Reconstructing the EFT of Inflation from Cosmological Data based on arXiv:1904.00991

Amel Durakovic in collaboration with Paul Hunt, Subodh Patil, Subir Sarkar

Niels Bohr International Academy and Discovery Center, Niels Bohr Institute

Reconstructing the EFT of Inflation from Cosmological Data

or

Finding a *precise* dictionary between the parameters of the effective theory of inflation and their primordial power spectra

Amel Durakovic

in collaboration with Paul Hunt, Subodh Patil, Subir Sarkar

Niels Bohr International Academy and Discovery Center, Niels Bohr Institute

• An early stage of near-exponential expansion. Many multiplications of the scale factor a, $\times \sim e^{60}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- An early stage of near-exponential expansion. Many multiplications of the scale factor a, $\times \sim e^{60}$.
- Proposed to solve the horizon problem, the flatness problem and also (historically) the monopole problem.

- An early stage of near-exponential expansion. Many multiplications of the scale factor a, $\times \sim e^{60}$.
- Proposed to solve the horizon problem, the flatness problem and also (historically) the monopole problem.
- Typically driven by a scalar field ϕ with non-zero, almost-flat potential $V(\phi)$, slowly rolling.

- An early stage of near-exponential expansion. Many multiplications of the scale factor a, $\times \sim e^{60}$.
- Proposed to solve the horizon problem, the flatness problem and also (historically) the monopole problem.
- Typically driven by a scalar field ϕ with non-zero, almost-flat potential $V(\phi)$, slowly rolling.
- Provides, in addition, quantitative predictions for the statistics of curvature perturbations *R*, the seeds of later structure formation.

- An early stage of near-exponential expansion. Many multiplications of the scale factor a, $\times \sim e^{60}$.
- Proposed to solve the horizon problem, the flatness problem and also (historically) the monopole problem.
- Typically driven by a scalar field ϕ with non-zero, almost-flat potential $V(\phi)$, slowly rolling.
- Provides, in addition, quantitative predictions for the statistics of curvature perturbations *R*, the seeds of later structure formation.
- The scalar field fluctuates quantum mechanically, and, having energy-momentum, causes perturbations in curvature.

• The PPS P(k) is the variance of the Fourier coefficients of curvature perturbation: $\langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = (2\pi)^3 \delta^{(3)}(\mathbf{k} + \mathbf{k}') P(k)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The PPS P(k) is the variance of the Fourier coefficients of curvature perturbation: $\langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = (2\pi)^3 \delta^{(3)}(\mathbf{k} + \mathbf{k}') P(k)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Dimensionless: $\mathcal{P}(k) = k^3 P(k)/2\pi^2$.

- The PPS P(k) is the variance of the Fourier coefficients of curvature perturbation: $\langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = (2\pi)^3 \delta^{(3)}(\mathbf{k} + \mathbf{k}') P(k)$.
- Dimensionless: $\mathcal{P}(k) = k^3 P(k)/2\pi^2$.
- In simplest case $\mathcal{P}(k) = A(k/k_*)^{n_s-1}$ where $n_s = 2\eta 4\epsilon$ and $\epsilon = -\dot{H}/H^2 = \dot{\phi}^2/(2H^2)$.

- The PPS P(k) is the variance of the Fourier coefficients of curvature perturbation: $\langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = (2\pi)^3 \delta^{(3)}(\mathbf{k} + \mathbf{k}') P(k)$.
- Dimensionless: $\mathcal{P}(k) = k^3 P(k)/2\pi^2$.
- In simplest case $\mathcal{P}(k) = A(k/k_*)^{n_s-1}$ where $n_s = 2\eta 4\epsilon$ and $\epsilon = -\dot{H}/H^2 = \dot{\phi}^2/(2H^2)$.

In the simplest case: Gaussian statistics.

- The PPS P(k) is the variance of the Fourier coefficients of curvature perturbation: $\langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = (2\pi)^3 \delta^{(3)}(\mathbf{k} + \mathbf{k}') P(k)$.
- Dimensionless: $\mathcal{P}(k) = k^3 P(k)/2\pi^2$.
- In simplest case $\mathcal{P}(k) = A(k/k_*)^{n_s-1}$ where $n_s = 2\eta 4\epsilon$ and $\epsilon = -\dot{H}/H^2 = \dot{\phi}^2/(2H^2)$.
- In the simplest case: Gaussian statistics.
- Leave imprint on the temperature fluctuations of the CMB: $\langle a_{\ell m} a^*_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{mm'} C_{\ell}$ where $\Delta T(\hat{\mathbf{n}}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})$.

(日) (同) (三) (三) (三) (○) (○)

- The PPS P(k) is the variance of the Fourier coefficients of curvature perturbation: $\langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = (2\pi)^3 \delta^{(3)}(\mathbf{k} + \mathbf{k}') P(k)$.
- Dimensionless: $\mathcal{P}(k) = k^3 P(k)/2\pi^2$.
- In simplest case $\mathcal{P}(k) = A(k/k_*)^{n_s-1}$ where $n_s = 2\eta 4\epsilon$ and $\epsilon = -\dot{H}/H^2 = \dot{\phi}^2/(2H^2)$.
- In the simplest case: Gaussian statistics.
- Leave imprint on the temperature fluctuations of the CMB: $\langle a_{\ell m} a^*_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{mm'} C_{\ell}$ where $\Delta T(\hat{\mathbf{n}}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})$.

(日) (同) (三) (三) (三) (○) (○)

• Linear relation between $\mathcal{P}(k)$ and C_{ℓ} : $C_{\ell} = \int_{0}^{\infty} d \log k \, \Delta_{\ell}^{TT}(k)^{2} \mathcal{P}(k) \rightarrow \mathbf{d} = \mathbf{W} \mathbf{p}.$

- The PPS P(k) is the variance of the Fourier coefficients of curvature perturbation: $\langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = (2\pi)^3 \delta^{(3)}(\mathbf{k} + \mathbf{k}') P(k)$.
- Dimensionless: $\mathcal{P}(k) = k^3 P(k)/2\pi^2$.
- In simplest case $\mathcal{P}(k) = A(k/k_*)^{n_s-1}$ where $n_s = 2\eta 4\epsilon$ and $\epsilon = -\dot{H}/H^2 = \dot{\phi}^2/(2H^2)$.
- In the simplest case: Gaussian statistics.
- Leave imprint on the temperature fluctuations of the CMB: $\langle a_{\ell m} a^*_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{mm'} C_{\ell}$ where $\Delta T(\hat{\mathbf{n}}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})$.

(日) (同) (三) (三) (三) (○) (○)

- Linear relation between $\mathcal{P}(k)$ and C_{ℓ} : $C_{\ell} = \int_{0}^{\infty} d \log k \, \Delta_{\ell}^{TT}(k)^{2} \mathcal{P}(k) \rightarrow \mathbf{d} = \mathbf{W} \mathbf{p}.$
- Crucially, W depends on the cosmological parameters.

• Contains only the curvature perturbation \mathcal{R} field with two, in general, time-dependent coupling constants $c_s(\tau)$ and $\epsilon(\tau)$. ϵ is the expansion parameter of the EFT. $S_2 = M_{\rm Pl}^2 \int d^3x \int d\tau \ a^2(\tau) \epsilon(\tau) \left(\mathcal{R}'^2 / c_s(\tau)^2 - (\partial_i \mathcal{R})^2 \right)$

- Contains only the curvature perturbation \mathcal{R} field with two, in general, time-dependent coupling constants $c_s(\tau)$ and $\epsilon(\tau)$. ϵ is the expansion parameter of the EFT. $S_2 = M_{\rm Pl}^2 \int d^3x \int d\tau \ a^2(\tau) \epsilon(\tau) \left(\mathcal{R}'^2 / c_s(\tau)^2 - (\partial_i \mathcal{R})^2 \right)$
- A more complicated inflationary scenario is *shoehorned* into these time-dependent coupling constants.

(日) (同) (三) (三) (三) (○) (○)

- Contains only the curvature perturbation \mathcal{R} field with two, in general, time-dependent coupling constants $c_s(\tau)$ and $\epsilon(\tau)$. ϵ is the expansion parameter of the EFT. $S_2 = M_{\text{Pl}}^2 \int d^3x \int d\tau a^2(\tau) \epsilon(\tau) (\mathcal{R}'^2/c_s(\tau)^2 - (\partial_i \mathcal{R})^2)$
- A more complicated inflationary scenario is *shoehorned* into these time-dependent coupling constants.
- A time-dependence of $\epsilon(\tau)$ or $c_s(\tau)$ leads to characteristic scales, 'features', in $\langle \mathcal{R}_k \mathcal{R}_k \rangle \propto \mathcal{P}(k)$.

- Contains only the curvature perturbation \mathcal{R} field with two, in general, time-dependent coupling constants $c_s(\tau)$ and $\epsilon(\tau)$. ϵ is the expansion parameter of the EFT. $S_2 = M_{\text{Pl}}^2 \int d^3x \int d\tau a^2(\tau) \epsilon(\tau) (\mathcal{R}'^2/c_s(\tau)^2 - (\partial_i \mathcal{R})^2)$
- A more complicated inflationary scenario is *shoehorned* into these time-dependent coupling constants.
- A time-dependence of $\epsilon(\tau)$ or $c_s(\tau)$ leads to characteristic scales, 'features', in $\langle \mathcal{R}_k \mathcal{R}_k \rangle \propto \mathcal{P}(k)$.
- Fractional changes in PPS $\Delta P/P \propto \Delta \epsilon/\epsilon$ or $u(\tau) = 1/c_s^2 1$.

(日) (同) (三) (三) (三) (○) (○)

- Contains only the curvature perturbation \mathcal{R} field with two, in general, time-dependent coupling constants $c_s(\tau)$ and $\epsilon(\tau)$. ϵ is the expansion parameter of the EFT. $S_2 = M_{\text{Pl}}^2 \int d^3x \int d\tau a^2(\tau) \epsilon(\tau) \left(\mathcal{R}'^2 / c_s(\tau)^2 - (\partial_i \mathcal{R})^2 \right)$
- A more complicated inflationary scenario is *shoehorned* into these time-dependent coupling constants.
- A time-dependence of ε(τ) or c_s(τ) leads to characteristic scales, 'features', in ⟨R_kR_k⟩ ∝ P(k).
- Fractional changes in PPS $\Delta P/P \propto \Delta \epsilon/\epsilon$ or $u(\tau) = 1/c_s^2 1$.
- Would like to infer $\Delta \epsilon / \epsilon(\tau)$ or $u(\tau)$ from estimates of $\Delta \mathcal{P} / \mathcal{P}$ itself estimated from data C_{ℓ} .

(日) (同) (三) (三) (三) (○) (○)

• Compute corrections using perturbation theory.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Compute corrections using perturbation theory.
- Consider excursions from $\epsilon = \epsilon_0$ or from $c_s = 1$, $\Delta \epsilon / \epsilon(\tau) \equiv (\epsilon(\tau) - \epsilon_0) / \epsilon_0$ and $u(\tau) \equiv 1/c_s^2(\tau) - 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Compute corrections using perturbation theory.
- Consider excursions from $\epsilon = \epsilon_0$ or from $c_s = 1$, $\Delta \epsilon / \epsilon(\tau) \equiv (\epsilon(\tau) - \epsilon_0) / \epsilon_0$ and $u(\tau) \equiv 1 / c_s^2(\tau) - 1$.
- Split action S_2 into exactly solvable part with constant ϵ (or c_s) and an interacting part S_{int} proportional to $\Delta \epsilon / \epsilon$ or $u(\tau)$

- Compute corrections using perturbation theory.
- Consider excursions from $\epsilon = \epsilon_0$ or from $c_s = 1$, $\Delta \epsilon / \epsilon(\tau) \equiv (\epsilon(\tau) - \epsilon_0) / \epsilon_0$ and $u(\tau) \equiv 1 / c_s^2(\tau) - 1$.
- Split action S_2 into exactly solvable part with constant ϵ (or c_s) and an interacting part S_{int} proportional to $\Delta \epsilon / \epsilon$ or $u(\tau)$

• $S_2 = \epsilon_0 M_{\text{Pl}}^2 \int \mathrm{d}^3 x \int \mathrm{d}\tau a^2 ((\mathcal{R}')^2 - (\partial_i \mathcal{R})^2 + u(\tau)(\mathcal{R}')^2)$

- Compute corrections using perturbation theory.
- Consider excursions from $\epsilon = \epsilon_0$ or from $c_s = 1$, $\Delta \epsilon / \epsilon(\tau) \equiv (\epsilon(\tau) - \epsilon_0) / \epsilon_0$ and $u(\tau) \equiv 1 / c_s^2(\tau) - 1$.
- Split action S_2 into exactly solvable part with constant ϵ (or c_s) and an interacting part S_{int} proportional to $\Delta \epsilon / \epsilon$ or $u(\tau)$
- $S_2 = \epsilon_0 M_{\text{Pl}}^2 \int \mathrm{d}^3 x \int \mathrm{d}\tau a^2 ((\mathcal{R}')^2 (\partial_i \mathcal{R})^2 + u(\tau)(\mathcal{R}')^2)$

• $S_2 = \epsilon_0 M_{\text{Pl}}^2 \int \mathrm{d}^3 x \int \mathrm{d}\tau a^2 ((\mathcal{R}')^2 - (\partial_i \mathcal{R})^2 + \Delta \epsilon / \epsilon ((\mathcal{R}')^2) - (\partial_i \mathcal{R})^2)$

- Compute corrections using perturbation theory.
- Consider excursions from $\epsilon = \epsilon_0$ or from $c_s = 1$, $\Delta \epsilon / \epsilon(\tau) \equiv (\epsilon(\tau) - \epsilon_0) / \epsilon_0$ and $u(\tau) \equiv 1 / c_s^2(\tau) - 1$.
- Split action S_2 into exactly solvable part with constant ϵ (or c_s) and an interacting part S_{int} proportional to $\Delta \epsilon / \epsilon$ or $u(\tau)$
- $S_2 = \epsilon_0 M_{\text{Pl}}^2 \int \mathrm{d}^3 x \int \mathrm{d}\tau a^2 ((\mathcal{R}')^2 (\partial_i \mathcal{R})^2 + u(\tau)(\mathcal{R}')^2)$
- $S_2 = \epsilon_0 M_{\text{Pl}}^2 \int \mathrm{d}^3 x \int \mathrm{d}\tau a^2 ((\mathcal{R}')^2 (\partial_i \mathcal{R})^2 + \Delta \epsilon / \epsilon ((\mathcal{R}')^2) (\partial_i \mathcal{R})^2)$
- For $\Delta \mathcal{P}/\mathcal{P} \sim 10\%$, corrections from 2nd order perturbation theory: $\sim (0.1)^2 = 1\%$.

- Compute corrections using perturbation theory.
- Consider excursions from $\epsilon = \epsilon_0$ or from $c_s = 1$, $\Delta \epsilon / \epsilon(\tau) \equiv (\epsilon(\tau) - \epsilon_0) / \epsilon_0$ and $u(\tau) \equiv 1 / c_s^2(\tau) - 1$.
- Split action S_2 into exactly solvable part with constant ϵ (or c_s) and an interacting part S_{int} proportional to $\Delta \epsilon / \epsilon$ or $u(\tau)$
- $S_2 = \epsilon_0 M_{\text{Pl}}^2 \int \mathrm{d}^3 x \int \mathrm{d}\tau a^2 ((\mathcal{R}')^2 (\partial_i \mathcal{R})^2 + u(\tau)(\mathcal{R}')^2)$
- $S_2 = \epsilon_0 M_{\text{Pl}}^2 \int \mathrm{d}^3 x \int \mathrm{d}\tau a^2 ((\mathcal{R}')^2 (\partial_i \mathcal{R})^2 + \Delta \epsilon / \epsilon ((\mathcal{R}')^2) (\partial_i \mathcal{R})^2)$
- For $\Delta P/P \sim 10\%$, corrections from 2nd order perturbation theory: $\sim (0.1)^2 = 1\%$.
- For features $\Delta \mathcal{P}/\mathcal{P} \sim 20\%$, error from truncation 4% so can consider 2nd order perturbation theory, in which case error will be below $(0.2)^3 \sim 0.8\%$

Intermezzo. A no- Λ agenda: Subir's gambit

• Λ is small $\sim H_0^2/(8\pi G)$. If fundamental, difficult to justify why it should know about the expansion rate *today*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Intermezzo. A no- Λ agenda: Subir's gambit

- A is small $\sim H_0^2/(8\pi G)$. If fundamental, difficult to justify why it should know about the expansion rate *today*.
- \blacksquare Let us instead retain $\Lambda=0$ and see what we can get away with.

Intermezzo. A no- Λ agenda: Subir's gambit

- A is small $\sim H_0^2/(8\pi G)$. If fundamental, difficult to justify why it should know about the expansion rate *today*.
- Let us instead retain Λ = 0 and see what we can get away with.
- Effect on CMB (plotting $D_{\ell} \equiv \ell(\ell+1)/(2\pi)C_{\ell})$:

Figure: Using a power-law PPS for $\Omega_{\Lambda} = 0.67$ (red line) and $\Omega_{\Lambda} = 0$ (black line) but $H_0 = 44 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$, $\Omega_b = 0.09$, $\Omega_{\rm CDM} = 0.8$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

What does data suggest?

• Take CMB data, C_{ℓ} , from Planck and find most likely $\mathcal{P}(k)$ subject to roughness penalty assuming different cosmological parameters.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What does data suggest?

- Take CMB data, C_{ℓ} , from Planck and find most likely $\mathcal{P}(k)$ subject to roughness penalty assuming different cosmological parameters.
- Roughness penalty necessary (regularisation) as W⁻¹ does not exist, so no simple relation p = W⁻¹d.

Figure: PPS reconstructing assuming different cosmological parameters.

Features in the PPS: a *luxury* to ΛCDM, a *requirement* for a no-Λ (EdS) model.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Features in the PPS: a *luxury* to ΛCDM, a *requirement* for a no-Λ (EdS) model.
- After all, the UV physics is the most speculative: too early to restrict to power-law form of PPS.

- Features in the PPS: a *luxury* to ΛCDM, a *requirement* for a no-Λ (EdS) model.
- After all, the UV physics is the most speculative: too early to restrict to power-law form of PPS.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If unwilling to go this far: Do the acoustic peaks have an oscillatory primordial component?

- Features in the PPS: a *luxury* to ΛCDM, a *requirement* for a no-Λ (EdS) model.
- After all, the UV physics is the most speculative: too early to restrict to power-law form of PPS.

- If unwilling to go this far: Do the acoustic peaks have an oscillatory primordial component?
- Or can just appreciate the dictionary on its own.

Finding relations and their inverses

• Compute change to two-point function $\Delta \mathcal{P} \propto \Delta \langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = \Delta \langle 0 | \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} | 0 \rangle$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
- Compute change to two-point function $\Delta \mathcal{P} \propto \Delta \langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = \Delta \langle 0 | \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} | 0 \rangle$
- Expectation values in QFT. Use Schwinger-Keldysh formalism.

- Compute change to two-point function $\Delta \mathcal{P} \propto \Delta \langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = \Delta \langle 0 | \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} | 0 \rangle$
- Expectation values in QFT. Use Schwinger-Keldysh formalism.Helped by Weinberg:

$$\begin{split} \langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle &= \sum_{n=0} i^n \int_{-\infty}^{\tau_n} \mathrm{d}\tau_{n-1} \cdots \int_{-\infty}^{0} \mathrm{d}\tau_1 \\ \langle 0 | [\mathcal{H}_{\mathrm{int}}(\tau_1), \dots, [\mathcal{H}_{\mathrm{int}}(\tau_{n-1}), [\mathcal{H}_{\mathrm{int}}(\tau_n), \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'}]]] | 0 \rangle \\ \end{split}$$
where $\mathcal{H}_{\mathrm{int}} = -\mathcal{L}_{\mathrm{int}}$ from $S_{\mathrm{int}} = \int \mathrm{d}\tau \int \mathrm{d}^3 x \, \mathcal{L}_{\mathrm{int}}.$

- Compute change to two-point function $\Delta \mathcal{P} \propto \Delta \langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = \Delta \langle 0 | \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} | 0 \rangle$
- Expectation values in QFT. Use Schwinger-Keldysh formalism.Helped by Weinberg:

$$\begin{split} \langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle &= \sum_{n=0} i^n \int_{-\infty}^{\tau_n} \mathrm{d}\tau_{n-1} \cdots \int_{-\infty}^{0} \mathrm{d}\tau_1 \\ \langle 0 | [\mathcal{H}_{\mathrm{int}}(\tau_1), \dots, [\mathcal{H}_{\mathrm{int}}(\tau_{n-1}), [\mathcal{H}_{\mathrm{int}}(\tau_n), \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'}]]] | 0 \rangle \\ \end{split}$$
where $\mathcal{H}_{\mathrm{int}} = -\mathcal{L}_{\mathrm{int}}$ from $S_{\mathrm{int}} = \int \mathrm{d}\tau \int \mathrm{d}^3 x \, \mathcal{L}_{\mathrm{int}}.$

- Compute change to two-point function $\Delta \mathcal{P} \propto \Delta \langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = \Delta \langle 0 | \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} | 0 \rangle$
- Expectation values in QFT. Use Schwinger-Keldysh formalism.

Helped by Weinberg:

$$\langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = \sum_{n=0} i^n \int_{-\infty}^{\tau_n} \mathrm{d}\tau_{n-1} \cdots \int_{-\infty}^{0} \mathrm{d}\tau_1$$

$$\langle 0 | [\mathcal{H}_{\mathrm{int}}(\tau_1), \dots, [\mathcal{H}_{\mathrm{int}}(\tau_{n-1}), [\mathcal{H}_{\mathrm{int}}(\tau_n), \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'}]]] | 0 \rangle$$
where $\mathcal{H}_{\mathrm{int}} = -\mathcal{L}_{\mathrm{int}}$ from $S_{\mathrm{int}} = \int \mathrm{d}\tau \int \mathrm{d}^3 x \, \mathcal{L}_{\mathrm{int}}.$
Fourier expand $\mathcal{R}(\tau) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} (\hat{a}_{\mathbf{k}} \mathcal{R}_k(\tau) e^{i\mathbf{k}\cdot\mathbf{x}} + \hat{a}_{\mathbf{k}}^{\dagger} \mathcal{R}_k^*(\tau) e^{-i\mathbf{k}\cdot\mathbf{x}})$

- Compute change to two-point function $\Delta \mathcal{P} \propto \Delta \langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = \Delta \langle 0 | \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} | 0 \rangle$
- Expectation values in QFT. Use Schwinger-Keldysh formalism.

Helped by Weinberg:

$$\langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = \sum_{n=0} i^n \int_{-\infty}^{\tau_n} \mathrm{d}\tau_{n-1} \cdots \int_{-\infty}^{0} \mathrm{d}\tau_1$$

$$\langle 0 | [H_{\mathrm{int}}(\tau_1), \dots, [H_{\mathrm{int}}(\tau_{n-1}), [H_{\mathrm{int}}(\tau_n), \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'}]]] | 0 \rangle$$
where $\mathcal{H}_{\mathrm{int}} = -\mathcal{L}_{\mathrm{int}}$ from $S_{\mathrm{int}} = \int \mathrm{d}\tau \int \mathrm{d}^3 x \, \mathcal{L}_{\mathrm{int}}.$
Fourier expand $\mathcal{R}(\tau) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} (\hat{a}_{\mathbf{k}} \mathcal{R}_k(\tau) e^{i\mathbf{k}\cdot\mathbf{x}} + \hat{a}_{\mathbf{k}}^{\dagger} \mathcal{R}_k^*(\tau) e^{-i\mathbf{k}\cdot\mathbf{x}})$
where $\mathcal{R}_k(\tau) = iH(1 + ik\tau) e^{-ik\tau} / \sqrt{4\epsilon k^3}$

- Compute change to two-point function $\Delta \mathcal{P} \propto \Delta \langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = \Delta \langle 0 | \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} | 0 \rangle$
- Expectation values in QFT. Use Schwinger-Keldysh formalism.

Helped by Weinberg:

$$\langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = \sum_{n=0} i^n \int_{-\infty}^{\tau_n} \mathrm{d}\tau_{n-1} \cdots \int_{-\infty}^{0} \mathrm{d}\tau_1 \\ \langle 0 | [\mathcal{H}_{\mathrm{int}}(\tau_1), \dots, [\mathcal{H}_{\mathrm{int}}(\tau_{n-1}), [\mathcal{H}_{\mathrm{int}}(\tau_n), \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'}]]] | 0 \rangle$$

where $\mathcal{H}_{int} = -\mathcal{L}_{int}$ from $S_{int} = \int d\tau \int d^3x \, \mathcal{L}_{int}$.

- Fourier expand $\mathcal{R}(\tau) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} (\hat{a}_{\mathbf{k}} \mathcal{R}_k(\tau) e^{i\mathbf{k}\cdot\mathbf{x}} + \hat{a}_{\mathbf{k}}^{\dagger} \mathcal{R}_k^*(\tau) e^{-i\mathbf{k}\cdot\mathbf{x}})$
- where $\mathcal{R}_k(au) = iH(1+ik au)e^{-ik au}/\sqrt{4\epsilon k^3}$
- and promote to ladder operators with $[a_{\mathbf{k}}, a_{\mathbf{k}'}^{\dagger}] = (2\pi)^3 \delta^{(3)}(\mathbf{k} + \mathbf{k}')$

- Compute change to two-point function $\Delta \mathcal{P} \propto \Delta \langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = \Delta \langle 0 | \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} | 0 \rangle$
- Expectation values in QFT. Use Schwinger-Keldysh formalism.

Helped by Weinberg:

$$\langle \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'} \rangle = \sum_{n=0} i^n \int_{-\infty}^{\tau_n} \mathrm{d}\tau_{n-1} \cdots \int_{-\infty}^{0} \mathrm{d}\tau_1 \\ \langle 0 | [H_{\mathrm{int}}(\tau_1), \dots, [H_{\mathrm{int}}(\tau_{n-1}), [H_{\mathrm{int}}(\tau_n), \mathcal{R}_{\mathbf{k}} \mathcal{R}_{\mathbf{k}'}]]] | 0 \rangle$$

where $\mathcal{H}_{int} = -\mathcal{L}_{int}$ from $S_{int} = \int d\tau \int d^3x \, \mathcal{L}_{int}$.

- Fourier expand $\mathcal{R}(\tau) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} (\hat{a}_{\mathbf{k}} \mathcal{R}_k(\tau) e^{i\mathbf{k}\cdot\mathbf{x}} + \hat{a}^{\dagger}_{\mathbf{k}} \mathcal{R}^*_k(\tau) e^{-i\mathbf{k}\cdot\mathbf{x}})$
- where $\mathcal{R}_k(au) = iH(1+ik au)e^{-ik au}/\sqrt{4\epsilon k^3}$
- and promote to ladder operators with $[a_{\mathbf{k}}, a_{\mathbf{k}'}^{\dagger}] = (2\pi)^3 \delta^{(3)}(\mathbf{k} + \mathbf{k}')$
- Then use Wick's theorem.

• We find the dictionary: $\frac{\Delta \mathcal{P}}{\mathcal{P}}(k) = -k \int_{-\infty}^{0} d\tau u(\tau) \sin(2k\tau)$ inverting to $u(\tau) = \frac{4}{\pi} \int_{0}^{\infty} \frac{dk}{k} \frac{\Delta \mathcal{P}}{\mathcal{P}}(k) \sin(-2k\tau)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- We find the dictionary: $\frac{\Delta \mathcal{P}}{\mathcal{P}}(k) = -k \int_{-\infty}^{0} d\tau u(\tau) \sin(2k\tau)$ inverting to $u(\tau) = \frac{4}{\pi} \int_{0}^{\infty} \frac{dk}{k} \frac{\Delta \mathcal{P}}{\mathcal{P}}(k) \sin(-2k\tau)$

- We find the dictionary: $\frac{\Delta \mathcal{P}}{\mathcal{P}}(k) = -k \int_{-\infty}^{0} d\tau u(\tau) \sin(2k\tau)$ inverting to $u(\tau) = \frac{4}{\pi} \int_{0}^{\infty} \frac{dk}{k} \frac{\Delta \mathcal{P}}{\mathcal{P}}(k) \sin(-2k\tau)$
- $\Delta_1 \mathcal{P}/\mathcal{P}(k) =$ $\frac{1}{k} \int_{-\infty}^0 \frac{d\tau}{\tau^2} \Delta \epsilon / \epsilon(\tau) ((1 - 2k^2 \tau^2) \sin(2k\tau) - 2k\tau \cos(2k\tau))$ inverting to $\Delta \epsilon / \epsilon(\tau) = \frac{2}{\pi} \int_0^\infty \frac{dk}{k} \frac{\Delta_1 \mathcal{P}}{\mathcal{P}}(k) \left(\frac{2\sin^2(k\tau)}{k\tau} - \sin(2k\tau) \right)$
- Find at 2nd order that correction is the square of the 1st order correction: ΔP_{rec}/P_{rec}(k) = Δ₁P/P(k) + (Δ₁P/P(k))²

- We find the dictionary: $\frac{\Delta \mathcal{P}}{\mathcal{P}}(k) = -k \int_{-\infty}^{0} d\tau u(\tau) \sin(2k\tau)$ inverting to $u(\tau) = \frac{4}{\pi} \int_{0}^{\infty} \frac{dk}{k} \frac{\Delta \mathcal{P}}{\mathcal{P}}(k) \sin(-2k\tau)$
- $\Delta_1 \mathcal{P}/\mathcal{P}(k) =$ $\frac{1}{k} \int_{-\infty}^0 \frac{d\tau}{\tau^2} \Delta \epsilon/\epsilon(\tau) ((1 - 2k^2\tau^2)\sin(2k\tau) - 2k\tau\cos(2k\tau))$ inverting to $\Delta \epsilon/\epsilon(\tau) = \frac{2}{\pi} \int_0^\infty \frac{dk}{k} \frac{\Delta_1 \mathcal{P}}{\mathcal{P}}(k) \left(\frac{2\sin^2(k\tau)}{k\tau} - \sin(2k\tau)\right)$
- Find at 2nd order that correction is the square of the 1st order correction: ΔP_{rec}/P_{rec}(k) = Δ₁P/P(k) + (Δ₁P/P(k))²
- Quadratic equation! So $\Delta_1 \mathcal{P}/\mathcal{P}(k) = \frac{1}{2} \left(-1 + \sqrt{1 + 4 \frac{\Delta \mathcal{P}_{rec}}{\mathcal{P}_{rec}}} \right) \equiv \Delta \mathcal{P}_{eff}/\mathcal{P}_{eff}(k) \text{ and}$ we know how $\Delta_1 \mathcal{P}/\mathcal{P}(k)$ relates to c_s or ϵ so can isolate c_s or ϵ (by inverse transform).

Toy model

Model with localised feature at N_0 with a fast (σ_2) and slow component (σ_1) and amplitudes c_1, c_2 : $\Delta \epsilon / \epsilon(N) = c_1 e^{-(N-N_0)^2/\sigma_1^2} + c_2(N-N_0) e^{-(N-N_0)^2/\sigma_2^2}.$

Toy model

 Model with localised feature at N₀ with a fast (σ₂) and slow component (σ₁) and amplitudes c₁,c₂: Δε/ε(N) = c₁e^{-(N-N₀)²/σ₁²} + c₂(N − N₀)e^{-(N-N₀)²/σ₂²}.

• Can find the resulting change in the PPS using the dictionary.

Toy model

Model with localised feature at N_0 with a fast (σ_2) and slow component (σ_1) and amplitudes c_1, c_2 : $\Delta \epsilon / \epsilon(N) = c_1 e^{-(N-N_0)^2/\sigma_1^2} + c_2(N-N_0) e^{-(N-N_0)^2/\sigma_2^2}$.

 Can find the resulting change in the PPS using the dictionary.
 Can also solve the Mukhanov-Sasaki equation numerically assuming this change. ^{d² R_k}/_{dN²} + (3 - ε(N) + ε'(N))/(ε(N)) dR_k + (k/aH)² R_k = 0
 ⁽ⁿ⁾ + ε(N) + ε(N)/(ε(N)) dR_k + (k/aH)² R_k = 0
 ⁽ⁿ⁾ + ε(N)/(ε(N)) dR_k + (k/aH)² R_k = 0
 ⁽ⁿ⁾ + ε(N)/(ε(N)) dR_k + (k/aH)² R_k = 0
 ⁽ⁿ⁾ + ε(N)/(ε(N)) dR_k + (k/aH)² R_k = 0
 ⁽ⁿ⁾ + ε(N)/(ε(N)) dR_k + (k/aH)² R_k = 0
 ⁽ⁿ⁾ + ε(N)/(ε(N)) dR_k + (k/aH)² R_k = 0
 ⁽ⁿ⁾ + ε(N)/(ε(N)) dR_k + (k/aH)² R_k = 0
 ⁽ⁿ⁾ + ε(N)/(ε(N)) dR_k + (k/aH)² + ε(N)/(ε(N)) dR_k + (k/a)/(ε(N)) dR_k + (k

Toy model checks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The potential

Figure: Scalar field potential (left) and derivative of potential (right) for constant $\epsilon = \epsilon_0$ and $\epsilon(\tau)$ with features.

From Planck data

For ΛCDM:

・ロト ・回ト ・ヨト ・ヨト

æ

From Planck data

■ For ∧CDM:

For EdS:

• Features can come from a combined change in c_s and ϵ .

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- Features can come from a combined change in c_s and ϵ .
- Not possible to invert unless feature is exclusively from one of the EFT parameters.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Features can come from a combined change in c_s and ϵ .
- Not possible to invert unless feature is exclusively from one of the EFT parameters.
- However, theoretically c_s should not exceed 1, hence $u(\tau) \equiv 1/c_s^2 1 > 0$, so it may not be possible to generate any given PPS subject to this constraint.

- Features can come from a combined change in c_s and ϵ .
- Not possible to invert unless feature is exclusively from one of the EFT parameters.
- However, theoretically c_s should not exceed 1, hence $u(\tau) \equiv 1/c_s^2 1 > 0$, so it may not be possible to generate any given PPS subject to this constraint.
- Contributions to *n*-point functions from changes in
 e and *c*_s do differ, so one way to disentangle.

- Features can come from a combined change in c_s and ϵ .
- Not possible to invert unless feature is exclusively from one of the EFT parameters.
- However, theoretically c_s should not exceed 1, hence $u(\tau) \equiv 1/c_s^2 1 > 0$, so it may not be possible to generate any given PPS subject to this constraint.
- Contributions to *n*-point functions from changes in
 e and *c*_s do differ, so one way to disentangle.
- Complicated by the fact that new (Wilson) functions appear at higher order that may reintroduce degeneracy.

 Features: a luxury for ACDM. Necessary for other cosmological models.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Features: a luxury for ACDM. Necessary for other cosmological models.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Features: a luxury for ACDM. Necessary for other cosmological models.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Inverted those relations to get the EFT parameters as transforms of the desired change in the PPS.

- Features: a luxury for ACDM. Necessary for other cosmological models.
- Inverted those relations to get the EFT parameters as transforms of the desired change in the PPS.
- Performed the inversion to second order in EFT parameters.

- Features: a luxury for ACDM. Necessary for other cosmological models.
- Inverted those relations to get the EFT parameters as transforms of the desired change in the PPS.
- Performed the inversion to second order in EFT parameters.
- \blacksquare Inversion precise to $\sim 1\%$ even when the features are $\sim 20\%.$

- Features: a luxury for ACDM. Necessary for other cosmological models.
- Inverted those relations to get the EFT parameters as transforms of the desired change in the PPS.
- Performed the inversion to second order in EFT parameters.
- Inversion precise to $\sim 1\%$ even when the features are $\sim 20\%$.
- Can find simple realisations by reconstructing potential from the EFT parameter *ε*.

- Features: a luxury for ACDM. Necessary for other cosmological models.
- Inverted those relations to get the EFT parameters as transforms of the desired change in the PPS.
- Performed the inversion to second order in EFT parameters.
- \blacksquare Inversion precise to $\sim 1\%$ even when the features are $\sim 20\%.$
- Can find simple realisations by reconstructing potential from the EFT parameter *ε*.
- Can reconstruct these parameters from cosmological data sets.

 Combine constraints from CMB and LSS. Currently considering the matter power spectrum from SDSS (DR12).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Combine constraints from CMB and LSS. Currently considering the matter power spectrum from SDSS (DR12).
 Embrace the fine-tuning.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Combine constraints from CMB and LSS. Currently considering the matter power spectrum from SDSS (DR12).
- Embrace the fine-tuning.
- The third-order action S₃ of the curvature perturbation R depends on c_s(τ) and ε(τ).

- Combine constraints from CMB and LSS. Currently considering the matter power spectrum from SDSS (DR12).
- Embrace the fine-tuning.
- The third-order action S₃ of the curvature perturbation R depends on c_s(τ) and ε(τ).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In very non-standard cosmological models these EFT parameters are highly constrained.

- Combine constraints from CMB and LSS. Currently considering the matter power spectrum from SDSS (DR12).
- Embrace the fine-tuning.
- The third-order action S₃ of the curvature perturbation R depends on c_s(τ) and ε(τ).
- In very non-standard cosmological models these EFT parameters are highly constrained.
- Hence the non-Gaussianity should be very specific: easy to look for. May face that the non-Gaussianity is still too weak for Planck.

- Combine constraints from CMB and LSS. Currently considering the matter power spectrum from SDSS (DR12).
- Embrace the fine-tuning.
- The third-order action S₃ of the curvature perturbation R depends on c_s(τ) and ε(τ).
- In very non-standard cosmological models these EFT parameters are highly constrained.
- Hence the non-Gaussianity should be very specific: easy to look for. May face that the non-Gaussianity is still too weak for Planck.
- Strictly, it is not necessary to use estimates of the PPS to get EFT parameters.
Outlook: future directions

- Combine constraints from CMB and LSS. Currently considering the matter power spectrum from SDSS (DR12).
- Embrace the fine-tuning.
- The third-order action S₃ of the curvature perturbation R depends on c_s(τ) and ε(τ).
- In very non-standard cosmological models these EFT parameters are highly constrained.
- Hence the non-Gaussianity should be very specific: easy to look for. May face that the non-Gaussianity is still too weak for Planck.
- Strictly, it is not necessary to use estimates of the PPS to get EFT parameters.
- Can go from CMB data, C_{ℓ} , directly to the EFT parameters $c_s(\tau)$ and $\epsilon(\tau)$. There is a linear relation ($\mathbf{W}_{\ell k}$) between $\mathcal{P}(k)$ and C_{ℓ} , and a linear relation between EFT parameters and $\mathcal{P}(k)$ ($\mathbf{W}_{k\tau}$). So can just multiply matrices.

< ロ > < 個 > < 目 > < 目 > 目 の < @</p>

• When writing ϵ in terms of *e*-folds: $\epsilon(N) = (d\phi/dN)^2/2$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

When writing ε in terms of e-folds: ε(N) = (dφ/dN)²/2
Solution: φ(N) = φ₀ ± ∫^N_{N₀} dN' √2ε(N').

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• When writing ϵ in terms of *e*-folds: $\epsilon(N) = (d\phi/dN)^2/2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Solution: $\phi(N) = \phi_0 \pm \int_{N_0}^N \mathrm{d}N' \sqrt{2\epsilon(N')}$.
- Recall that $\epsilon(N) = -d \log H/dN$

• When writing ϵ in terms of *e*-folds: $\epsilon(N) = (d\phi/dN)^2/2$

- Solution: $\phi(N) = \phi_0 \pm \int_{N_0}^N \mathrm{d}N' \sqrt{2\epsilon(N')}$.
- Recall that $\epsilon(N) = -d \log H/dN$
- Hence, $H(N) = H_0 \exp(-\int_{N_0}^N \mathrm{d}N' \epsilon(N'))$

- When writing ϵ in terms of *e*-folds: $\epsilon(N) = (d\phi/dN)^2/2$
- Solution: $\phi(N) = \phi_0 \pm \int_{N_0}^N \mathrm{d}N' \sqrt{2\epsilon(N')}$.
- Recall that $\epsilon(N) = -d \log H/dN$
- Hence, $H(N) = H_0 \exp(-\int_{N_0}^N \mathrm{d}N' \epsilon(N'))$
- Considering the Friedmann equation $H^2 \approx V/3$ we have $V(N) = H_0^2 \exp(-2\int_{N_0}^N \mathrm{d}N'\epsilon(N'))/3$

- When writing ϵ in terms of *e*-folds: $\epsilon(N) = (d\phi/dN)^2/2$
- Solution: $\phi(N) = \phi_0 \pm \int_{N_0}^N \mathrm{d}N' \sqrt{2\epsilon(N')}$.
- Recall that $\epsilon(N) = -d \log H/dN$
- Hence, $H(N) = H_0 \exp(-\int_{N_0}^N \mathrm{d}N'\epsilon(N'))$
- Considering the Friedmann equation $H^2 \approx V/3$ we have $V(N) = H_0^2 \exp(-2\int_{N_0}^N \mathrm{d}N'\epsilon(N'))/3$
- Now we have (φ(N), V(N)). Can also find N = N(φ) and then calculate V(N(φ)) = V(φ)