

Primordial black hole tower:

Dark matter, earth-mass, and LIGO black holes

Primordial Black Hole Carr \& Hawking 1974

Radiation Dom.

Primordial Black Hole Carr \& Hawking 1974

Radiation Dom.

Primordial Black Hole Carr \& Hawking 1974

Radiation Dom.

Primordial Black Hole

Radiation Dom.

Carr \& Hawking 1974

- PBH mass

$$
\begin{aligned}
M_{\mathrm{PBH}} & \sim M_{\mathrm{H}}=\frac{4 \pi}{3} \rho H^{-3}=\frac{1}{2 G H} \\
& \sim M_{\odot}\left(\frac{t_{\mathrm{PBH}}}{10^{-5} \mathrm{~S}}\right) \quad M_{\odot} \simeq 2 \times 10^{33} \mathrm{~g} \\
& \sim M_{\odot}\left(\frac{k_{\mathrm{PBH}}}{4 \mathrm{pc}^{-1}}\right)^{-2}
\end{aligned}
$$

$$
M_{\mathrm{Pl}} \simeq 2 \times 10^{-5} \mathrm{~g} \lesssim M_{\mathrm{PBH}} \lesssim 10^{15} M_{\odot}
$$

Primordial Black Hole

- PBH mass

$$
\begin{aligned}
M_{\mathrm{PBH}} & \sim M_{\mathrm{H}}=\frac{4 \pi}{3} \rho H^{-3}=\frac{1}{2 G H} \\
& \sim M_{\odot}\left(\frac{t_{\mathrm{PBH}}}{10^{-5} \mathrm{~S}}\right) \quad M_{\odot} \simeq 2 \times 10^{33} \mathrm{~g} \\
& \sim M_{\odot}\left(\frac{k_{\mathrm{PBH}}}{4 \mathrm{pc}^{-1}}\right)^{-2}
\end{aligned}
$$

$$
M_{\mathrm{PI}} \simeq 2 \times 10^{-5} \mathrm{~g} \lesssim M_{\mathrm{PBH}} \lesssim 10^{15} M_{\odot}
$$

Primordial Black Hole

- PBH mass

$$
\begin{aligned}
M_{\mathrm{PBH}} & \sim M_{\mathrm{H}}=\frac{4 \pi}{3} \rho H^{-3}=\frac{1}{2 G H} \\
& \sim M_{\odot}\left(\frac{t_{\mathrm{PBH}}}{10^{-5} \mathrm{~s}}\right) \quad M_{\odot} \simeq 2 \times 10^{33} \mathrm{~g} \\
& \sim M_{\odot}\left(\frac{k_{\mathrm{PBH}}}{4 \mathrm{pc}^{-1}}\right)^{-2}
\end{aligned}
$$

$$
M_{\mathrm{PI}} \simeq 2 \times 10^{-5} \mathrm{~g} \lesssim M_{\mathrm{PBH}} \lesssim 10^{15} M_{\odot}
$$

- Overdensity

$$
\begin{aligned}
& \delta>\delta_{\mathrm{th}} \simeq 0.4 \quad \begin{array}{l}
\text { Musco, Miller, Rezolla 2005,... } \\
\quad\left(\text { cf. } \mathscr{R}_{\mathrm{th}} \simeq \frac{9}{4} \delta_{\mathrm{th}} \simeq 1\right)
\end{array}, \quad \text { Harada, Yoo, Kohri 2013 }
\end{aligned}
$$

- Rarity

$$
\frac{\Omega_{\mathrm{PBH}}}{\Omega_{\mathrm{DM}}} \sim \frac{\rho_{\mathrm{PBH}} / \rho_{\mathrm{R}} \mathrm{I}_{\mathrm{f}}}{7 \times 10^{-16}}\left(\frac{M_{\mathrm{PBH}}}{10^{20} \mathrm{~g}}\right)^{-1 / 2}
$$

Primordial Black Hole

- PBH mass

$$
\begin{aligned}
M_{\mathrm{PBH}} & \sim M_{\mathrm{H}}=\frac{4 \pi}{3} \rho H^{-3}=\frac{1}{2 G H} \\
& \sim M_{\odot}\left(\frac{t_{\mathrm{PBH}}}{10^{-5} \mathrm{~s}}\right) \quad M_{\odot} \simeq 2 \times 10^{33} \mathrm{~g} \\
& \sim M_{\odot}\left(\frac{k_{\mathrm{PBH}}}{4 \mathrm{pc}^{-1}}\right)^{-2}
\end{aligned}
$$

$$
M_{\mathrm{Pl}} \simeq 2 \times 10^{-5} \mathrm{~g} \lesssim M_{\mathrm{PBH}} \lesssim 10^{15} M_{\odot}
$$

- Overdensity

$$
\begin{aligned}
& \delta>\delta_{\mathrm{th}} \simeq 0.4 \quad \begin{array}{l}
\text { Musco. Miller. Rezolla 2005, } \\
\left(\mathrm{cf.} \mathscr{R}_{\mathrm{th}} \simeq \frac{9}{4} \delta_{\mathrm{th}} \simeq 1\right)
\end{array}
\end{aligned}
$$

- Rarity

$$
\frac{\Omega_{\mathrm{PBH}}}{\Omega_{\mathrm{DM}}} \sim \frac{\rho_{\mathrm{PBH}} /\left.\rho_{\mathrm{R}}\right|_{\mathrm{f}}}{7 \times 10^{-16}}\left(\frac{M_{\mathrm{PBH}}}{10^{20} \mathrm{~g}}\right)^{-1 / 2}
$$

$\sim 10 \sigma$ rarity

Primordial Black Hole

- PBH mass

$$
\begin{aligned}
M_{\mathrm{PBH}} & \sim M_{\mathrm{H}}=\frac{4 \pi}{3} \rho H^{-3}=\frac{1}{2 G H} \\
& \sim M_{\odot}\left(\frac{t_{\mathrm{PBH}}}{10^{-5} \mathrm{~s}}\right) \quad M_{\odot} \simeq 2 \times 10^{33} \mathrm{~g} \\
& \sim M_{\odot}\left(\frac{k_{\mathrm{PBH}}}{4 \mathrm{pc}^{-1}}\right)^{-2}
\end{aligned}
$$

$$
M_{\mathrm{PI}} \simeq 2 \times 10^{-5} \mathrm{~g} \lesssim M_{\mathrm{PBH}} \lesssim 10^{15} M_{\odot}
$$

- Overdensity

$$
\begin{aligned}
& \left.\delta>\delta_{\mathrm{th}} \simeq 0.4 \quad \begin{array}{l}
\text { Musco, Miller, Rezolla 2005,... } \\
(\text { Harada, Yoo, Kohri 2013 }
\end{array} \mathscr{R}_{\mathrm{th}} \simeq \frac{9}{4} \delta_{\mathrm{th}} \simeq 1\right)
\end{aligned}
$$

- Rarity

$$
\frac{\Omega_{\mathrm{PBH}}}{\Omega_{\mathrm{DM}}} \sim \frac{\rho_{\mathrm{PBH}} /\left.\rho_{\mathrm{R}}\right|_{\mathrm{f}}}{7 \times 10^{-16}}\left(\frac{M_{\mathrm{PBH}}}{10^{20} \mathrm{~g}}\right)^{-1 / 2}
$$

$$
\sim 10 \sigma \text { rarity }
$$

$$
\begin{gathered}
\mathscr{P}_{\mathscr{R}}\left(k_{\mathrm{PBH}}\right) \sim\left(\frac{\mathscr{R}_{\mathrm{th}}}{10}\right)^{2} \simeq 10^{-2} \\
\left(\text { cf. } \mathscr{P}_{\mathscr{R}}\left(k_{\mathrm{CMB}}\right) \simeq 2 \times 10^{-9}\right)
\end{gathered}
$$

Obs. const. on PBH

- Gravitational Lensing
- Dynamical Friction
- Accretion γ
- Prim. PTB
- Hawking Y

Obs. const. on PBH

- Gravitational Lensing
- Dynamical Friction
- Accretion Y
- Prim. PTB
- Hawking Y

Obs. const. on PBH

Obs. const. on PBH

| Massive than | | | |
| :---: | :---: | :---: | :---: | :---: |
| stellar BHs found | | | |

LIGO/Virgo 2018

Binary PBH

Radiation Dom.

Binary PBH

Radiation Dom.

Sasaki+ 2016

(merger rate) $\simeq 52.9_{-27.0}^{+55.6} \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$

LIGO/Virgo 2018

Obs. const. on PBH

Rosa \& Kephart 2018
spinning PBH $\sim 10^{27} g$ 1
superradiant on QCD axion

stimulated decay of axion

Fast Radio Burst

How can we realize these mass spectra?

Double Inflation

$$
\begin{aligned}
& V(\phi, \chi)=V_{\mathrm{CMB}}(\phi)+\left(v^{2}-g \frac{\chi^{n}}{M_{\mathrm{Pl}}^{n-2}}\right)^{2}-\epsilon v^{4} \frac{\chi}{M_{\mathrm{Pl}}}-\frac{1}{2} \kappa v^{4} \frac{\chi^{2}}{M_{\mathrm{Pl}}^{2}}+\frac{c}{2} V_{\mathrm{CMB}}(\phi) \frac{\chi^{2}}{M_{\mathrm{Pl}}^{2}} \\
& V_{\mathrm{CMB}} \gg v^{4}
\end{aligned} \quad \begin{aligned}
& \quad \text { hilltop }
\end{aligned}
$$

Double Inflation

Extreme Case

- 4-hilltop

$$
V_{\text {hill }}=\sum_{i=1}^{4} V_{\text {hill }, i}
$$

$$
+
$$

- Stabilization
$V_{\text {stab }}=\sum_{i \neq j} \frac{c_{i j}}{2} V_{\text {hill,i }} \frac{\phi_{j}^{2}}{M_{\mathrm{Pl}}^{2}}$
- during phase- i : stabilize ϕ_{i+1}
- after $V_{\text {hill, }, ~}$ decays: start phase- $(i+1)$

Implication to String Theory

dS swampland conjecture Ooguri \& Vafa 2018
"dS vacua will be unstable in UV-complete theories"

$$
\frac{|\nabla V|}{V} \gtrsim \mathcal{O}(1), \quad \text { or } \quad \frac{\min \left(\nabla_{i} \nabla_{j} V\right)}{V} \lesssim-\mathcal{O}(1)
$$

each inflationary phase cannot continue long
multi-phase inflation
c.f. YT \& Yokoyama 2019

$$
-\frac{\min \left(\nabla_{i} \nabla_{j} V\right)}{V} \simeq \kappa \simeq 5
$$

Testability

- LIGO/Virgo PBH

PBH tends to be spinless

Chiba \& Yokoyama 2017

Sasaki+ 2018

Event	$m_{1} / \mathrm{M}_{\odot}$	$m_{2} / \mathrm{M}_{\odot}$	$\mathcal{M} / \mathrm{M}_{\odot}$	$\chi_{\text {eff }}$
GW150914	$35.6_{-3.0}^{+4.8}$	$30.6_{-4.4}^{+3.0}$	$28.6_{-1.5}^{+1.6}$	$-0.01_{-0.13}^{+0.12}$
GW151012	$23.3_{-5.0}^{+14.0}$	$13.6_{-4.8}^{+4.1}$	$15.2_{-1.1}^{+2.0}$	$0.04_{-0.19}^{+0.28}$
GW151226	$13.7_{-3.2}^{+8.8}$	$7.7_{-2.6}^{+2.2}$	$8.9_{-0.3}^{+0.3}$	$0.18_{-0.12}^{+0.20}$
GW170104	$31.0_{-5.6}^{+7.2}$	$20.1_{-4.5}^{+4.9}$	$21.5_{-1.7}^{+2.1}$	$-0.04_{-0.20}^{+0.17}$
GW170608	$10.9_{-1.7}^{+5.3}$	$7.6_{-2.1}^{+1.3}$	$7.9_{-0.2}^{+0.2}$	$0.03_{-0.07}^{+0.19}$
GW170729	$50.6_{-10.2}^{+16.6}$	$34.3_{-10.1}^{+9.1}$	$35.7_{-4.7}^{+6.5}$	$0.36_{-0.25}^{+0.21}$
GW170809	$35.2_{-6.0}^{+8.3}$	$23.8_{-5.1}^{+5.2}$	$25.0_{-1.6}^{+2.1}$	$0.07_{-0.16}^{+0.16}$
GW170814	$30.7_{-3.0}^{+5.7}$	$25.3_{-4.1}^{+2.9}$	$24.2_{-1.4}^{+1.4}$	$0.07_{-0.11}^{+0.12}$
GW170817	$1.46_{-0.10}^{+0.12}$	$1.27_{-0.09}^{+0.09}$	$1.186_{-0.001}^{+0.001}$	$0.00_{-0.01}^{+0.02}$
GW170818	$35.5_{-4.7}^{++7.5}$	$26.8_{-5.2}^{+4.3}$	$26.7_{-1.7}^{+2.1}$	$-0.09_{-0.21}^{+0.18}$
GW170823	$39.6_{-6.6}^{+10.0}$	$29.4_{-7.1}^{+6.3}$	$29.3_{-3.2}^{+4.2}$	$0.08_{-0.22}^{+0.20}$

LIGO/Virgo 2018

Testability

- LIGO/Virgo PBH

PBH tends to be spinless

Chiba \& Yokoyama 2017

Sasaki+ 2018

Event	$m_{1} / \mathrm{M}_{\odot}$	$m_{2} / \mathrm{M}_{\odot}$	$\mathcal{M} / \mathrm{M}_{\odot}$	$\chi_{\text {eff }}$
GW150914	$35.6_{-3.0}^{+4.8}$	$30.6_{-4.4}^{+3.0}$	$28.6_{-1.5}^{+1.6}$	$-0.01_{-0.13}^{+0.12}$
GW151012	$23.3_{-5.5}^{+14.0}$	$13.6_{-4.8}^{+4.1}$	$15.2_{-1.1}^{+2.0}$	$0.04_{-0.19}^{+0.28}$
GW151226	$13.7_{-3.2}^{++8.8}$	$7.7_{-2.6}^{+2.2}$	$8.9_{-0.3}^{+0.3}$	$0.18_{-0.12}^{+0.20}$
GW170104	$31.0_{-5.6}^{+7.2}$	$20.1_{-4.5}^{+4.9}$	$21.5_{-1.7}^{+2.1}$	$-0.04_{-0.20}^{+0.17}$
GW170608	$10.9_{-1.7}^{+5.3}$	$7.6_{-2.1}^{+1.3}$	$7.9_{-0.2}^{+0.2}$	$0.03_{-0.07}^{+0.19}$
GW170729	$50.6_{-10.2}^{+16.6}$	$34.3_{-10.1}^{+9.1}$	$35.7_{-4.7}^{+6.5}$	$0.36_{-0.25}^{+0.21}$
GW170809	$35.2_{-6.0}^{+8.3}$	$23.8_{-5.1}^{+5.2}$	$25.0_{-1.6}^{+2.1}$	$0.07_{-0.16}^{+0.16}$
GW170814	$30.7_{-3.0}^{+5.7}$	$25.3_{-4.1}^{+2.9}$	$24.2_{-1.1}^{+1.4}$	$0.07_{-0.11}^{+0.12}$
GW170817	$1.46_{-0.10}^{+0.12}$	$1.27_{-0.09}^{+0.09}$	$1.186_{-0.001}^{+0.001}$	$0.00_{-0.01}^{+0.02}$
GW170818	$35.5_{-4.7}^{++5.5}$	$26.8_{-5.2}^{+4.3}$	$26.7_{-1.7}^{+2.1}$	$-0.09_{-0.21}^{+0.18}$
GW170823	$39.6_{-6.6}^{+10.0}$	$29.4_{-7.1}^{+6.3}$	$29.3_{-3.2}^{+4.2}$	$0.08_{-0.22}^{+0.20}$

LIGO/Virgo 2018

Testability

large scalar ptb. \rightarrow secondary tensor ptb. (stochastic GW): $\quad \Omega_{\mathrm{GW}} h^{2} \sim 10^{-9}\left(\frac{\mathscr{P}_{\mathscr{R}}}{10^{-2}}\right)^{2}$ $k\left[\mathrm{Mpc}^{-1}\right]$

Conclusions

- interesting mass regions for PBH are hierarchical
- multi-phase inflation can realize them simultaneously
cf. dS swampland conjecture may support multi-phase inflation
- testable by GW

