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Inflation basically

An early stage of near-exponential expansion. Many
multiplications of the scale factor a, × ∼ e60.

Proposed to solve the horizon problem, the flatness problem
and also (historically) the monopole problem.

Typically driven by a scalar field φ with non-zero, almost-flat
potential V (φ), slowly rolling.

Provides, in addition, quantitative predictions for the statistics
of curvature perturbations R, the seeds of later structure
formation.

The scalar field fluctuates quantum mechanically, and, having
energy-momentum, causes perturbations in curvature.
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The primordial power spectrum

The PPS P(k) is the variance of the Fourier coefficients of
curvature perturbation: 〈RkRk′〉 = (2π)3δ(3)(k + k′)P(k).

Dimensionless: P(k) = k3P(k)/2π2.

In simplest case P(k) = A(k/k∗)
ns−1 where ns = 2η − 4ε and

ε = −Ḣ/H2 = φ̇2/(2H2).

In the simplest case: Gaussian statistics.

Leave imprint on the temperature fluctuations of the CMB:
〈a`ma∗`′m′〉 = δ``′δmm′C` where ∆T (n̂) =

∑
`m a`mY`m(n̂).

Linear relation between P(k) and C`:
C` =

∫∞
0 d log k ∆TT

` (k)2P(k)→ d = Wp.

Crucially, W depends on the cosmological parameters.
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ε = −Ḣ/H2 = φ̇2/(2H2).

In the simplest case: Gaussian statistics.

Leave imprint on the temperature fluctuations of the CMB:
〈a`ma∗`′m′〉 = δ``′δmm′C` where ∆T (n̂) =

∑
`m a`mY`m(n̂).

Linear relation between P(k) and C`:
C` =

∫∞
0 d log k ∆TT

` (k)2P(k)→ d = Wp.

Crucially, W depends on the cosmological parameters.



The primordial power spectrum

The PPS P(k) is the variance of the Fourier coefficients of
curvature perturbation: 〈RkRk′〉 = (2π)3δ(3)(k + k′)P(k).

Dimensionless: P(k) = k3P(k)/2π2.

In simplest case P(k) = A(k/k∗)
ns−1 where ns = 2η − 4ε and
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The effective field theory of inflation

Contains only the curvature perturbation R field with two, in
general, time-dependent coupling constants cs(τ) and ε(τ). ε
is the expansion parameter of the EFT.
S2 = M2

Pl

∫
d3x

∫
dτ a2(τ)ε(τ) (R′2/cs(τ)2 − (∂iR)2)

A more complicated inflationary scenario is shoehorned into
these time-dependent coupling constants.

A time-dependence of ε(τ) or cs(τ) leads to characteristic
scales, ‘features’, in 〈RkRk〉 ∝ P(k).

Fractional changes in PPS ∆P/P ∝ ∆ε/ε or u(τ) = 1/c2
s − 1.

Would like to infer ∆ε/ε(τ) or u(τ) from estimates of ∆P/P
itself estimated from data C`.
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How large features?

Compute corrections using perturbation theory.

Consider excursions from ε = ε0 or from cs = 1,
∆ε/ε(τ) ≡ (ε(τ)− ε0)/ε0 and u(τ) ≡ 1/c2

s (τ)− 1.

Split action S2 into exactly solvable part with constant ε (or
cs) and an interacting part Sint proportional to ∆ε/ε or u(τ)

S2 = ε0M
2
Pl

∫
d3x

∫
dτa2((R′)2 − (∂iR)2 + u(τ)(R′)2)

S2 =
ε0M

2
Pl

∫
d3x

∫
dτa2((R′)2 − (∂iR)2 + ∆ε/ε((R′)2)− (∂iR)2)

For ∆P/P ∼ 10%, corrections from 2nd order perturbation
theory: ∼ (0.1)2 = 1%.

For features ∆P/P ∼ 20%, error from truncation 4% so can
consider 2nd order perturbation theory, in which case error
will be below (0.2)3 ∼ 0.8%
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Intermezzo. A no-Λ agenda: Subir’s gambit

Λ is small ∼ H2
0/(8πG ). If fundamental, difficult to justify

why it should know about the expansion rate today.

Let us instead retain Λ = 0 and see what we can get away
with.

Effect on CMB (plotting D` ≡ `(`+ 1)/(2π)C`):
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Figure: Using a power-law PPS for ΩΛ = 0.67 (red line) and ΩΛ = 0
(black line) but H0 = 44 km s−1 Mpc−1, Ωb = 0.09, ΩCDM = 0.8.
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What does data suggest?

Take CMB data, C`, from Planck and find most likely P(k)
subject to roughness penalty assuming different cosmological
parameters.

Roughness penalty necessary (regularisation) as W−1 does not
exist, so no simple relation p = W−1d.
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Figure: PPS reconstructing assuming different cosmological parameters.
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Without Λ

Features in the PPS: a luxury to ΛCDM, a requirement for a
no-Λ (EdS) model.

After all, the UV physics is the most speculative: too early to
restrict to power-law form of PPS.

If unwilling to go this far: Do the acoustic peaks have an
oscillatory primordial component?

Or can just appreciate the dictionary on its own.
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Finding relations and their inverses

Compute change to two-point function
∆P ∝ ∆〈RkRk′〉 = ∆〈0|RkRk′ |0〉

Expectation values in QFT. Use Schwinger-Keldysh formalism.

Helped by Weinberg:

〈RkRk′〉 =
∑
n=0

in
∫ τn

−∞
dτn−1 · · ·

∫ 0

−∞
dτ1

〈0|[Hint(τ1), . . . , [Hint(τn−1), [Hint(τn),RkRk′ ]]]|0〉

where Hint = −Lint from Sint =
∫
dτ
∫
d3x Lint.

Fourier expand R(τ) =
∫

d3k
(2π)3 (âkRk(τ)e ik·x + â†kR∗k(τ)e−ik·x)

where Rk(τ) = iH(1 + ikτ)e−ikτ/
√

4εk3

and promote to ladder operators with
[ak, a

†
k′ ] = (2π)3δ(3)(k + k′)

Then use Wick’s theorem.



Finding relations and their inverses

Compute change to two-point function
∆P ∝ ∆〈RkRk′〉 = ∆〈0|RkRk′ |0〉
Expectation values in QFT. Use Schwinger-Keldysh formalism.

Helped by Weinberg:

〈RkRk′〉 =
∑
n=0

in
∫ τn

−∞
dτn−1 · · ·

∫ 0

−∞
dτ1

〈0|[Hint(τ1), . . . , [Hint(τn−1), [Hint(τn),RkRk′ ]]]|0〉

where Hint = −Lint from Sint =
∫
dτ
∫
d3x Lint.

Fourier expand R(τ) =
∫

d3k
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The relations and inverse

We find the dictionary: ∆P
P (k) = −k

∫ 0
−∞ dτu(τ) sin(2kτ)

inverting to u(τ) = 4
π

∫∞
0

dk
k

∆P
P (k) sin(−2kτ)

∆1P/P(k) =
1
k

∫ 0
−∞

dτ
τ2 ∆ε/ε(τ)((1− 2k2τ2) sin(2kτ)− 2kτ cos(2kτ))

inverting to

∆ε/ε(τ) = 2
π

∫∞
0

dk
k

∆1P
P (k)

(
2 sin2(kτ)

kτ − sin(2kτ)
)

Find at 2nd order that correction is the square of the 1st order
correction: ∆Prec/Prec(k) = ∆1P/P(k) + (∆1P/P(k))2

Quadratic equation! So

∆1P/P(k) = 1
2

(
−1 +

√
1 + 4 ∆Prec

Prec

)
≡ ∆Peff/Peff(k) and

we know how ∆1P/P(k) relates to cs or ε so can isolate cs or
ε (by inverse transform).
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Toy model

Model with localised feature at N0 with a fast (σ2) and slow
component (σ1) and amplitudes c1,c2:
∆ε/ε(N) = c1e

−(N−N0)2/σ2
1 + c2(N − N0)e−(N−N0)2/σ2

2 .

0 2 4 6 8
N

−0.20

−0.15

−0.10

−0.05

0.00

∆
ε/
ε

Can find the resulting change in the PPS using the dictionary.

Can also solve the Mukhanov-Sasaki equation numerically
assuming this change.
d2Rk
dN2 +

(
3− ε(N) + ε′(N)

ε(N)

)
dRk
dN +

(
k
aH

)2Rk = 0



Toy model

Model with localised feature at N0 with a fast (σ2) and slow
component (σ1) and amplitudes c1,c2:
∆ε/ε(N) = c1e

−(N−N0)2/σ2
1 + c2(N − N0)e−(N−N0)2/σ2

2 .

0 2 4 6 8
N

−0.20

−0.15

−0.10

−0.05

0.00

∆
ε/
ε

Can find the resulting change in the PPS using the dictionary.

Can also solve the Mukhanov-Sasaki equation numerically
assuming this change.
d2Rk
dN2 +

(
3− ε(N) + ε′(N)

ε(N)

)
dRk
dN +

(
k
aH

)2Rk = 0



Toy model

Model with localised feature at N0 with a fast (σ2) and slow
component (σ1) and amplitudes c1,c2:
∆ε/ε(N) = c1e

−(N−N0)2/σ2
1 + c2(N − N0)e−(N−N0)2/σ2

2 .

0 2 4 6 8
N

−0.20

−0.15

−0.10

−0.05

0.00

∆
ε/
ε

Can find the resulting change in the PPS using the dictionary.

Can also solve the Mukhanov-Sasaki equation numerically
assuming this change.
d2Rk
dN2 +

(
3− ε(N) + ε′(N)

ε(N)

)
dRk
dN +

(
k
aH

)2Rk = 0



Toy model checks
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The potential
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Figure: Scalar field potential (left) and derivative of potential (right) for
constant ε = ε0 and ε(τ) with features.



From Planck data

For ΛCDM:
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Note on degeneracy

Features can come from a combined change in cs and ε.

Not possible to invert unless feature is exclusively from one of
the EFT parameters.

However, theoretically cs should not exceed 1, hence
u(τ) ≡ 1/c2

s − 1 > 0, so it may not be possible to generate
any given PPS subject to this constraint.

Contributions to n-point functions from changes in ε and cs
do differ, so one way to disentangle.

Complicated by the fact that new (Wilson) functions appear
at higher order that may reintroduce degeneracy.
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Summary

Features: a luxury for ΛCDM. Necessary for other
cosmological models.

Computed corrections to PPS due to changes in ε and cs ,
parameters in the EFTI.

Inverted those relations to get the EFT parameters as
transforms of the desired change in the PPS.

Performed the inversion to second order in EFT parameters.

Inversion precise to ∼ 1% even when the features are ∼ 20%.

Can find simple realisations by reconstructing potential from
the EFT parameter ε.

Can reconstruct these parameters from cosmological data sets.
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Outlook: future directions

Combine constraints from CMB and LSS. Currently
considering the matter power spectrum from SDSS (DR12).

Embrace the fine-tuning.
The third-order action S3 of the curvature perturbation R
depends on cs(τ) and ε(τ).
In very non-standard cosmological models these EFT
parameters are highly constrained.
Hence the non-Gaussianity should be very specific: easy to
look for. May face that the non-Gaussianity is still too weak
for Planck.
Strictly, it is not necessary to use estimates of the PPS to get
EFT parameters.
Can go from CMB data, C`, directly to the EFT parameters
cs(τ) and ε(τ). There is a linear relation (W`k) between P(k)
and C`, and a linear relation between EFT parameters and
P(k) (Wkτ ) . So can just multiply matrices.
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for Planck.

Strictly, it is not necessary to use estimates of the PPS to get
EFT parameters.
Can go from CMB data, C`, directly to the EFT parameters
cs(τ) and ε(τ). There is a linear relation (W`k) between P(k)
and C`, and a linear relation between EFT parameters and
P(k) (Wkτ ) . So can just multiply matrices.
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Potential reconstruction

When writing ε in terms of e-folds: ε(N) = (dφ/dN)2/2

Solution: φ(N) = φ0 ±
∫ N
N0

dN ′
√

2ε(N ′).

Recall that ε(N) = −d logH/dN

Hence, H(N) = H0 exp(−
∫ N
N0

dN ′ε(N ′))

Considering the Friedmann equation H2 ≈ V /3 we have

V (N) = H2
0 exp(−2

∫ N
N0

dN ′ε(N ′))/3

Now we have (φ(N),V (N)). Can also find N = N(φ) and
then calculate V (N(φ)) = V (φ)
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