

The situation is, however, different if φ is heavy. As the temperature after the φ decay

is higher than the BBN temperature, φ is allowed to dominate the energy density of the

universe. This high temperature after φ decay also plays a crucial role in the generation

of cold dark matter (cf. Section 3).

2.2 φ evolution

Let us start by considering the dynamics of the φ field. The evolution of φ is described

by its equation of motion,

φ̈+ (3H + Γφ) φ̇+
∂V

∂φ∗
= 0 , (3)

where V = V (φ,φ∗, . . . ) denotes the scalar potential, H the Hubble rate and Γφ the φ

decay rate. Eq. (3) translates into an equation of motion for qφ,

q̇φ + 3H qφ = − i

(
φ
∂V

∂φ
− φ∗

∂V

∂φ∗

)
. (4)

Hence, a non-vanishing right-hand side of (4) can be used for the first step, i.e. to create

non-zero qφ dynamically. Before explaining this in detail, recall that we need also to

satisfy the condition of φ number conservation in the stage of φ oscillation. This means

that in the φ oscillation era the φ number violating terms have to be absent (or sufficiently

suppressed). The most dangerous term of this type is µ2φ2 + h.c..

In order to enforce the absence of those dangerous terms, we impose a discrete 9

symmetry which is an anomaly free subgroup of baryon number symmetry [30, 31, 32,

33, 34]. The charge assignment is listed in Tab. 1, where Φ̄ is introduced in order to give

a mass term for the fermionic superpartner of φ without introducing µ2φ2 term in the

4

and qφ is conserved. Finally, φ number is converted into the baryon number by its decay,

and it reheats the universe up to O(100MeV) consistently with nucleosynthesis.

Before we describe the mechanism in detail, let us briefly explain the main differences

to Ref. [20]. For the mechanism to work, one has make sure that dangerous φ-number

violating interaction terms are absent or sufficiently suppressed. One can forbid these

terms by imposing a symmetry. In Ref. [20], a model with a 4R symmetry is presented,

which ensures the φ-number conservation at a sufficient level and also prevents φ from

dominating the universe. Below, we will consider a different model with an anomaly-free

9 discrete baryon symmetry in addition to the usual R-parity (see Table 1), and will,

as already stated, assume that that φ dominates the universe at an early epoch.

In order to obtain the baryon asymmetry before BBN, in Ref. [20] enhanced couplings

of φ to the baryons are assumed such that the φ lifetime is short enough. Moreover, in

the case of the φ mass of the order 100GeV, the universe would be always matter (φ

or dark matter) dominated once φ dominates the universe at an early time. This is

not compatible with the requirement of successful BBN and, therefore, a model without

(early) φ domination is constructed there.

The situation is, however, different if φ is heavy. As the temperature after the φ decay

is higher than the BBN temperature, φ is allowed to dominate the energy density of the

universe. This high temperature after φ decay also plays a crucial role in the generation

of cold dark matter (cf. Section 3).

2.2 φ evolution

Let us start by considering the dynamics of the φ field. The evolution of φ is described

by its equation of motion,

φ̈+ (3H + Γφ) φ̇+
∂V

∂φ∗
= 0 , (3)

where V = V (φ,φ∗, . . . ) denotes the scalar potential, H the Hubble rate and Γφ the φ

decay rate. Eq. (3) translates into an equation of motion for qφ,

q̇φ + 3H qφ = − i

(
φ
∂V

∂φ
− φ∗

∂V

∂φ∗

)
. (4)

Hence, a non-vanishing right-hand side of (4) can be used for the first step, i.e. to create

non-zero qφ dynamically. Before explaining this in detail, recall that we need also to

satisfy the condition of φ number conservation in the stage of φ oscillation. This means

that in the φ oscillation era the φ number violating terms have to be absent (or sufficiently

suppressed). The most dangerous term of this type is µ2φ2 + h.c..

In order to enforce the absence of those dangerous terms, we impose a discrete 9

symmetry which is an anomaly free subgroup of baryon number symmetry [30, 31, 32,

33, 34]. The charge assignment is listed in Tab. 1, where Φ̄ is introduced in order to give

a mass term for the fermionic superpartner of φ without introducing µ2φ2 term in the

4

Kitano, Murayama, Ratz (2008)



Moduli Number Asymmetry
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Avoiding Cosmological Moduli Problems

• Evolution of moduli field


                  V(𝜙, 𝜙*) such that 


• Early Era (after inflation): H ≫ m𝜙 oscillation unimportant 


• generation of moduli asymmetry through evolution


• Coherent oscillation of moduli: (@T ~ T* = (Mpl x m𝜙)1/2:  H ~ m𝜙)


• 𝜙-number approximately conserved ⇒ asymmetry preserved


• dominate energy density of Universe 


• Moduli decay (H~𝛤𝜙) ⇒ Baryogenesis:  


             𝜙-number asymmetry → B-number asymmetry
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‣ naturally small μ Term and Dirac neutrino masses?

‣before SUSY breaking: absence of μ term & Dirac neutrino masses (as well as 

Weinberg operator)


‣ after SUSY breaking 


‣ realistic effective Dirac neutrino masses generated


‣ need a symmetry reason for the absence of these operators before SUSY breaking
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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A Anomaly coefficients for R
M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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‣ Absence of perturbative Weinberg operator ⇒ constraints on R charges of leptons
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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A Anomaly coefficients for R
M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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A Anomaly coefficients for R
M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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A Anomaly coefficients for R
M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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The μ Term and Dirac Neutrino Mass

• Requiring Symmetries 


• to forbid mu term


• be anomaly-free

• be consistent with SU(5)


• continuous R symmetries not available


• Exist classes of Abelian discrete R symmetries,       , that satisfy


• Dirac neutrino case for qθ = integer:


• anomaly freedom (a la Green-Schwarz)


• forbidding mu term perturbatively


• consistent with SU(5)


• allowing usual Yukawa


• Weinberg operators forbidden perturbatively


�15

R Symmetries

Discrete R Symmetries
A.H. Chamseddine, H.K. Dreiner (1996)

H.M. Lee, S. Raby M. Ratz, G.G. Ross, R. Schieren, 
K. Schmidt-Hoberg, P.K. Vaudrevange, (2011); 

M.-C. C., Michael Ratz, Christian Staudt, 
Patrick Vaudrevange (2012)



Structure of the Model

�16

MSSM with

anomaly-free discrete R 
symmetry Z12R

anomalous U(1)A

flavor structure a lá 
Froggatt-Nielsen 

Dirac neutrino masses
𝜇-term

nucleon stability
moduli potential  

V(𝜙, 𝜙*) baryogengesis

dark matter (wino)

production, which occurs due to the heavy „ decays. This sets

Tr . m‰/20 , (5.15)

leading to (see Eq. (5.10))
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5 ◊ 104 TeV
23/21

Mpl

M

2
. (5.16)

From the Boltzmann equations, the relic density of ‰ is then approximately [62]

n‰

s
≥ (4È‡vÍMplTr)≠1

, (5.17)

where for particles carrying SU(2) quantum numbers, such as Wino or Higgsino, the thermally-
averaged annihilation cross-section is È‡vÍ ≥ 10≠3

/m
2
‰. The resulting relic abundance [11]

�DM h
2
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1
m‰

700 GeV
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m„

23/21
M

MP

2
, (5.18)

which is to be compared to the experimental value from Planck [1] of �DM h
2
0 = 0.1198 ±

0.0012.
Hence, the DM and baryon abundances (Eq. (5.13)) are related as

�DM

�b

≥ 5 |Ÿ|
≠1
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21
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m3/2

221
M

MP

22
, (5.19)

where mnuc is the nucleon mass. The �DM /�b factor is required to be of O(1) if one is to
address the observed baryon-DM abundance coincidence.

We first discuss Wino LSP, arising in the context of anomaly-mediated SUSY breaking.
Here, the gaugino masses are proportional to

mGi ≥
big

2
i

16fi2 m3/2 , (5.20)

where Gi denote the SM gauge groups, gi are the gauge couplings and bi are the —-function
coe�cients. Hence,

m‰ ƒ 2.7 ◊ 10≠3
m3/2 . (5.21)

From (5.19), this results in
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. (5.22)

It has been suggested (e.g. [63]) that indirect detection already strongly constrains the non-
thermal Wino. These results, however, strongly depend on the assumptions regarding the un-
certain astrophysical J-factor associated with the DM halo shape in dwarf spheroidal galaxies
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Avoiding Cosmological Moduli Problems
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3 Dark matter from φ decay

Since every φ decay produces (at least) one superpartner, Ref. [20] concludes that the

number density of LSPs exceeds the one of baryons, nLSP ! nb. However, nLSP is modi-

fied by LSP pair annihilation processes in a heavy φ scenario. These processes are effective

as long as the corresponding rate exceeds the Hubble rate. In the MSSM, the dark matter

candidates which pair annihilate strongly are the W ino and the Higgsino. Both particles

have large annihilation cross sections through weak interaction, and thus the thermal

abundance cannot explain the energy density of the dark matter. On the other hand,

non-thermal production from φ decays renders the W ino/Higgsino a viable dark matter

candidate.

In order to find out to what extent the LSPs annihilate, one describes the evolution

of number densities of φ quanta and LSPs, nφ and nχ, and energy density of the thermal

bath, ρrad, by Boltzmann equations [23],

dnφ

dt
+ 3H nφ = −Γφ nφ , (18a)

dnχ

dt
+ 3H nχ = νLSP Γφ nφ − ⟨σ v⟩n2

χ , (18b)

dρrad
dt

+ 4H ρrad = (mφ − νLSP mχ)Γφ nφ +mχ⟨σ v⟩n2
χ . (18c)

νLSP denotes the number of LSPs produced by a φ decay. The Boltzmann equations can

be integrated, and the relic density of χ can be approximated by [40]

nχ

s
∼ (4 ⟨σv⟩MP Td)

−1 , (19)

as long as the LSPs are not equilibrated, i.e. Td " mχ/30. The relic χ abundance is then

Ωχ h
2 ≃ 0.1

(
2.5 × 10−3

m2
χ⟨σv⟩

)(
10−2

ξ

)1/2 ( mχ

100GeV

)3 ( mφ

1500TeV

)
−3/2

(
M

MP

)
.

(20)

The thermal average of the annihilation cross section is typically ⟨σv⟩ ∼ 10−3/m2
χ for the

particles which have SU(2)L quantum numbers such as W ino and Higgsino. Therefore the

non-thermal component can explain the dark matter of the universe for mφ ∼ 103−5 TeV

depending on mχ.

For concreteness, let us focus on the case of the W ino LSP. The annihilation cross

section is [23] (cf. the extensive list [41])

⟨σfW 0fW 0→W+W−
v⟩ =

g42
2π

1

m2
χ

[
1−

m2
W

m2
χ

]3/2

[
2−

m2
W

m2
χ

]2 . (21)

In Fig. 1 we show the relic W ino density Ωχ h2 (where h ≃ 0.7 is the present normalized

Hubble expansion rate [36]) as a function of mφ. To produce Fig. 1, we solve the set

of Boltzmann equations (18) (extended to include the charged W ino NLSP) and take

8

3 Dark matter from φ decay

Since every φ decay produces (at least) one superpartner, Ref. [20] concludes that the

number density of LSPs exceeds the one of baryons, nLSP ! nb. However, nLSP is modi-

fied by LSP pair annihilation processes in a heavy φ scenario. These processes are effective

as long as the corresponding rate exceeds the Hubble rate. In the MSSM, the dark matter

candidates which pair annihilate strongly are the W ino and the Higgsino. Both particles

have large annihilation cross sections through weak interaction, and thus the thermal

abundance cannot explain the energy density of the dark matter. On the other hand,

non-thermal production from φ decays renders the W ino/Higgsino a viable dark matter

candidate.

In order to find out to what extent the LSPs annihilate, one describes the evolution

of number densities of φ quanta and LSPs, nφ and nχ, and energy density of the thermal

bath, ρrad, by Boltzmann equations [23],

dnφ

dt
+ 3H nφ = −Γφ nφ , (18a)

dnχ

dt
+ 3H nχ = νLSP Γφ nφ − ⟨σ v⟩n2

χ , (18b)

dρrad
dt

+ 4H ρrad = (mφ − νLSP mχ)Γφ nφ +mχ⟨σ v⟩n2
χ . (18c)

νLSP denotes the number of LSPs produced by a φ decay. The Boltzmann equations can

be integrated, and the relic density of χ can be approximated by [40]

nχ

s
∼ (4 ⟨σv⟩MP Td)

−1 , (19)

as long as the LSPs are not equilibrated, i.e. Td " mχ/30. The relic χ abundance is then

Ωχ h
2 ≃ 0.1

(
2.5 × 10−3

m2
χ⟨σv⟩

)(
10−2

ξ

)1/2 ( mχ

100GeV

)3 ( mφ

1500TeV

)
−3/2

(
M

MP

)
.

(20)

The thermal average of the annihilation cross section is typically ⟨σv⟩ ∼ 10−3/m2
χ for the

particles which have SU(2)L quantum numbers such as W ino and Higgsino. Therefore the

non-thermal component can explain the dark matter of the universe for mφ ∼ 103−5 TeV

depending on mχ.

For concreteness, let us focus on the case of the W ino LSP. The annihilation cross

section is [23] (cf. the extensive list [41])

⟨σfW 0fW 0→W+W−
v⟩ =

g42
2π

1

m2
χ

[
1−

m2
W

m2
χ

]3/2

[
2−

m2
W

m2
χ

]2 . (21)

In Fig. 1 we show the relic W ino density Ωχ h2 (where h ≃ 0.7 is the present normalized

Hubble expansion rate [36]) as a function of mφ. To produce Fig. 1, we solve the set

of Boltzmann equations (18) (extended to include the charged W ino NLSP) and take

8

3 Dark matter from φ decay

Since every φ decay produces (at least) one superpartner, Ref. [20] concludes that the

number density of LSPs exceeds the one of baryons, nLSP ! nb. However, nLSP is modi-

fied by LSP pair annihilation processes in a heavy φ scenario. These processes are effective

as long as the corresponding rate exceeds the Hubble rate. In the MSSM, the dark matter

candidates which pair annihilate strongly are the W ino and the Higgsino. Both particles

have large annihilation cross sections through weak interaction, and thus the thermal

abundance cannot explain the energy density of the dark matter. On the other hand,

non-thermal production from φ decays renders the W ino/Higgsino a viable dark matter

candidate.

In order to find out to what extent the LSPs annihilate, one describes the evolution

of number densities of φ quanta and LSPs, nφ and nχ, and energy density of the thermal

bath, ρrad, by Boltzmann equations [23],

dnφ

dt
+ 3H nφ = −Γφ nφ , (18a)

dnχ

dt
+ 3H nχ = νLSP Γφ nφ − ⟨σ v⟩n2

χ , (18b)

dρrad
dt

+ 4H ρrad = (mφ − νLSP mχ)Γφ nφ +mχ⟨σ v⟩n2
χ . (18c)

νLSP denotes the number of LSPs produced by a φ decay. The Boltzmann equations can

be integrated, and the relic density of χ can be approximated by [40]

nχ

s
∼ (4 ⟨σv⟩MP Td)

−1 , (19)

as long as the LSPs are not equilibrated, i.e. Td " mχ/30. The relic χ abundance is then

Ωχ h
2 ≃ 0.1

(
2.5 × 10−3

m2
χ⟨σv⟩

)(
10−2

ξ

)1/2 ( mχ

100GeV

)3 ( mφ

1500TeV

)
−3/2

(
M

MP

)
.

(20)

The thermal average of the annihilation cross section is typically ⟨σv⟩ ∼ 10−3/m2
χ for the

particles which have SU(2)L quantum numbers such as W ino and Higgsino. Therefore the

non-thermal component can explain the dark matter of the universe for mφ ∼ 103−5 TeV

depending on mχ.

For concreteness, let us focus on the case of the W ino LSP. The annihilation cross

section is [23] (cf. the extensive list [41])

⟨σfW 0fW 0→W+W−
v⟩ =

g42
2π

1

m2
χ

[
1−

m2
W

m2
χ

]3/2

[
2−

m2
W

m2
χ

]2 . (21)

In Fig. 1 we show the relic W ino density Ωχ h2 (where h ≃ 0.7 is the present normalized

Hubble expansion rate [36]) as a function of mφ. To produce Fig. 1, we solve the set

of Boltzmann equations (18) (extended to include the charged W ino NLSP) and take

8



The Model

Particle Content: SU(5) compatible

SU(5)
10

˙ ˝¸ ˚

SU(5)
5

˙ ˝¸ ˚
Whid
˙˝¸˚

Q U E D L Hu Hd ‹ � � ‡ e
≠bS

X ◊

R
12 2 2 2 6 6 2 10 10 4 8 0 6 rX 3

æ 3 2 2 2 0 0 1 2 1 2 1 0 0 rXÕ -
M
2 1 1 1 1 1 0 0 1 1 1 0 0 0 0

U(1)A

3 3 3 (1 + p) (1 + p)
0 0

(15 + p)
0 0 -1 qS 0 02 2 2 p p (14 + p)

0 0 0 p p (13 + p)

Table 1: The particle content and charge assignment of the model. All fields shown are chiral
multiplets; ◊ denotes the super-space coordinates. The three horizontal rows at the bottom
represent the U(1)A charges for each of the fermions in the three families, respectively.

The order parameter for SUSY/R-symmetry breaking is the VEV of “hidden sector” super-
potential ÈWhidÍ ≥ m3/2 as in gravity mediation, which allows to parametrize the size of the
e�ective terms.

Some key features of the model are described in the following:

• µ-term: The µ term is forbidden in the superpotential due to the discrete R-symmetry,
and appears only after SUSY and R-symmetry breaking. It can be generated with
the correct magnitude through the Giudice-Masiero mechanism [30]. Specifically, the µ

term can e�ectively appear from the Kähler potential

K ∏ kHuHd

X
†

Mpl

HuHd + h.c. (2.3)

once the anti-holomorphic X
† field acquires a VEV in the F -term, ÈFXÍ ≥ m3/2Mpl,

with Mpl = 2.435 ◊ 1018 GeV being the reduced Planck mass. This leads to µeff to be
of the order of the gravitino mass, as in gravity mediation. Note that in the model of
[11], based on non-R discrete symmetry, the µ-problem persists. On the other hand,
discrete R-symmetries allow to naturally address this issue [21].

• Neutrinos: The Weinberg operator, LHuLHu, which leads to Majorana neutrino
masses, is forbidden in both the superpotential and the Kähler-potential to all orders
due to the discrete R symmetry. The neutrinos are Dirac fermions. As we show be-
low, the suppression in the Dirac neutrino masses in our model naturally follow from
the family U(1)A symmetry, and its magnitude is determined by the requirement of
cancellation of mixed U(1)A-gravitational anomaly.

• Flavor structure: The flavor structure of the model is determined by the Froggatt-
Nielsen mechanism [28]. This approach has already been extensively studied in the
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The Model

• Superpotential:


• After SUSY breaking:

appear in string constructions, our setting is well motivated from a more fundamental theory.
This manuscript is structured as follows. Section 2 describes our SU(5)-compatible model

based on a discrete R
12 symmetry combined with a anomalous U(1)A flavor symmetry. We

discuss Green-Schwarz anomaly cancellation and review the general features of the model.
In Section 3, we promote U(1)A to a full flavor symmetry. We comment how modifying the
charge assignment of the flavor model proposed in [29], allows to cancel the gravitational
anomaly without extra singlets and naturally explain the size of the Dirac neutrino masses
in our model, in addition to explaining the top-bottom hierarchy in the Yukawa sector. The
textures we obtain are shown to be fully compatible with SU(5) and correctly reproduce
the mixing in the quark and lepton sector, as shown by performing a ‰

2 fit. In Section 4,
we discuss constraints from proton decay and comment on neutron–anti-neutron oscillations.
We then demonstrate in Section 5 that the co-genesis of baryon number asymmetry and dark
matter abundance is possible in our specific setting. Finally, Section 6 concludes the paper.

2 Model

2.1 Symmetries and particle content

The model is based on a generation-independent R
12 R-symmetry in combination of

an anomalous U(1)A flavor symmetry. The particle content of the model with the charge
assignments of the superfields is given in Table 1. From the charge assignment, it is evident
that our model is SU(5)-compatible with 10 = (Q, U, E) and 5 = (D, L) being the SU(5)
chiral GUT super-multiplets unifying the matter fields in each SM generation, while � and
� being the SU(5) singlet chiral superfields. Whid is the “hidden” sector superpotential and
X, S and ‡ are the spurion fields parametrizing the SUSY/R breaking, the dilaton and the
flavon, respectively. The “æ 3” notation represents the residual 3 symmetry of R

12 after
SUSY/R breaking.

The gauge invariant superpotential, up to order 4, is given by,

W = YeLHdE + YdQHdD + YuQHuU + Y‹LHu‹

+ Ÿ1UDD� + Ÿ2LLE� + Ÿ3LQD� , (2.1)

where Yu, d, e, ‹ , implicitly depend on powers of the flavon field, ‡. After the scalar component
of the flavon field, ‡, acquires a vacuum expectation value (VEV) breaking the U(1)A flavor
symmetry, the e�ective Yukawa couplings are generated, as discussed in Section 3.1. Note
that �n and �n are forbidden in the superpotential to all orders in n. Additionally, there
will be terms in the e�ective superpotential that appear “non-perturbatively” after SUSY
breaking,

W np

eff
∏ µHuHd + M��� + Ÿ4QQQL + Ÿ5UUDE (2.2)

+ Ÿ6UDD‹ + Ÿ7LLE‹ + Ÿ8LQD‹ + . . .
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moduli”) [4–8] helps to circumvent this issue. On other hand, massive moduli decaying to
gravitinos can give rise to “moduli-induced cosmological gravitino” problem [9, 10]. In our
model both of these problems are avoided, as the moduli field � is massive and is forbidden
to decay into gravitinos by the matter parity 2. Here, unlike in the thermal cosmology,
reheating radiation originates from decays of the � field and not the inflation. Since there are
spontaneously broken discrete symmetries, resulting domain walls can be problematic. This
issue is avoided, if the inflation scale is not extremely high and the domain walls have time
to form and inflate away [55].

5.1 Baryogenesis

The U(1)A flavor structure implies that the UDD� operator that drives baryogenesis
also carries a flavor charge of 5 + 2p (family 1 fields), 2 + 2p (family 2 fields) and 2p (family 3
fields), respectively. The contribution from the third family dominates. For p = 0 (tan — = 20)
there is no suppression, while for p = 1 (tan — = 10) and p = 2 (tan — = 5) the operator is
suppressed by 4 ◊ 10≠2 and 2 ◊ 10≠3, respectively. Thus, for p ”= 0 the resulting estimates for
baryon asymmetry and DM abundance would need to be adjusted accordingly. For simplicity,
we focus on the p = 0 case below.

Following [11], as in the A�eck-Dine mechanism [32], we define the „-number as

q„ = i(„̇ú
„ ≠ „

ú
„̇) , (5.1)

which e�ectively denotes the di�erence in the number densities n„ and n„ú of „ and „
ú, re-

spectively. For a model of baryogenesis to be successful, all three of the Sakharov’s conditions
[56] must be fulfilled: CP violation, baryon number violation ( /B) as well as out of equilibrium
interactions. Here, q„-violating terms in the potential generate /B and are also responsible
for CP is violation. Since q„-violation decouples, the condition of being out of equilibrium is
also satisfied.

The asymmetry in „ is generated by the suppressed „
6 Kähler potential term

K ∏ X
†
X�6

, (5.2)

where X is the spurion parametrizing SUSY/R breaking. To preserve q„ during coherent
oscillations, the „-violating terms should be su�ciently suppressed. Taken together with
other terms, one obtains the following potential

V = m
2
„|„|

2 + m
2
3/2M

2
F

1
|„|

2

M2

2
+

Ë
Ÿ

m
2
3/2

M4 „
6 + h.c.

È
+ . . . (5.3)

where F (x) is a general polynomial function, Ÿ is a coupling that a priori is assumed to be of
O(1) and dots represent higher order contributions. Here, SUSY/R breaking has been taken
to be of the gravitino mass size, with mX ≥ m3/2.
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where F (x) is a general polynomial function, Ÿ is a coupling that a priori is assumed to be of
O(1) and dots represent higher order contributions. Here, SUSY/R breaking has been taken
to be of the gravitino mass size, with mX ≥ m3/2.
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• Anomaly coefficients:
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• SU(5) compatibility:
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where we have already accounted for SU(5) charge multiplet assignment and the standard
normalization of 1/2 for the fundamental representation of SU(N). The hypercharge YL is
not quantized in general and the uncertainty in its normalization renders the anomaly coef-
ficients AY AA not very informative (see discussion in [34]). The additional possible anomaly
coe�cient AY AA due to
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U(1)A

$2
◊ U(1)Y also su�ers from the hypercharge normalization

1
Factor of 3 for
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U(1)A

$3
is combinatorial, due to the anomaly being pure and originating from identical

groups.
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◊ U(1)Y also su�ers from the hypercharge normalization

1
Factor of 3 for

#
U(1)A

$3
is combinatorial, due to the anomaly being pure and originating from identical

groups.
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where F
A, F

a denote the gauge field strength of U(1)A, Ga and R is the Riemann curvature
tensor, with the last term describing the gravity contribution.

Under the U(1)A gauge transformations the dilaton S shifts as

S æ S + i

2”GS� , (2.7)

where � is a parameter chiral superfield and ”GS is a real number. The associated vector
superfield transforms as VA æ VA + (i/2)(� ≠ �†). Hence, gauge invariance requires the
modified Kähler potential of the dilaton to be of the form K(S, S

†
, VA) = ≠ log(S + S

†
≠

”GSVA).
Chiral anomalies contribute terms of the form FF̃A, where A is the anomaly coe�cient

and F is the field strength of some gauge group. The gravitational anomaly contribution is
similar. As the dilaton transformations of Eq. (2.7) induce an axion shift in terms of Eq. (2.6),
the anomaly contributions, which enter with the opposite sign, are canceled by an appropriate
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ACCA
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= AY Y A

kY

= AAAA

3kA
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24 = 2fi
2
”GS , (2.8)
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#
SU(3)C

$2
◊ U(1)A,

#
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#
U(1)Y

$2
◊

U(1)A,
#
U(1)A

$3 and the
#
gravity

$2
◊ U(1)A anomalies1. Since the trace of SU(N) generators

vanishes, cross anomalies such as
#
SU(3)C

$
◊ U(1)2

A
are automatically zero. The anomaly

coe�cient AY AA for
#
U(1)A

$2
◊U(1)Y should also vanish. The anomaly coe�cients are given
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Ë
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uncertainty and is often neglected. For SU(5) matter charge assignment as well as qHu = qHd ,
which is the case of our model, it vanishes. The hypercharge normalization can be fixed
by an underlying GUT. The pure [U(1)A]3 and gravitational anomalies can obtain potential
contributions from the hidden sector SM singlet fields and are thus often neglected. However,
the existence of additional light singlet states is potentially of phenomenological interest and
gravitational anomaly could still be useful. Thus, we shall only focus on ACCA, AW W A,
AY Y A and AGGA as has been typically done in previous similar studies (e.g. [29]). We note
that since SM singlet fields do not carry a non-trivial Dynkin index they only contribute to
the gravitational anomaly coe�cient.

Assuming gauge-coupling unification, which can occur without a simple covering group
as in string theory, one has [35]

g
2
CkC = g

2
W kW = g

2
Y kY = g

2
AkA = 2g

2
s , (2.10)

where gs is the string coupling constant. Enforcing the observed gauge-coupling unification
in the MSSM requires

gC = gW =
Ú

5
3gY , (2.11)

resulting in
kC = kW = 3

5kY . (2.12)

This is the same as SU(5) hypercharge normalization. The Green-Schwarz anomaly cancella-
tion condition (2.8) can be satisfied for the U(1)A charge assignment of Table 1 by considering
higher Kac-Moody levels2

kC = kW = (5/3)kY = 2 , (2.13)

with
ACCA

kC

= AW W A

kW

= AY Y A

kY

= AGGA

24 = (16 + 3p)
4 . (2.14)

2.2.2 Discrete R-symmetry anomalies
For a local U(1) R-symmetry, the superspace variable ◊ carries a charge of q◊ = R and

hence the superpotential carries 2q◊, with R being an integer. For a chiral superfield carrying
a charge of qx, the associated fermion carries a charge of (qx ≠ q◊). This is also the case for
Higgsinos, while gauginos carry a charge of q◊. The corresponding anomaly coe�cients are

2
Non-minimal Kac-Moody levels also appear in string theory and can give rise to interesting phenomeno-

logical features [36, 37]
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Anomaly Cancellation

• Discrete R Symmetry
then [38, 39]

Y
______________]

______________[
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2
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i=1

(3q
i
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i

5)
È

≠ 3R

AW W R = 1
2

Ë
(qHu + qHd) +

3q
i=1

(3q
i
10 + q

i

5)
È

≠ 5R

AY Y R = 1
2

Ë
(qHu + qHd ≠ 11R) + 5

3
3q

i=1
(3q

i
10 + q

i

5)
È

·
3
5

AGGR = 2(qHu + qHd ≠ 2R) + 5
3q

i=1
(2q

i
10 + q

i

5 ≠ 3R) +
q

SM singlet
qs

+ A
hidden
GGR

+ 33R

(2.15)

For a gauged discrete N symmetry anomalies should also cancel. While one cannot
construct the corresponding triangle diagram, as there is no gauge boson associated with the
discrete symmetry, the anomaly coe�cient can still be computed via the Fujikawa method
using the path integral measure transformation. The anomaly cancellation condition now
becomes

ACCZ

kC

= AW W Z

kW

= AY Y Z

kY

= AGGZ

24 = fiN�GS mod ÷ , (2.16)

where �GS is the dilaton shift constant, and

÷ =

Y
]

[
N, for N odd
N/2, for N even .

(2.17)

In the case of discrete R symmetry, R

N
, the computation is similar. For R

12 and charges of
Table 1 the corresponding anomaly coe�cients are

Y
_____]

_____[

ACCR = (9 · kC) mod 6 = 3
AW W R = (9 · kW ) mod 6 = 3
AY Y R = (9

5 · kY ) mod 6 = 3
AGGR = (42 · 24) mod 6 = 0

(2.18)

where kC = kW = (5/3)kY = 1 (all of the anomaly coe�cients are 0 for kC = kW = (5/3)kY =
2).

Since in our setup both U(1)A as well as discrete gauge symmetries are present, mixed
anomaly coe�cients involving both of these can appear. These coe�cients are usually ne-
glected, as they depend on the normalization of the U(1)A charges [40] and we will ignore
them.
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Early Epoch: Moduli Asymmetry

• Asymmetry generating term from Kähler potential:


• moduli potential


• 𝜙-evolution


• 𝜙-number asymmetry

moduli”) [4–8] helps to circumvent this issue. On other hand, massive moduli decaying to
gravitinos can give rise to “moduli-induced cosmological gravitino” problem [9, 10]. In our
model both of these problems are avoided, as the moduli field � is massive and is forbidden
to decay into gravitinos by the matter parity 2. Here, unlike in the thermal cosmology,
reheating radiation originates from decays of the � field and not the inflation. Since there are
spontaneously broken discrete symmetries, resulting domain walls can be problematic. This
issue is avoided, if the inflation scale is not extremely high and the domain walls have time
to form and inflate away [55].

5.1 Baryogenesis

The U(1)A flavor structure implies that the UDD� operator that drives baryogenesis
also carries a flavor charge of 5 + 2p (family 1 fields), 2 + 2p (family 2 fields) and 2p (family 3
fields), respectively. The contribution from the third family dominates. For p = 0 (tan — = 20)
there is no suppression, while for p = 1 (tan — = 10) and p = 2 (tan — = 5) the operator is
suppressed by 4 ◊ 10≠2 and 2 ◊ 10≠3, respectively. Thus, for p ”= 0 the resulting estimates for
baryon asymmetry and DM abundance would need to be adjusted accordingly. For simplicity,
we focus on the p = 0 case below.

Following [11], as in the A�eck-Dine mechanism [32], we define the „-number as

q„ = i(„̇ú
„ ≠ „

ú
„̇) , (5.1)

which e�ectively denotes the di�erence in the number densities n„ and n„ú of „ and „
ú, re-

spectively. For a model of baryogenesis to be successful, all three of the Sakharov’s conditions
[56] must be fulfilled: CP violation, baryon number violation ( /B) as well as out of equilibrium
interactions. Here, q„-violating terms in the potential generate /B and are also responsible
for CP is violation. Since q„-violation decouples, the condition of being out of equilibrium is
also satisfied.

The asymmetry in „ is generated by the suppressed „
6 Kähler potential term

K ∏ X
†
X�6

, (5.2)

where X is the spurion parametrizing SUSY/R breaking. To preserve q„ during coherent
oscillations, the „-violating terms should be su�ciently suppressed. Taken together with
other terms, one obtains the following potential

V = m
2
„|„|

2 + m
2
3/2M

2
F

1
|„|

2

M2

2
+

Ë
Ÿ

m
2
3/2

M4 „
6 + h.c.

È
+ . . . (5.3)

where F (x) is a general polynomial function, Ÿ is a coupling that a priori is assumed to be of
O(1) and dots represent higher order contributions. Here, SUSY/R breaking has been taken
to be of the gravitino mass size, with mX ≥ m3/2.
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The dynamics of „ field are described by the equation of motion

„̈ + (3H + �„)„̇ + ˆV

ˆ„ú = 0 , (5.4)

where H is the Hubble parameter and �„ is the „ decay rate. Treating „ as constant during
H ∫ m„ allows to obtain the initial q„ right after the end of inflation. Rewriting Eq. (5.4)
as time evolution of the „-number gives

q̇„ + 3Hq„ = ≠i

1
„

ˆV

ˆ„
≠ „

ú ˆV

ˆ„ú

2
=

m
2
3/2

M4 Im[Ÿ„
6] . (5.5)

Then, the initial condition for q„ at t0 = 1/m„ (i.e. when H ≥ m„) is found to be

q„(t0) = |Ÿ|

m
2
3/2

2m„M4 „
6
in ≥

m
2
3/2M

2

m„

, (5.6)

where the initial „in = (m„M
3)1/4 was taken as approximately M . Assuming that M is

large, i.e. O(MGUT ≠ Mpl), the „-asymmetry stays nearly constant as „ starts to coherently
oscillate. Namely, the amplitude of „ in the right-hand side of Eq. (5.5) becomes small relative
to M . Hence, the respective „-asymmetry is given by

Á ©
q„(t0)

n„ + n„ú
≥ |Ÿ|

1m3/2
m„

22
, (5.7)

where n„ and similarly n„ú are given by fl„/m„, with fl„ ƒ m
2
„
|„|

2 + |„̇|
2.

After oscillations „ decays (e.g. „ æ qqq̃), reheating the universe and producing super-
partners. The „ decay rate is given by

�„ = ›
m

3
„

M2 , (5.8)

where the numerical factor is › = 27/(256fi
3) = 3 ◊ 10≠3 [11], assuming all „ couplings to

quarks as one. The reheat temperature Tr is given by [13]

T
2
r ≥

Ò
90/gúfi2�„M (5.9)

where gú counts the e�ective number of relativistic degrees of freedom and the whole numerical
pre-factor is O(1) around the MeV scale, which corresponds to BBN. At H ƒ ��, Tr is found
to be

Tr ƒ 20 GeV
1

m„

5 ◊ 104 TeV
23/21

Mpl

M

2
. (5.10)
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<X> ~ m3/2 : SUSY breaking effect
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6

The Model

• Superpotential:


• After SUSY breaking:

appear in string constructions, our setting is well motivated from a more fundamental theory.
This manuscript is structured as follows. Section 2 describes our SU(5)-compatible model

based on a discrete R
12 symmetry combined with a anomalous U(1)A flavor symmetry. We

discuss Green-Schwarz anomaly cancellation and review the general features of the model.
In Section 3, we promote U(1)A to a full flavor symmetry. We comment how modifying the
charge assignment of the flavor model proposed in [29], allows to cancel the gravitational
anomaly without extra singlets and naturally explain the size of the Dirac neutrino masses
in our model, in addition to explaining the top-bottom hierarchy in the Yukawa sector. The
textures we obtain are shown to be fully compatible with SU(5) and correctly reproduce
the mixing in the quark and lepton sector, as shown by performing a ‰

2 fit. In Section 4,
we discuss constraints from proton decay and comment on neutron–anti-neutron oscillations.
We then demonstrate in Section 5 that the co-genesis of baryon number asymmetry and dark
matter abundance is possible in our specific setting. Finally, Section 6 concludes the paper.

2 Model

2.1 Symmetries and particle content

The model is based on a generation-independent R
12 R-symmetry in combination of

an anomalous U(1)A flavor symmetry. The particle content of the model with the charge
assignments of the superfields is given in Table 1. From the charge assignment, it is evident
that our model is SU(5)-compatible with 10 = (Q, U, E) and 5 = (D, L) being the SU(5)
chiral GUT super-multiplets unifying the matter fields in each SM generation, while � and
� being the SU(5) singlet chiral superfields. Whid is the “hidden” sector superpotential and
X, S and ‡ are the spurion fields parametrizing the SUSY/R breaking, the dilaton and the
flavon, respectively. The “æ 3” notation represents the residual 3 symmetry of R

12 after
SUSY/R breaking.

The gauge invariant superpotential, up to order 4, is given by,

W = YeLHdE + YdQHdD + YuQHuU + Y‹LHu‹

+ Ÿ1UDD� + Ÿ2LLE� + Ÿ3LQD� , (2.1)

where Yu, d, e, ‹ , implicitly depend on powers of the flavon field, ‡. After the scalar component
of the flavon field, ‡, acquires a vacuum expectation value (VEV) breaking the U(1)A flavor
symmetry, the e�ective Yukawa couplings are generated, as discussed in Section 3.1. Note
that �n and �n are forbidden in the superpotential to all orders in n. Additionally, there
will be terms in the e�ective superpotential that appear “non-perturbatively” after SUSY
breaking,

W np

eff
∏ µHuHd + M��� + Ÿ4QQQL + Ÿ5UUDE (2.2)

+ Ÿ6UDD‹ + Ÿ7LLE‹ + Ÿ8LQD‹ + . . .
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➜

➜

baryogenesis, DM

moduli asymmetry

SU(5)
10

˙ ˝¸ ˚

SU(5)
5

˙ ˝¸ ˚
Whid
˙˝¸˚

Q U E D L Hu Hd ‹ � � ‡ e
≠bS

X ◊

R
12 2 2 2 6 6 2 10 10 4 8 0 6 rX 3

æ 3 2 2 2 0 0 1 2 1 2 1 0 0 rXÕ -
M
2 1 1 1 1 1 0 0 1 1 1 0 0 0 0

U(1)A

3 3 3 (1 + p) (1 + p)
0 0

(15 + p)
0 0 -1 qS 0 02 2 2 p p (14 + p)

0 0 0 p p (13 + p)

Table 1: The particle content and charge assignment of the model. All fields shown are chiral
multiplets; ◊ denotes the super-space coordinates. The three horizontal rows at the bottom
represent the U(1)A charges for each of the fermions in the three families, respectively.

The order parameter for SUSY/R-symmetry breaking is the VEV of “hidden sector” super-
potential ÈWhidÍ ≥ m3/2 as in gravity mediation, which allows to parametrize the size of the
e�ective terms.

Some key features of the model are described in the following:

• µ-term: The µ term is forbidden in the superpotential due to the discrete R-symmetry,
and appears only after SUSY and R-symmetry breaking. It can be generated with
the correct magnitude through the Giudice-Masiero mechanism [30]. Specifically, the µ

term can e�ectively appear from the Kähler potential

K ∏ kHuHd

X
†

Mpl

HuHd + h.c. (2.3)

once the anti-holomorphic X
† field acquires a VEV in the F -term, ÈFXÍ ≥ m3/2Mpl,

with Mpl = 2.435 ◊ 1018 GeV being the reduced Planck mass. This leads to µeff to be
of the order of the gravitino mass, as in gravity mediation. Note that in the model of
[11], based on non-R discrete symmetry, the µ-problem persists. On the other hand,
discrete R-symmetries allow to naturally address this issue [21].

• Neutrinos: The Weinberg operator, LHuLHu, which leads to Majorana neutrino
masses, is forbidden in both the superpotential and the Kähler-potential to all orders
due to the discrete R symmetry. The neutrinos are Dirac fermions. As we show be-
low, the suppression in the Dirac neutrino masses in our model naturally follow from
the family U(1)A symmetry, and its magnitude is determined by the requirement of
cancellation of mixed U(1)A-gravitational anomaly.

• Flavor structure: The flavor structure of the model is determined by the Froggatt-
Nielsen mechanism [28]. This approach has already been extensively studied in the
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moduli”) [4–8] helps to circumvent this issue. On other hand, massive moduli decaying to
gravitinos can give rise to “moduli-induced cosmological gravitino” problem [9, 10]. In our
model both of these problems are avoided, as the moduli field � is massive and is forbidden
to decay into gravitinos by the matter parity 2. Here, unlike in the thermal cosmology,
reheating radiation originates from decays of the � field and not the inflation. Since there are
spontaneously broken discrete symmetries, resulting domain walls can be problematic. This
issue is avoided, if the inflation scale is not extremely high and the domain walls have time
to form and inflate away [55].

5.1 Baryogenesis

The U(1)A flavor structure implies that the UDD� operator that drives baryogenesis
also carries a flavor charge of 5 + 2p (family 1 fields), 2 + 2p (family 2 fields) and 2p (family 3
fields), respectively. The contribution from the third family dominates. For p = 0 (tan — = 20)
there is no suppression, while for p = 1 (tan — = 10) and p = 2 (tan — = 5) the operator is
suppressed by 4 ◊ 10≠2 and 2 ◊ 10≠3, respectively. Thus, for p ”= 0 the resulting estimates for
baryon asymmetry and DM abundance would need to be adjusted accordingly. For simplicity,
we focus on the p = 0 case below.
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ú
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spectively. For a model of baryogenesis to be successful, all three of the Sakharov’s conditions
[56] must be fulfilled: CP violation, baryon number violation ( /B) as well as out of equilibrium
interactions. Here, q„-violating terms in the potential generate /B and are also responsible
for CP is violation. Since q„-violation decouples, the condition of being out of equilibrium is
also satisfied.

The asymmetry in „ is generated by the suppressed „
6 Kähler potential term

K ∏ X
†
X�6

, (5.2)

where X is the spurion parametrizing SUSY/R breaking. To preserve q„ during coherent
oscillations, the „-violating terms should be su�ciently suppressed. Taken together with
other terms, one obtains the following potential

V = m
2
„|„|

2 + m
2
3/2M

2
F

1
|„|

2

M2

2
+

Ë
Ÿ

m
2
3/2

M4 „
6 + h.c.

È
+ . . . (5.3)

where F (x) is a general polynomial function, Ÿ is a coupling that a priori is assumed to be of
O(1) and dots represent higher order contributions. Here, SUSY/R breaking has been taken
to be of the gravitino mass size, with mX ≥ m3/2.
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spectively. For a model of baryogenesis to be successful, all three of the Sakharov’s conditions
[56] must be fulfilled: CP violation, baryon number violation ( /B) as well as out of equilibrium
interactions. Here, q„-violating terms in the potential generate /B and are also responsible
for CP is violation. Since q„-violation decouples, the condition of being out of equilibrium is
also satisfied.

The asymmetry in „ is generated by the suppressed „
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, (5.2)

where X is the spurion parametrizing SUSY/R breaking. To preserve q„ during coherent
oscillations, the „-violating terms should be su�ciently suppressed. Taken together with
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where F (x) is a general polynomial function, Ÿ is a coupling that a priori is assumed to be of
O(1) and dots represent higher order contributions. Here, SUSY/R breaking has been taken
to be of the gravitino mass size, with mX ≥ m3/2.
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The Model

• Superpotential:


• After SUSY breaking:

appear in string constructions, our setting is well motivated from a more fundamental theory.
This manuscript is structured as follows. Section 2 describes our SU(5)-compatible model

based on a discrete R
12 symmetry combined with a anomalous U(1)A flavor symmetry. We

discuss Green-Schwarz anomaly cancellation and review the general features of the model.
In Section 3, we promote U(1)A to a full flavor symmetry. We comment how modifying the
charge assignment of the flavor model proposed in [29], allows to cancel the gravitational
anomaly without extra singlets and naturally explain the size of the Dirac neutrino masses
in our model, in addition to explaining the top-bottom hierarchy in the Yukawa sector. The
textures we obtain are shown to be fully compatible with SU(5) and correctly reproduce
the mixing in the quark and lepton sector, as shown by performing a ‰

2 fit. In Section 4,
we discuss constraints from proton decay and comment on neutron–anti-neutron oscillations.
We then demonstrate in Section 5 that the co-genesis of baryon number asymmetry and dark
matter abundance is possible in our specific setting. Finally, Section 6 concludes the paper.

2 Model

2.1 Symmetries and particle content

The model is based on a generation-independent R
12 R-symmetry in combination of

an anomalous U(1)A flavor symmetry. The particle content of the model with the charge
assignments of the superfields is given in Table 1. From the charge assignment, it is evident
that our model is SU(5)-compatible with 10 = (Q, U, E) and 5 = (D, L) being the SU(5)
chiral GUT super-multiplets unifying the matter fields in each SM generation, while � and
� being the SU(5) singlet chiral superfields. Whid is the “hidden” sector superpotential and
X, S and ‡ are the spurion fields parametrizing the SUSY/R breaking, the dilaton and the
flavon, respectively. The “æ 3” notation represents the residual 3 symmetry of R

12 after
SUSY/R breaking.

The gauge invariant superpotential, up to order 4, is given by,

W = YeLHdE + YdQHdD + YuQHuU + Y‹LHu‹

+ Ÿ1UDD� + Ÿ2LLE� + Ÿ3LQD� , (2.1)

where Yu, d, e, ‹ , implicitly depend on powers of the flavon field, ‡. After the scalar component
of the flavon field, ‡, acquires a vacuum expectation value (VEV) breaking the U(1)A flavor
symmetry, the e�ective Yukawa couplings are generated, as discussed in Section 3.1. Note
that �n and �n are forbidden in the superpotential to all orders in n. Additionally, there
will be terms in the e�ective superpotential that appear “non-perturbatively” after SUSY
breaking,

W np

eff
∏ µHuHd + M��� + Ÿ4QQQL + Ÿ5UUDE (2.2)

+ Ÿ6UDD‹ + Ÿ7LLE‹ + Ÿ8LQD‹ + . . .
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baryogenesis, DM

moduli asymmetry

SU(5)
10

˙ ˝¸ ˚

SU(5)
5

˙ ˝¸ ˚
Whid
˙˝¸˚

Q U E D L Hu Hd ‹ � � ‡ e
≠bS

X ◊

R
12 2 2 2 6 6 2 10 10 4 8 0 6 rX 3

æ 3 2 2 2 0 0 1 2 1 2 1 0 0 rXÕ -
M
2 1 1 1 1 1 0 0 1 1 1 0 0 0 0

U(1)A

3 3 3 (1 + p) (1 + p)
0 0

(15 + p)
0 0 -1 qS 0 02 2 2 p p (14 + p)

0 0 0 p p (13 + p)

Table 1: The particle content and charge assignment of the model. All fields shown are chiral
multiplets; ◊ denotes the super-space coordinates. The three horizontal rows at the bottom
represent the U(1)A charges for each of the fermions in the three families, respectively.

The order parameter for SUSY/R-symmetry breaking is the VEV of “hidden sector” super-
potential ÈWhidÍ ≥ m3/2 as in gravity mediation, which allows to parametrize the size of the
e�ective terms.

Some key features of the model are described in the following:

• µ-term: The µ term is forbidden in the superpotential due to the discrete R-symmetry,
and appears only after SUSY and R-symmetry breaking. It can be generated with
the correct magnitude through the Giudice-Masiero mechanism [30]. Specifically, the µ

term can e�ectively appear from the Kähler potential

K ∏ kHuHd

X
†

Mpl

HuHd + h.c. (2.3)

once the anti-holomorphic X
† field acquires a VEV in the F -term, ÈFXÍ ≥ m3/2Mpl,

with Mpl = 2.435 ◊ 1018 GeV being the reduced Planck mass. This leads to µeff to be
of the order of the gravitino mass, as in gravity mediation. Note that in the model of
[11], based on non-R discrete symmetry, the µ-problem persists. On the other hand,
discrete R-symmetries allow to naturally address this issue [21].

• Neutrinos: The Weinberg operator, LHuLHu, which leads to Majorana neutrino
masses, is forbidden in both the superpotential and the Kähler-potential to all orders
due to the discrete R symmetry. The neutrinos are Dirac fermions. As we show be-
low, the suppression in the Dirac neutrino masses in our model naturally follow from
the family U(1)A symmetry, and its magnitude is determined by the requirement of
cancellation of mixed U(1)A-gravitational anomaly.

• Flavor structure: The flavor structure of the model is determined by the Froggatt-
Nielsen mechanism [28]. This approach has already been extensively studied in the

– 4 –

+

➜

!-term

moduli”) [4–8] helps to circumvent this issue. On other hand, massive moduli decaying to
gravitinos can give rise to “moduli-induced cosmological gravitino” problem [9, 10]. In our
model both of these problems are avoided, as the moduli field � is massive and is forbidden
to decay into gravitinos by the matter parity 2. Here, unlike in the thermal cosmology,
reheating radiation originates from decays of the � field and not the inflation. Since there are
spontaneously broken discrete symmetries, resulting domain walls can be problematic. This
issue is avoided, if the inflation scale is not extremely high and the domain walls have time
to form and inflate away [55].

5.1 Baryogenesis

The U(1)A flavor structure implies that the UDD� operator that drives baryogenesis
also carries a flavor charge of 5 + 2p (family 1 fields), 2 + 2p (family 2 fields) and 2p (family 3
fields), respectively. The contribution from the third family dominates. For p = 0 (tan — = 20)
there is no suppression, while for p = 1 (tan — = 10) and p = 2 (tan — = 5) the operator is
suppressed by 4 ◊ 10≠2 and 2 ◊ 10≠3, respectively. Thus, for p ”= 0 the resulting estimates for
baryon asymmetry and DM abundance would need to be adjusted accordingly. For simplicity,
we focus on the p = 0 case below.

Following [11], as in the A�eck-Dine mechanism [32], we define the „-number as

q„ = i(„̇ú
„ ≠ „

ú
„̇) , (5.1)

which e�ectively denotes the di�erence in the number densities n„ and n„ú of „ and „
ú, re-

spectively. For a model of baryogenesis to be successful, all three of the Sakharov’s conditions
[56] must be fulfilled: CP violation, baryon number violation ( /B) as well as out of equilibrium
interactions. Here, q„-violating terms in the potential generate /B and are also responsible
for CP is violation. Since q„-violation decouples, the condition of being out of equilibrium is
also satisfied.

The asymmetry in „ is generated by the suppressed „
6 Kähler potential term

K ∏ X
†
X�6

, (5.2)

where X is the spurion parametrizing SUSY/R breaking. To preserve q„ during coherent
oscillations, the „-violating terms should be su�ciently suppressed. Taken together with
other terms, one obtains the following potential
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where F (x) is a general polynomial function, Ÿ is a coupling that a priori is assumed to be of
O(1) and dots represent higher order contributions. Here, SUSY/R breaking has been taken
to be of the gravitino mass size, with mX ≥ m3/2.
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Intermediate Epoch: Moduli Oscillations

• Coherent oscillations of moduli:


• 𝜙-number asymmetry preserved during coherent oscillation


• O(1) asymmetry at the on-set of moduli decay

The dynamics of „ field are described by the equation of motion

„̈ + (3H + �„)„̇ + ˆV

ˆ„ú = 0 , (5.4)

where H is the Hubble parameter and �„ is the „ decay rate. Treating „ as constant during
H ∫ m„ allows to obtain the initial q„ right after the end of inflation. Rewriting Eq. (5.4)
as time evolution of the „-number gives

q̇„ + 3Hq„ = ≠i

1
„

ˆV

ˆ„
≠ „

ú ˆV

ˆ„ú

2
=

m
2
3/2

M4 Im[Ÿ„
6] . (5.5)

Then, the initial condition for q„ at t0 = 1/m„ (i.e. when H ≥ m„) is found to be

q„(t0) = |Ÿ|

m
2
3/2

2m„M4 „
6
in ≥

m
2
3/2M

2

m„

, (5.6)

where the initial „in = (m„M
3)1/4 was taken as approximately M . Assuming that M is

large, i.e. O(MGUT ≠ Mpl), the „-asymmetry stays nearly constant as „ starts to coherently
oscillate. Namely, the amplitude of „ in the right-hand side of Eq. (5.5) becomes small relative
to M . Hence, the respective „-asymmetry is given by

Á ©
q„(t0)

n„ + n„ú
≥ |Ÿ|

1m3/2
m„

22
, (5.7)

where n„ and similarly n„ú are given by fl„/m„, with fl„ ƒ m
2
„
|„|

2 + |„̇|
2.

After oscillations „ decays (e.g. „ æ qqq̃), reheating the universe and producing super-
partners. The „ decay rate is given by

�„ = ›
m

3
„

M2 , (5.8)

where the numerical factor is › = 27/(256fi
3) = 3 ◊ 10≠3 [11], assuming all „ couplings to

quarks as one. The reheat temperature Tr is given by [13]

T
2
r ≥

Ò
90/gúfi2�„M (5.9)

where gú counts the e�ective number of relativistic degrees of freedom and the whole numerical
pre-factor is O(1) around the MeV scale, which corresponds to BBN. At H ƒ ��, Tr is found
to be

Tr ƒ 20 GeV
1

m„

5 ◊ 104 TeV
23/21

Mpl

M

2
. (5.10)
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Late Epoch: Moduli Decay

• Superpotential:        W ⊃


• moduli decay


• 𝜙 dominates energy density before decay


• baryon number density


• resulting asymmetry
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negligible density. The standard BBN takes place after φ has decayed at sufficiently high

temperature. The dark matter is produced by the φ decay and the correct abundance is

obtained in the W ino/Higgsino LSP scenario due to pair annihilation [23] which is less

effective than in the so-called thermal scenarios. The baryon asymmetry is also generated

in φ decays. The decay channel of a φ field into two gravitinos is forbidden by R-parity,

and we assume that the decay into a gravitino and the fermionic superpartner of φ

(φ̃) is kinematically forbidden. Interestingly, by unifying the origin of dark matter and

baryon asymmetry, this scenario explains the one of the puzzling issues of our Universe

that the energy densities of dark matter and baryon asymmetry are close to each other,

Ωb ∼ ΩCDM.1

The paper is organized as follows: in Section 2 we present the baryogenesis mechanism,

and show that it is indeed possible to generate the observed amount of baryon asymmetry

while satisfying the BBN constraints on the reheating temperature after the φ decay. In

Section 3, we discuss the abundance of the dark matter from the φ decay. In particular,

in our preferred scenario the ratio ΩCDM/Ωb ∼ 5 implies a large gravitino mass, m3/2 ∼

100TeV which fits nicely to the W ino/Higgsino LSP scenario.

2 Baryogenesis

2.1 Basic idea

We consider a chiral superfield Φ = (φ, φ̃, Fφ) which couples to the matter fields via a

higher-dimensional term in the superpotential [20],

W ⊃
1

M
ΦU DD , (1)

with U = (ũc, uc, Fu) and D = (d̃c, dc, Fd) denoting the up- and down-type quark su-

perfields. Here, we suppressed color and generation indices, and absorbed dimension-

less couplings into M which will be taken to be of the of order of the Planck scale,

M ∼ MP = 2.44 × 1018 GeV, unless stated otherwise. Due to this operator φ effectively

carries baryon number (+1).

Let us now define the φ number asymmetry

qφ := i
(
φ̇∗φ− φ∗φ̇

)
. (2)

qφ is given by the difference between the number densities nφ and nφ∗ of particles φ and

antiparticles φ∗. qφ can be interpreted as angular momentum of the φ field rotating in

the complex plane [29].

The scenario we shall describe in the following consist of the following sequence of

steps: first, a positive qφ is generated. Then there is an era of coherent φ oscillations where

a significant fraction of the energy density of the universe is carried by these oscillations,

1 See, for example, [24, 25, 26, 27, 21, 28] for earlier attempts to explain the similarity: Ωb ∼ ΩCDM.
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Since the baryon number density nb is set by q„ via nb = q„, the resulting baryon asymmetry
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5.2 Dark matter

With matter parity conserved, the lightest supersymmetric partner (LSP) is stable and
thus constitutes the DM candidate, with a possible natural choice being the neutralino. De-
pending on the details of supersymmetry breaking, the sparticle spectrum will be altered and
so will the identity of the neutralino that is the LSP. Since we require a heavy gravitino of
m3/2 & 50 TeV for the scenario considered, loop corrections to soft masses (gauginos, etc.)
are relevant. This is a natural setting for anomaly-mediated supersymmetry breaking [4, 5]
with Wino DM [16]. If the modulus and anomaly mediation contributions are competitive,
Higgsino with mass below O(TeV) becomes the DM candidate [58]. This is easily achieved
in the context of “mirage mediation” [59, 60], which could be further extended to “deflected
mirage mediation” [61], where the gaugino masses are given by

M3 : M2 : M1 ≥ (1 ≠ 0.3–m)g2
3 : (1 + 0.1–m)g2

2 : (1 + 0.03–m)g2
1 . (5.14)

Here, –m = m3/2/M0 log(Mpl/m3/2) parametrizes the relative strength of the anomaly and
modulus-mediated contributions, with M0 denoting the modulus-mediated contribution at
the GUT scale, and g1,2,3 are the gauge coupling constants. In the limit of –m æ 0, anomaly-
mediated contribution vanishes and Bino becomes the DM candidate. The Higgsino mass
parameter µ is driven by the gluino mass. Hence, increasing –m, which corresponds to
increasing m3/2 for a particular M0, lowers the gaugino mass M3 gluino component, while
increasing the mass of the Bino M1 and the Wino M2 components, resulting in Higgsino DM.
We treat –m and m3/2 as free parameters.

Due to strong pair annihilation in the MSSM, Higgsino and Wino DM require non-thermal

7
During „ oscillation era, the „ energy density scales as matter flm ≥ a≠3

, in contrast to radiation energy

density scaling as flrad ≥ a≠4
. The scale factor a can be taken as a measure of the universe’s wavelength and

goes as ≥ 1/E ≥ 1/T . Hence, the higher the temperature Tr for decoupling, the less BBN dilution will be

introduced by „.

– 18 –

Baryogenesis via Moduli Decay

Requiring Tr & 4 MeV to not spoil the BBN (e.g. [57])7, (5.10) constrains m„ to be

m„ & 150 TeV
1

M

Mpl

22/3
. (5.11)

Assuming that „ dominates the energy density before its decay, Tr is related to q„ via
radiation density

fl„ = m„(n„ + n„ú) ƒ
fi

2

30gúT
4
r . (5.12)

Since the baryon number density nb is set by q„ via nb = q„, the resulting baryon asymmetry
is found to be (see Model A of [11])

nb

s
ƒ Á

Tr

m„

≥ 10≠10
|Ÿ|

1 m3/2
103 TeV

2215 ◊ 104 TeV
m„

23/21
Mpl

M

2
. (5.13)

5.2 Dark matter

With matter parity conserved, the lightest supersymmetric partner (LSP) is stable and
thus constitutes the DM candidate, with a possible natural choice being the neutralino. De-
pending on the details of supersymmetry breaking, the sparticle spectrum will be altered and
so will the identity of the neutralino that is the LSP. Since we require a heavy gravitino of
m3/2 & 50 TeV for the scenario considered, loop corrections to soft masses (gauginos, etc.)
are relevant. This is a natural setting for anomaly-mediated supersymmetry breaking [4, 5]
with Wino DM [16]. If the modulus and anomaly mediation contributions are competitive,
Higgsino with mass below O(TeV) becomes the DM candidate [58]. This is easily achieved
in the context of “mirage mediation” [59, 60], which could be further extended to “deflected
mirage mediation” [61], where the gaugino masses are given by

M3 : M2 : M1 ≥ (1 ≠ 0.3–m)g2
3 : (1 + 0.1–m)g2

2 : (1 + 0.03–m)g2
1 . (5.14)

Here, –m = m3/2/M0 log(Mpl/m3/2) parametrizes the relative strength of the anomaly and
modulus-mediated contributions, with M0 denoting the modulus-mediated contribution at
the GUT scale, and g1,2,3 are the gauge coupling constants. In the limit of –m æ 0, anomaly-
mediated contribution vanishes and Bino becomes the DM candidate. The Higgsino mass
parameter µ is driven by the gluino mass. Hence, increasing –m, which corresponds to
increasing m3/2 for a particular M0, lowers the gaugino mass M3 gluino component, while
increasing the mass of the Bino M1 and the Wino M2 components, resulting in Higgsino DM.
We treat –m and m3/2 as free parameters.

Due to strong pair annihilation in the MSSM, Higgsino and Wino DM require non-thermal

7
During „ oscillation era, the „ energy density scales as matter flm ≥ a≠3

, in contrast to radiation energy

density scaling as flrad ≥ a≠4
. The scale factor a can be taken as a measure of the universe’s wavelength and

goes as ≥ 1/E ≥ 1/T . Hence, the higher the temperature Tr for decoupling, the less BBN dilution will be

introduced by „.

– 18 –

Requiring Tr & 4 MeV to not spoil the BBN (e.g. [57])7, (5.10) constrains m„ to be

m„ & 150 TeV
1

M

Mpl

22/3
. (5.11)

Assuming that „ dominates the energy density before its decay, Tr is related to q„ via
radiation density

fl„ = m„(n„ + n„ú) ƒ
fi

2

30gúT
4
r . (5.12)

Since the baryon number density nb is set by q„ via nb = q„, the resulting baryon asymmetry
is found to be (see Model A of [11])

nb

s
ƒ Á

Tr

m„

≥ 10≠10
|Ÿ|

1 m3/2
103 TeV

2215 ◊ 104 TeV
m„

23/21
Mpl

M

2
. (5.13)

5.2 Dark matter

With matter parity conserved, the lightest supersymmetric partner (LSP) is stable and
thus constitutes the DM candidate, with a possible natural choice being the neutralino. De-
pending on the details of supersymmetry breaking, the sparticle spectrum will be altered and
so will the identity of the neutralino that is the LSP. Since we require a heavy gravitino of
m3/2 & 50 TeV for the scenario considered, loop corrections to soft masses (gauginos, etc.)
are relevant. This is a natural setting for anomaly-mediated supersymmetry breaking [4, 5]
with Wino DM [16]. If the modulus and anomaly mediation contributions are competitive,
Higgsino with mass below O(TeV) becomes the DM candidate [58]. This is easily achieved
in the context of “mirage mediation” [59, 60], which could be further extended to “deflected
mirage mediation” [61], where the gaugino masses are given by

M3 : M2 : M1 ≥ (1 ≠ 0.3–m)g2
3 : (1 + 0.1–m)g2

2 : (1 + 0.03–m)g2
1 . (5.14)

Here, –m = m3/2/M0 log(Mpl/m3/2) parametrizes the relative strength of the anomaly and
modulus-mediated contributions, with M0 denoting the modulus-mediated contribution at
the GUT scale, and g1,2,3 are the gauge coupling constants. In the limit of –m æ 0, anomaly-
mediated contribution vanishes and Bino becomes the DM candidate. The Higgsino mass
parameter µ is driven by the gluino mass. Hence, increasing –m, which corresponds to
increasing m3/2 for a particular M0, lowers the gaugino mass M3 gluino component, while
increasing the mass of the Bino M1 and the Wino M2 components, resulting in Higgsino DM.
We treat –m and m3/2 as free parameters.

Due to strong pair annihilation in the MSSM, Higgsino and Wino DM require non-thermal

7
During „ oscillation era, the „ energy density scales as matter flm ≥ a≠3

, in contrast to radiation energy

density scaling as flrad ≥ a≠4
. The scale factor a can be taken as a measure of the universe’s wavelength and

goes as ≥ 1/E ≥ 1/T . Hence, the higher the temperature Tr for decoupling, the less BBN dilution will be

introduced by „.

– 18 –

Requiring Tr & 4 MeV to not spoil the BBN (e.g. [57])7, (5.10) constrains m„ to be

m„ & 150 TeV
1

M

Mpl

22/3
. (5.11)

Assuming that „ dominates the energy density before its decay, Tr is related to q„ via
radiation density

fl„ = m„(n„ + n„ú) ƒ
fi

2

30gúT
4
r . (5.12)

Since the baryon number density nb is set by q„ via nb = q„, the resulting baryon asymmetry
is found to be (see Model A of [11])

nb

s
ƒ Á

Tr

m„

≥ 10≠10
|Ÿ|

1 m3/2
103 TeV

2215 ◊ 104 TeV
m„

23/21
Mpl

M

2
. (5.13)

5.2 Dark matter

With matter parity conserved, the lightest supersymmetric partner (LSP) is stable and
thus constitutes the DM candidate, with a possible natural choice being the neutralino. De-
pending on the details of supersymmetry breaking, the sparticle spectrum will be altered and
so will the identity of the neutralino that is the LSP. Since we require a heavy gravitino of
m3/2 & 50 TeV for the scenario considered, loop corrections to soft masses (gauginos, etc.)
are relevant. This is a natural setting for anomaly-mediated supersymmetry breaking [4, 5]
with Wino DM [16]. If the modulus and anomaly mediation contributions are competitive,
Higgsino with mass below O(TeV) becomes the DM candidate [58]. This is easily achieved
in the context of “mirage mediation” [59, 60], which could be further extended to “deflected
mirage mediation” [61], where the gaugino masses are given by

M3 : M2 : M1 ≥ (1 ≠ 0.3–m)g2
3 : (1 + 0.1–m)g2

2 : (1 + 0.03–m)g2
1 . (5.14)

Here, –m = m3/2/M0 log(Mpl/m3/2) parametrizes the relative strength of the anomaly and
modulus-mediated contributions, with M0 denoting the modulus-mediated contribution at
the GUT scale, and g1,2,3 are the gauge coupling constants. In the limit of –m æ 0, anomaly-
mediated contribution vanishes and Bino becomes the DM candidate. The Higgsino mass
parameter µ is driven by the gluino mass. Hence, increasing –m, which corresponds to
increasing m3/2 for a particular M0, lowers the gaugino mass M3 gluino component, while
increasing the mass of the Bino M1 and the Wino M2 components, resulting in Higgsino DM.
We treat –m and m3/2 as free parameters.

Due to strong pair annihilation in the MSSM, Higgsino and Wino DM require non-thermal

7
During „ oscillation era, the „ energy density scales as matter flm ≥ a≠3

, in contrast to radiation energy

density scaling as flrad ≥ a≠4
. The scale factor a can be taken as a measure of the universe’s wavelength and

goes as ≥ 1/E ≥ 1/T . Hence, the higher the temperature Tr for decoupling, the less BBN dilution will be

introduced by „.

– 18 –

Baryogenesis via Moduli Decay

Requiring Tr & 4 MeV to not spoil the BBN (e.g. [57])7, (5.10) constrains m„ to be

m„ & 150 TeV
1

M

Mpl

22/3
. (5.11)

Assuming that „ dominates the energy density before its decay, Tr is related to q„ via
radiation density

fl„ = m„(n„ + n„ú) ƒ
fi

2

30gúT
4
r . (5.12)

Since the baryon number density nb is set by q„ via nb = q„, the resulting baryon asymmetry
is found to be (see Model A of [11])

nb

s
ƒ Á

Tr

m„

≥ 10≠10
|Ÿ|

1 m3/2
103 TeV

2215 ◊ 104 TeV
m„

23/21
Mpl

M

2
. (5.13)

5.2 Dark matter

With matter parity conserved, the lightest supersymmetric partner (LSP) is stable and
thus constitutes the DM candidate, with a possible natural choice being the neutralino. De-
pending on the details of supersymmetry breaking, the sparticle spectrum will be altered and
so will the identity of the neutralino that is the LSP. Since we require a heavy gravitino of
m3/2 & 50 TeV for the scenario considered, loop corrections to soft masses (gauginos, etc.)
are relevant. This is a natural setting for anomaly-mediated supersymmetry breaking [4, 5]
with Wino DM [16]. If the modulus and anomaly mediation contributions are competitive,
Higgsino with mass below O(TeV) becomes the DM candidate [58]. This is easily achieved
in the context of “mirage mediation” [59, 60], which could be further extended to “deflected
mirage mediation” [61], where the gaugino masses are given by

M3 : M2 : M1 ≥ (1 ≠ 0.3–m)g2
3 : (1 + 0.1–m)g2

2 : (1 + 0.03–m)g2
1 . (5.14)

Here, –m = m3/2/M0 log(Mpl/m3/2) parametrizes the relative strength of the anomaly and
modulus-mediated contributions, with M0 denoting the modulus-mediated contribution at
the GUT scale, and g1,2,3 are the gauge coupling constants. In the limit of –m æ 0, anomaly-
mediated contribution vanishes and Bino becomes the DM candidate. The Higgsino mass
parameter µ is driven by the gluino mass. Hence, increasing –m, which corresponds to
increasing m3/2 for a particular M0, lowers the gaugino mass M3 gluino component, while
increasing the mass of the Bino M1 and the Wino M2 components, resulting in Higgsino DM.
We treat –m and m3/2 as free parameters.

Due to strong pair annihilation in the MSSM, Higgsino and Wino DM require non-thermal

7
During „ oscillation era, the „ energy density scales as matter flm ≥ a≠3

, in contrast to radiation energy

density scaling as flrad ≥ a≠4
. The scale factor a can be taken as a measure of the universe’s wavelength and

goes as ≥ 1/E ≥ 1/T . Hence, the higher the temperature Tr for decoupling, the less BBN dilution will be

introduced by „.

– 18 –

Requiring Tr & 4 MeV to not spoil the BBN (e.g. [57])7, (5.10) constrains m„ to be

m„ & 150 TeV
1

M

Mpl

22/3
. (5.11)

Assuming that „ dominates the energy density before its decay, Tr is related to q„ via
radiation density

fl„ = m„(n„ + n„ú) ƒ
fi

2

30gúT
4
r . (5.12)

Since the baryon number density nb is set by q„ via nb = q„, the resulting baryon asymmetry
is found to be (see Model A of [11])

nb

s
ƒ Á

Tr

m„

≥ 10≠10
|Ÿ|

1 m3/2
103 TeV

2215 ◊ 104 TeV
m„

23/21
Mpl

M

2
. (5.13)

5.2 Dark matter

With matter parity conserved, the lightest supersymmetric partner (LSP) is stable and
thus constitutes the DM candidate, with a possible natural choice being the neutralino. De-
pending on the details of supersymmetry breaking, the sparticle spectrum will be altered and
so will the identity of the neutralino that is the LSP. Since we require a heavy gravitino of
m3/2 & 50 TeV for the scenario considered, loop corrections to soft masses (gauginos, etc.)
are relevant. This is a natural setting for anomaly-mediated supersymmetry breaking [4, 5]
with Wino DM [16]. If the modulus and anomaly mediation contributions are competitive,
Higgsino with mass below O(TeV) becomes the DM candidate [58]. This is easily achieved
in the context of “mirage mediation” [59, 60], which could be further extended to “deflected
mirage mediation” [61], where the gaugino masses are given by

M3 : M2 : M1 ≥ (1 ≠ 0.3–m)g2
3 : (1 + 0.1–m)g2

2 : (1 + 0.03–m)g2
1 . (5.14)

Here, –m = m3/2/M0 log(Mpl/m3/2) parametrizes the relative strength of the anomaly and
modulus-mediated contributions, with M0 denoting the modulus-mediated contribution at
the GUT scale, and g1,2,3 are the gauge coupling constants. In the limit of –m æ 0, anomaly-
mediated contribution vanishes and Bino becomes the DM candidate. The Higgsino mass
parameter µ is driven by the gluino mass. Hence, increasing –m, which corresponds to
increasing m3/2 for a particular M0, lowers the gaugino mass M3 gluino component, while
increasing the mass of the Bino M1 and the Wino M2 components, resulting in Higgsino DM.
We treat –m and m3/2 as free parameters.

Due to strong pair annihilation in the MSSM, Higgsino and Wino DM require non-thermal

7
During „ oscillation era, the „ energy density scales as matter flm ≥ a≠3

, in contrast to radiation energy

density scaling as flrad ≥ a≠4
. The scale factor a can be taken as a measure of the universe’s wavelength and

goes as ≥ 1/E ≥ 1/T . Hence, the higher the temperature Tr for decoupling, the less BBN dilution will be

introduced by „.

– 18 –

Requiring Tr & 4 MeV to not spoil the BBN (e.g. [57])7, (5.10) constrains m„ to be

m„ & 150 TeV
1

M

Mpl

22/3
. (5.11)

Assuming that „ dominates the energy density before its decay, Tr is related to q„ via
radiation density

fl„ = m„(n„ + n„ú) ƒ
fi

2

30gúT
4
r . (5.12)

Since the baryon number density nb is set by q„ via nb = q„, the resulting baryon asymmetry
is found to be (see Model A of [11])

nb

s
ƒ Á

Tr

m„

≥ 10≠10
|Ÿ|

1 m3/2
103 TeV

2215 ◊ 104 TeV
m„

23/21
Mpl

M

2
. (5.13)

5.2 Dark matter

With matter parity conserved, the lightest supersymmetric partner (LSP) is stable and
thus constitutes the DM candidate, with a possible natural choice being the neutralino. De-
pending on the details of supersymmetry breaking, the sparticle spectrum will be altered and
so will the identity of the neutralino that is the LSP. Since we require a heavy gravitino of
m3/2 & 50 TeV for the scenario considered, loop corrections to soft masses (gauginos, etc.)
are relevant. This is a natural setting for anomaly-mediated supersymmetry breaking [4, 5]
with Wino DM [16]. If the modulus and anomaly mediation contributions are competitive,
Higgsino with mass below O(TeV) becomes the DM candidate [58]. This is easily achieved
in the context of “mirage mediation” [59, 60], which could be further extended to “deflected
mirage mediation” [61], where the gaugino masses are given by

M3 : M2 : M1 ≥ (1 ≠ 0.3–m)g2
3 : (1 + 0.1–m)g2

2 : (1 + 0.03–m)g2
1 . (5.14)

Here, –m = m3/2/M0 log(Mpl/m3/2) parametrizes the relative strength of the anomaly and
modulus-mediated contributions, with M0 denoting the modulus-mediated contribution at
the GUT scale, and g1,2,3 are the gauge coupling constants. In the limit of –m æ 0, anomaly-
mediated contribution vanishes and Bino becomes the DM candidate. The Higgsino mass
parameter µ is driven by the gluino mass. Hence, increasing –m, which corresponds to
increasing m3/2 for a particular M0, lowers the gaugino mass M3 gluino component, while
increasing the mass of the Bino M1 and the Wino M2 components, resulting in Higgsino DM.
We treat –m and m3/2 as free parameters.

Due to strong pair annihilation in the MSSM, Higgsino and Wino DM require non-thermal

7
During „ oscillation era, the „ energy density scales as matter flm ≥ a≠3

, in contrast to radiation energy

density scaling as flrad ≥ a≠4
. The scale factor a can be taken as a measure of the universe’s wavelength and

goes as ≥ 1/E ≥ 1/T . Hence, the higher the temperature Tr for decoupling, the less BBN dilution will be

introduced by „.

– 18 –



Dark Matter via Moduli Decay

• LSP: Wino dark matter


• strong pair co-annihilation: thermal relic abundance too small


• non-thermal contribution from moduli decay 


• DM relic abundance


• DM and Baryon numbers: no moduli mass dependence

Moroi, Randall (1999)

production, which occurs due to the heavy „ decays. This sets

Tr . m‰/20 , (5.15)

leading to (see Eq. (5.10))

m‰ & 40 GeV
1

m„

5 ◊ 104 TeV
23/21

Mpl

M

2
. (5.16)

From the Boltzmann equations, the relic density of ‰ is then approximately [62]

n‰

s
≥ (4È‡vÍMplTr)≠1

, (5.17)

where for particles carrying SU(2) quantum numbers, such as Wino or Higgsino, the thermally-
averaged annihilation cross-section is È‡vÍ ≥ 10≠3

/m
2
‰. The resulting relic abundance [11]

�DM h
2
0 ƒ 0.1

1
m‰

700 GeV
2315 ◊ 104 TeV

m„

23/21
M

MP

2
, (5.18)

which is to be compared to the experimental value from Planck [1] of �DM h
2
0 = 0.1198 ±

0.0012.
Hence, the DM and baryon abundances (Eq. (5.13)) are related as

�DM

�b

≥ 5 |Ÿ|
≠1

11 GeV
mnuc

21
m‰

700 GeV
231103 TeV

m3/2

221
M

MP

22
, (5.19)

where mnuc is the nucleon mass. The �DM /�b factor is required to be of O(1) if one is to
address the observed baryon-DM abundance coincidence.

We first discuss Wino LSP, arising in the context of anomaly-mediated SUSY breaking.
Here, the gaugino masses are proportional to

mGi ≥
big

2
i

16fi2 m3/2 , (5.20)

where Gi denote the SM gauge groups, gi are the gauge couplings and bi are the —-function
coe�cients. Hence,

m‰ ƒ 2.7 ◊ 10≠3
m3/2 . (5.21)

From (5.19), this results in

�DM

�b

≥ 70 |Ÿ|
≠1

11 GeV
mnuc

21
m‰

700 GeV
21

M

MP

22
. (5.22)

It has been suggested (e.g. [63]) that indirect detection already strongly constrains the non-
thermal Wino. These results, however, strongly depend on the assumptions regarding the un-
certain astrophysical J-factor associated with the DM halo shape in dwarf spheroidal galaxies
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Such a heavy modulus field is cosmologically safe since its lifetime can be much shorter
than 1 sec.

It is also important to understand the relevant operators which contribute to the decay
of φ. By taking the minimal SUSY standard model (MSSM) as the low energy effective
theory, the following operators can exist.

The modulus field can decay into a gauge field (and gaugino) through the operators:

LG =
∫

d2θ
λG

M∗

φW αWα + h.c., (A.1)

where λG is a constant to parameterize the strength of this interaction. When the gaugino
mass mG̃ is much smaller than mφ, the branching ratio for the decay into the gaugino pair
receives chirality suppression [10]. As a result, the (partial) decay width and N̄LSP is given
by

ΓG =
Nfλ2

G

8π

m3
φ

M2
∗

, (A.2)

N̄LSP ∼ O(m2
G̃/m2

φ), (A.3)

where Nf is the number of the possible final states. (For example, Nf = N2 − 1 for an
SU(N) gauge group.) One should note that this operator also contributes to the gaugino
mass if the φ field participates in SUSY breaking. So either λG is suppressed or Fφ is in
order to maintain the anomaly-mediated predictions.

In the MSSM, the following operator is also allowed:

LH =
∫

d4θ
λH

M∗

φH∗
1H

∗
2 + h.c., (A.4)

where H1 and H2 are the down-type and up-type Higgses, respectively. With this operator,
the modulus field can decay into a Higgs boson pair, and the decay width for this process
is

ΓH =
λ2

H

8π

m3
φ

M2
∗

. (A.5)

Notice that the Higgsino cannot be produced from this operator, and hence N̄LSP = 0 for
this process. This operator is also dangerous if Fφ is maximal since it generates too large
µ-parameter.

One can also write down the following operator:

LQ∗Q =
∫

d4θ
λQ∗Q

M∗

φQ∗Q + h.c. =
λQ∗Q

M∗

φ(∂2Q̃∗)Q̃ + · · · , (A.6)

where Q is general chiral superfields in the MSSM and Q̃ is its scalar component. As
suggested from the structure of the operator, the decay rate is given by

ΓQ∗Q ∼ O

⎛

⎝

λ2
Q∗Q

4π

m4
Q̃

m4
φ

m3
φ

M2
∗

⎞

⎠ , (A.7)
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Flavor Structure

• Yukawa interactions


• Yukawa hierarchy a lá Froggatt-Nielsen


• expansion parameter

massive, with a mass of
MA = gAÈ‡Í

Ô
2

ƒ O(10≠2)Mpl . (3.4)

Between the scale Mpl and MA they can contribute to flavor violating processes, with poten-
tially observable consequences [46].

3.2 Textures and massive Dirac neutrinos

With the flavon field, the Yukawa terms appear in the superpotential as
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1
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(3.5)

where i, j denote the flavor indices. Here, y
f

ij
are the Yukawa coupling coe�cients of O(1)

and n
f

ij
are the positive integers determined by the U(1)A charge assignment for the fermions

in family f . After flavor symmetry breaking, the Yukawa couplings take the form of

Y
f

ij
= y

f

ij

1
‡

Mpl

2n
f
ij

≠æ y
f

ij

1
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2n
f
ij = y

f

ij
‘
n

f
ij . (3.6)

For the fermion U(1)A charge assignment of Table 1 as well as Yukawa coupling parametriza-
tion, neglecting right handed neutrinos, we employed the results of Model 2 (i.e. – = 1) of [29].
These SU(5)-compatible flavor textures are a variation of textures presented in [47]. The dif-
ferent values of parameter p œ {2, 1, 0} correspond to di�erent values of tan — © ÈHuÍ/ÈHdÍ œ

{5, 10, 20}, respectively. These charges give the following mass matrices

Mu ≥ ÈHuÍ

Q
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‘
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‘
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‘
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‘
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‘
4

‘
2

‘
3

‘
2 1
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2 1
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db ,

yielding approximately the following mass relations

mu : mc : mt ≥ ‘
6 : ‘

4 : 1
md : ms : mb ≥ ‘

4 : ‘
2 : 1 (3.7)

me : mµ : m· ≥ ‘
4 : ‘

2 : 1

Analysis of renormalization group equations (RGEs) as well as arbitrary O(1) coe�cients in
front of the entries have been also provided by [29]. Using REAP/MPT packages [48], we have
confirmed that these textures yield approximately correct mixings.

From SU(5) compatibility, Ye = Y
T

d
. However, this leads to a known issue of unacceptable

fermion mass relations, with md/me = ms/mµ = mb/m· . A possible solution has been
proposed by Georgi and Jarlskog [49], which introduced additional Higgs multiplets that
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3 Flavor structure and neutrino masses

3.1 Anomalous U(1)A flavor symmetry

The SM Cabibbo-Kobayashi-Maskawa (CKM) quark matrix can be parametrized through
the Cabbibo angle sin ◊c ƒ 0.2. The Yukawa coupling suppression (È‡Í/M) naturally provides
the desired small expansion parameter ‘ for the flavor structure of the model of the size of the
Cabbibo angle, assuming that the model is string-inspired and identifying the scale M with
the string scale Ms. For simplicity, we take Ms = Mpl throughout this work. Anomalous
flavor U(1)A can also be used to forbid certain operators, through supersymmetric zeroes3

(e.g. [41]).
The modified Kähler potential invariant under the dilaton transformations (2.7) leads

to a radiatively-generated string Fayet-Iliolopuolos (FI) U(1)A term from the gravitational
anomaly [42–45], with a coe�cient

›FI = g
2
s

192fi2 M
2
plAGGA , (3.1)

where AGGA is the gravitational anomaly coe�cient as before. Inclusion of a non-zero FI
term leads to a D-term contribution to the scalar potential of the form

Vscalar ∏
1
2D

2 = g
2
A

2
1 ÿ

i

q„i |„i|
2 + ›

2
FI

22
, (3.2)

where gA is the U(1)A gauge coupling as before and „i is the scalar component of the �i

chiral superfield carrying a U(1)A charge of q„i . Requirement of SU(3)C ◊ SU(2)W ◊ U(1)Y

gauge invariance ensures that the scalar components of MSSM-superfields have vanishing
VEVs. In order to maintain SUSY at the U(1)A-breaking scale, the D-term must vanish.
This requires that at least one remaining chiral superfield has a negative charge to cancel the
›FI contribution4. This role is played by the flavon field ‡, setting its VEV to È‡Í Ã

Ô
›FI.

The previously obtained gravitational anomaly coe�cient in Eq. (2.14) of (16 + 3p)/4, with
p œ {0, 1, 2}, thus leads to a desired value of the small expansion parameter

‘ = È‡Í

Mpl

=

Û
g

2
sAGGA
192fi2 ƒ sin ◊c = O(0.2) , (3.3)

where we have taken g
2
s/4fi ƒ 1/24.

After U(1)A breaking the corresponding flavor gauge boson and the gaugino become

3
In this case, the flavon coupling is family-independent and matter fields are allowed to carry negative

charges under U(1)A. Since holomorphicity of superpotential only allows for ‡ and not ‡†
to appear, any

combined operator that carries a total negative U(1)A charge will be forbidden.
4
A U(1)A charge normalization resulting in q‡ = ≠1 is assumed.
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Flavor Structure

• Charged Fermion Mass Matrices:


• parameter p:


• Naturally light Dirac neutrinos:


•
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don’t couple to all the generations. Adopting their approach, we modify Me as follows

Me ≥ ÈHdÍ‘
p
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‘
3

≠3‘
2 1

R

db .

For the neutrinos, in contrast to [29], we do not rely on the see-saw mechanism for
generation of neutrino masses. Neutrinos in our model are thus Dirac fermions. Without the
see-saw mechanism in play, the smallness of the neutrino masses begs for an explanation. We
achieve this by requiring that the mixed U(1)A-gravitational anomaly (2.14) is canceled by
the GS mechanism without the need of invoking any extra singlet fields, in contrast to [29].
This condition sets the right-handed neutrino charges to the values presented in Table 1 and
automatically leads to the desired neutrino mass suppression through the Froggatt-Nielson
expansion parameter ‘. The resulting modified Dirac neutrino Yukawa texture is

M‹ ≥ ÈHuÍ‘
13+2p

Q

ca
‘
3

‘
2

‘

‘
2

‘ 1
‘
2

‘ 1

R

db ,

which gives reasonable neutrino mixing, as demonstrated below. For di�erent values of p, one
obtains the desired neutrino mass suppression of

p œ {0, 1, 2} ≠æ
m‹

ÈHuÍ
≥ {‘

13
, ‘

14
, ‘

15
} ƒ {10≠9

, 10≠11
, 10≠12

} . (3.8)

3.3 Fitting fermion masses and mixings

We demonstrate that the above Yukawa textures can lead to reasonable fermion mixings
and mass hierarchies by explicitly fitting the O(1) coe�cients in front of ‘ factors. As the
‡ flavon field obtains a VEV at the U(1)A breaking scale of ≥ 1015 GeV, the resulting
Yukawa matrices should in principle be evolved with RGEs down to the scale MZ , where the
parameters are to be compared to the measured experimental values. Since our goal here is
only to show that we can obtain approximately correct flavor structure at the GUT scale, we
will not discuss the RGE analysis (see e.g. [29] for a possible implementation).

The Yukawa matrices are diagonalized using singular value decomposition (SVD), which
explicitly gives the left- and right-handed unitary rotation matrices Vi. The respective rotation
matrices for the quark and lepton fields are

dR , uR , QL æ V
d

RdR , V
u

R uR , V
Q

L
QL (3.9)

eR , ‹R , LL æ (V e

R)†
eR , (V ‹

R)†
‹R , (V L

L )†
LL .
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Nucleon Stability

• ∆(B-L) = 0:  proton decay


     constraints


• ∆(B-L) = 2   ⇒ neutron-antineutron oscillation


     constraint

4 Nucleon stability

The QQQL and UUDE baryon and lepton number violating operators of Eq. (2.2) can
directly mediate proton decay via p æ ‹K

+, which is strongly constrained by the experiment
[52]. Since these terms appear only non-perturbatively in the e�ective superpotential, they
are suppressed, with coe�cients
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. (4.2)

Flavor structure provides additional strong suppression, which depends on the considered
family to which the particles belong and we have specified the minimum (family 3) and the
maximum (family 1) possibilities.

When coupled together, the R-parity violating dimension-4 terms UDD and LQD can
again lead to p æ ‹K

+. Thus, there is a constraint on the VEV the � field coming from the
UDD� and LQD� terms.

family 1: È�Í

M
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We can neglect these conditions for the � field, since the minimum of the potential (5.3)
is at È„Í = 0 if the „

6 term was absent. Higher dimensional terms in the superpotential
polynomial F (x) can in principle modify this, but they are highly suppressed. Similarly,
there is a constraint on the VEV of ‹ from the UDD‹ and LQD‹ terms, which appear
non-pertubatively and thus carry extra suppression. These are
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The condition from Eq. (4.5) on È‹Í sets the scale for (B ≠ L) symmetry breaking

M(B≠L) . 3 ‘
≠2p

1103 TeV
m3/2

2
Mpl , (4.7)

where we have assumed third family contribution, which is most restrictive since it has the
smallest flavor suppression and thus leads to a lower (B ≠ L) scale. A possible fine-tuning of
the ‹ VEV can be easily avoided by imposing that (B ≠ L) symmetry is unbroken to some
lower energy scale or alternatively that one or both of the contributing /B or /L operators is
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suppressed or absent.
It is also possible that �B = 2 neutron-anti-neutron oscillations [53] can appear within

the model with di�erent mass-scale suppression than expected. Namely, upon integrating out
the �-field from the e�ective superpotential after SUSY/R breaking

Weff ∏
‘
5+2p

M
UDD� + M��� (4.8)

one obtains the (n ≠ n) mediating operator

On≠n = ‘
10+4p

M2M�

1
UDD

22
, (4.9)

where in the above we have taken flavor structure corresponding to first generation that
describes neutrons, which leads to the resulting operator being strongly suppressed. Similarly,
after ‹ acquires a VEV the UDD‹ operator can lead to (UDD)2, which just highlights the
usual statement that (B ≠ L) scale can be related to n ≠ n oscillations. However, since these
terms appear non-perturbatively they are highly suppressed. The free n ≠ n lifetime is

·
free
n≠n ≥

1
”m

, ”m ƒ c

1 �4
QCD

M2M�

2
‘
10+4p

, (4.10)

where the right-hand side of the equation follows from dimensional analysis of the On≠n

operator. We assume �QCD = 250 MeV and c ≥ 1. In the bound nuclei, the lifetimes di�er.
The free n ≠ n lifetime can be converted to the bound n ≠ n lifetime via

·
bound
n≠n = R(· free

n≠n)2
, (4.11)

with R ƒ 5 ◊ 1022 s≠1 being the nuclear suppression factor. Hence, the current limits on
bound n ≠ n lifetime of ·

bound
n≠n

& 2 ◊ 1032 years [54] imply

M� & 10≠1
‘
≠4p

1
Mpl

M

22
GeV . (4.12)

The constraint of Eq. (4.12) is automatically satisfied in our model when cosmological bounds
on reheating are taken into account through Eq. (5.11), even for the most stringent case of
p = 2.

5 Baryon asymmetry and dark matter abundance from moduli decay

In our considerations we remain agnostic about the details of the inflationary phase.
During inflation, moduli fields can develop large values and then dominate the energy density
of the universe as they coherently oscillate. If they are light and take too long to decay, they
can on-set radiation dominated universe at energies below the scale allowed by the BBN,
resulting in a “cosmological moduli problem” [2, 3]. Making the moduli massive (“stabilizing
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On≠n = ‘
10+4p

M2M�

1
UDD

22
, (4.9)

where in the above we have taken flavor structure corresponding to first generation that
describes neutrons, which leads to the resulting operator being strongly suppressed. Similarly,
after ‹ acquires a VEV the UDD‹ operator can lead to (UDD)2, which just highlights the
usual statement that (B ≠ L) scale can be related to n ≠ n oscillations. However, since these
terms appear non-perturbatively they are highly suppressed. The free n ≠ n lifetime is

·
free
n≠n ≥

1
”m

, ”m ƒ c

1 �4
QCD

M2M�

2
‘
10+4p

, (4.10)

where the right-hand side of the equation follows from dimensional analysis of the On≠n

operator. We assume �QCD = 250 MeV and c ≥ 1. In the bound nuclei, the lifetimes di�er.
The free n ≠ n lifetime can be converted to the bound n ≠ n lifetime via

·
bound
n≠n = R(· free

n≠n)2
, (4.11)

with R ƒ 5 ◊ 1022 s≠1 being the nuclear suppression factor. Hence, the current limits on
bound n ≠ n lifetime of ·

bound
n≠n

& 2 ◊ 1032 years [54] imply

M� & 10≠1
‘
≠4p

1
Mpl

M

22
GeV . (4.12)

The constraint of Eq. (4.12) is automatically satisfied in our model when cosmological bounds
on reheating are taken into account through Eq. (5.11), even for the most stringent case of
p = 2.

5 Baryon asymmetry and dark matter abundance from moduli decay

In our considerations we remain agnostic about the details of the inflationary phase.
During inflation, moduli fields can develop large values and then dominate the energy density
of the universe as they coherently oscillate. If they are light and take too long to decay, they
can on-set radiation dominated universe at energies below the scale allowed by the BBN,
resulting in a “cosmological moduli problem” [2, 3]. Making the moduli massive (“stabilizing
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⇒Super-Kamiokande Collaboration (2015)

Super-Kamiokande 
Collaboration (2014)
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3 Dark matter from φ decay

Since every φ decay produces (at least) one superpartner, Ref. [20] concludes that the

number density of LSPs exceeds the one of baryons, nLSP ! nb. However, nLSP is modi-

fied by LSP pair annihilation processes in a heavy φ scenario. These processes are effective

as long as the corresponding rate exceeds the Hubble rate. In the MSSM, the dark matter

candidates which pair annihilate strongly are the W ino and the Higgsino. Both particles

have large annihilation cross sections through weak interaction, and thus the thermal

abundance cannot explain the energy density of the dark matter. On the other hand,

non-thermal production from φ decays renders the W ino/Higgsino a viable dark matter

candidate.

In order to find out to what extent the LSPs annihilate, one describes the evolution

of number densities of φ quanta and LSPs, nφ and nχ, and energy density of the thermal

bath, ρrad, by Boltzmann equations [23],

dnφ

dt
+ 3H nφ = −Γφ nφ , (18a)

dnχ

dt
+ 3H nχ = νLSP Γφ nφ − ⟨σ v⟩n2

χ , (18b)

dρrad
dt

+ 4H ρrad = (mφ − νLSP mχ)Γφ nφ +mχ⟨σ v⟩n2
χ . (18c)

νLSP denotes the number of LSPs produced by a φ decay. The Boltzmann equations can

be integrated, and the relic density of χ can be approximated by [40]

nχ

s
∼ (4 ⟨σv⟩MP Td)

−1 , (19)

as long as the LSPs are not equilibrated, i.e. Td " mχ/30. The relic χ abundance is then

Ωχ h
2 ≃ 0.1

(
2.5 × 10−3

m2
χ⟨σv⟩

)(
10−2

ξ

)1/2 ( mχ

100GeV

)3 ( mφ

1500TeV

)
−3/2

(
M

MP

)
.

(20)

The thermal average of the annihilation cross section is typically ⟨σv⟩ ∼ 10−3/m2
χ for the

particles which have SU(2)L quantum numbers such as W ino and Higgsino. Therefore the

non-thermal component can explain the dark matter of the universe for mφ ∼ 103−5 TeV

depending on mχ.

For concreteness, let us focus on the case of the W ino LSP. The annihilation cross

section is [23] (cf. the extensive list [41])

⟨σfW 0fW 0→W+W−
v⟩ =

g42
2π

1

m2
χ

[
1−

m2
W

m2
χ

]3/2

[
2−

m2
W

m2
χ

]2 . (21)

In Fig. 1 we show the relic W ino density Ωχ h2 (where h ≃ 0.7 is the present normalized

Hubble expansion rate [36]) as a function of mφ. To produce Fig. 1, we solve the set

of Boltzmann equations (18) (extended to include the charged W ino NLSP) and take
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production, which occurs due to the heavy „ decays. This sets

Tr . m‰/20 , (5.15)

leading to (see Eq. (5.10))

m‰ & 40 GeV
1

m„

5 ◊ 104 TeV
23/21

Mpl

M

2
. (5.16)

From the Boltzmann equations, the relic density of ‰ is then approximately [62]

n‰

s
≥ (4È‡vÍMplTr)≠1

, (5.17)

where for particles carrying SU(2) quantum numbers, such as Wino or Higgsino, the thermally-
averaged annihilation cross-section is È‡vÍ ≥ 10≠3

/m
2
‰. The resulting relic abundance [11]

�DM h
2
0 ƒ 0.1

1
m‰

700 GeV
2315 ◊ 104 TeV

m„

23/21
M

MP

2
, (5.18)

which is to be compared to the experimental value from Planck [1] of �DM h
2
0 = 0.1198 ±

0.0012.
Hence, the DM and baryon abundances (Eq. (5.13)) are related as

�DM

�b

≥ 5 |Ÿ|
≠1

11 GeV
mnuc

21
m‰

700 GeV
231103 TeV

m3/2

221
M

MP

22
, (5.19)

where mnuc is the nucleon mass. The �DM /�b factor is required to be of O(1) if one is to
address the observed baryon-DM abundance coincidence.

We first discuss Wino LSP, arising in the context of anomaly-mediated SUSY breaking.
Here, the gaugino masses are proportional to

mGi ≥
big

2
i

16fi2 m3/2 , (5.20)

where Gi denote the SM gauge groups, gi are the gauge couplings and bi are the —-function
coe�cients. Hence,

m‰ ƒ 2.7 ◊ 10≠3
m3/2 . (5.21)

From (5.19), this results in

�DM

�b

≥ 70 |Ÿ|
≠1

11 GeV
mnuc

21
m‰

700 GeV
21

M

MP

22
. (5.22)

It has been suggested (e.g. [63]) that indirect detection already strongly constrains the non-
thermal Wino. These results, however, strongly depend on the assumptions regarding the un-
certain astrophysical J-factor associated with the DM halo shape in dwarf spheroidal galaxies
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