Understanding the large-scale structure of the Universe

Sergey Sibiryakov

w/ D.Blas, M.Garny, M.Ivanov, A.Kaurov, A.Vasudevan, J.Lesgourgues

Rencontres du Vietnam, Quy Nhon, August 2019

 $\frac{\delta\rho(x)}{\rho} \equiv \delta(x)$

statistical properties

CMB vs. LSS

- 2d map: information $\,\propto (l_{
 m max})^2$
- T saturated -> polarization
- linear theory

- 3d: information $\propto (k_{
 m max})^3$
- will dominate cosmo data in the coming years
- non-linear gravitational clustering at $k > k_{NL}(z)$

CMB vs. LSS

- T saturated -> polarization
- linear theory

- 3d: information $\propto (k_{
 m max})^3$
- will dominate cosmo data in the coming years
- non-linear gravitational clustering at $k > k_{NL}(z)$

N-body

pros:

- exactly incorporate physics of LCDM
- access deeply non-linear regime

cons:

- computationally expensive
- hard to extend beyond LCDM

Analytic methods

pros:

- physical insight
- flexible

cons:

• work in limited range of scales $k \lesssim 0.2 \ h/{
m Mpc}$ (at z=0)

Zeldovich, Peebles,... (1960+)

Zeldovich, Peebles,... (1960+)

XXI century challenge: controlled accuracy at ~1% level

Zeldovich, Peebles,... (1960+)

XXI century challenge: controlled accuracy at ~1% level

Progress due to insights from QFT

Zeldovich, Peebles,... (1960+)

XXI century challenge: controlled accuracy at ~1% level

Progress due to insights from QFT

$$Z[J,t] = \int [\mathcal{D}\delta_L(x)] \exp\left\{-\int \frac{|\delta_L(k)|^2}{2P_L(k,t)} + \int J(x)\delta(x)\right\}$$
functional of δ_L

Zeldovich, Peebles,... (1960+)

XXI century challenge: controlled accuracy at ~1% level

Progress due to insights from QFT

$$Z[J,t] = \int [\mathcal{D}\delta_L(x)] \exp\left\{-\int \frac{|\delta_L(k)|^2}{2P_L(k,t)} + \int J(x)\delta(x)\right\}$$
functional of δ_L

perturbative

diagrammatic technique

Zeldovich, Peebles,... (1960+)

XXI century challenge: controlled accuracy at ~1% level

Progress due to insights from QFT

$$Z[J,t] = \int [\mathcal{D}\delta_L(x)] \exp\left\{-\int \frac{|\delta_L(k)|^2}{2P_L(k,t)} + \int J(x)\delta(x)\right\}$$

functional of δ_L
perturbative
diagrammatic
technique
$$non-perturbative$$

"semiclassical"

Zeldovich, Peebles,... (1960+)

XXI century challenge: controlled accuracy at ~1% level

Progress due to insights from QFT

technique

IR resummation of

BAO / primordial features

$$Z[J,t] = \int [\mathcal{D}\delta_L(x)] \exp\left\{-\int \frac{|\delta_L(k)|^2}{2P_L(k,t)} + \int J(x)\delta(x)\right\}$$

functional of δ_L
perturbative
diagrammatic
non-perturbative
"comicleosice!"

"semiclassical"

Counts-in-cells

Standard Perturbation Theory

Bernardeau et al. (2001)

Time-Sliced Perturbation Theory

Valageas (2004) Blas, Garny, Ivanov, S.S. (2015,2016)

Time-Sliced Perturbation Theory

Valageas (2004) Blas, Garny, Ivanov, S.S. (2015,2016)

Spurious IR divergences from large bulk flows

overdensity is moved by an almost homogeneous flow

Spurious IR divergences from large bulk flows

overdensity is moved by an almost homogeneous flow

two overdensities will move (almost) identically

More on the generating functional

$$Z[J] = \int [d\delta] \exp\left\{-\frac{1}{g^2} \sum_n \frac{1}{n!} \bar{\Gamma}_n * \delta^n + J * \delta\right\}$$

linear growth factor $g(z)$ formal expansion parameter
= effective coupling constant;
true small parameter:
 $\sigma_d^2(k_*) = g^2 \int_{k < k_*} d^3k \bar{P}_L(k)$
 $\bar{\Gamma}_2(\mathbf{k}_1, \mathbf{k}_2) = \frac{(2\pi)^3 \delta_D(\mathbf{k}_1 + \mathbf{k}_2)}{\bar{P}_L(k)}$ $\bar{\Gamma}_n$ obtained by recursion
relations

$$\lim_{\epsilon \to 0} \bar{\Gamma}_{n+m}(\epsilon q_1, \dots, \epsilon q_m, k_1, \dots, k_n) < \infty$$

Diagrammar

Diagrammar

Application: Bulk flows vs. features

from Padmanabhan et al. (2012)

Application: Bulk flows vs. features

from Padmanabhan et al. (2012)

Simple 1-loop calculation gets it wrong:

IR resummation

Blas, Garny, Ivanov, S.S. (2016)

Wiggly part of PS gets dressed with soft loops

IR resummation

Blas, Garny, Ivanov, S.S. (2016)

Wiggly part of PS gets dressed with soft loops

IR resummation

Blas, Garny, Ivanov, S.S. (2016)

Wiggly part of PS gets dressed with soft loops

Sensitivity to the IR separation scale: LO

IR resummed, z=0

- dependence on k_S gives an estimate of the error due to neglecting higher loops

(In)sensitivity to the IR separation scale: NLO

dependence on k_S decreases with the loop order

NB. EFT counterterm included to account for the failure of the fluid approximation Baumann et al. (2010); Carrasco, Hertzberg, Senatore (2012); Pajer, Zaldarriaga (2013) NB. Theoretical uncertainty included to account for higher orders Baldauf et al. (2016)

(In)sensitivity to the IR separation scale: NLO

dependence on k_S decreases with the loop order

NB. EFT counterterm included to account for the failure of the fluid approximation

Baumann et al. (2010); Carrasco, Hertzberg, Senatore (2012); Pajer, Zaldarriaga (2013)

NB. Theoretical uncertainty included to account for higher orders Baldauf et al. (2016)

(In)sensitivity to the IR separation scale: NLO

dependence on k_S decreases with the loop order

NB. EFT counterterm included to account for the failure of the fluid approximation

Baumann et al. (2010); Carrasco, Hertzberg, Senatore (2012); Pajer, Zaldarriaga (2013)

NB. Theoretical uncertainty included to account for higher orders Baldauf et al. (2016)

One-loop resummed PS

sub-percent up to $k\sim 0.2$ (at z=0).

IR resummation summary (with RSD and bias)

Ivanov, S.S. (2018)

Tree level: $C_{LO} = C^{\text{tree}}[P_{LO}^{\text{res}}]$

example: $B_{ggg}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = Z_2(\mathbf{k}_1, \mathbf{k}_2) P_{LO}^{\text{res}}(\mathbf{k}_1) P_{LO}^{\text{res}}(\mathbf{k}_2) + \text{ perm.}$

Tree level: $C_{LO} = C^{\text{tree}}[P_{LO}^{\text{res}}]$

example: $B_{ggg}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = Z_2(\mathbf{k}_1, \mathbf{k}_2) P_{LO}^{\text{res}}(\mathbf{k}_1) P_{LO}^{\text{res}}(\mathbf{k}_2) + \text{ perm.}$

1-loop:

$$\mathcal{C}_{NLO} = \mathcal{C}^{\text{tree}}[P_{Ls} + P_{Lw}e^{-k^2\Sigma^2}(1+k^2\Sigma^2)] + \mathcal{C}^{1-\text{loop}}[P_{LO}^{\text{res}}]$$

etc.

 $P_L(k) = P_{L,\Lambda CDM} + A_{\text{lin}}\cos(\omega k) + A_{\log}\cos(\gamma \log k/k_*)$ $\omega \gg 1/k$ $\gamma \gg 1 \longrightarrow k_{osc} \sim k/\gamma \ll k$

 $P_L(k) = P_{L,\Lambda CDM} + A_{\text{lin}} \cos(\omega k) \left(+ A_{\log} \cos(\gamma \log k/k_*) \right)$ $\omega \gg 1/k$ $\gamma \gg 1 \longrightarrow k_{osc} \sim k/\gamma \ll k$

$$P_L(k) = P_{L,\Lambda CDM} + A_{\text{lin}} \cos(\omega k) + A_{\log} \cos(\gamma \log k/k_*)$$
$$\omega \gg 1/k$$
$$\gamma \gg 1 \qquad k_{osc} \sim k/\gamma \ll k$$

Damping is given by resummation of daisy diagrams

Vasudevan, Ivanov, S.S., Lesgourgues (2019)

$$\Sigma^{2}(k) = \frac{4\pi}{3} \int_{q < k_{S}} dq P_{Ls}(q) \left(1 - j_{0}(\gamma q/k) + 2j_{2}(\gamma q/k)\right)$$

$$P_L(k) = P_{L,\Lambda CDM} + A_{\text{lin}} \cos(\omega k) + A_{\log} \cos(\gamma \log k/k_*)$$
$$\omega \gg 1/k \qquad \gamma \gg 1 \qquad k_{osc} \sim k/\gamma \ll k$$

Damping is given by resummation of daisy diagrams

Vasudevan, Ivanov, S.S., Lesgourgues (2019)

$$\Sigma^{2}(k) = \frac{4\pi}{3} \int_{q < k_{S}} dq P_{Ls}(q) \left(1 - j_{0}(\gamma q/k) + 2j_{2}(\gamma q/k)\right)$$

Important: LSS is more sensitive to features than CMB

Beutler et al. (2019)

$$P_L(k) = P_{L,\Lambda CDM} + A_{\text{lin}} \cos(\omega k) + A_{\log} \cos(\gamma \log k/k_*)$$
$$\omega \gg 1/k \qquad \gamma \gg 1 \qquad k_{osc} \sim k/\gamma \ll k$$

Damping is given by resummation of daisy diagrams

Vasudevan, Ivanov, S.S., Lesgourgues (2019)

$$\Sigma^{2}(k) = \frac{4\pi}{3} \int_{q < k_{S}} dq P_{Ls}(q) \left(1 - j_{0}(\gamma q/k) + 2j_{2}(\gamma q/k)\right)$$

Important: LSS is more sensitive to features than CMB

Beutler et al. (2019)

Works similarly for **oscillating primordial bispectrum**, with the damping factor depending on the shape

Summary and Outlook

- Analytic methods give important insight into physics of LSS
- Per cent accuracy in LSS statistics at least up to k ~ 0.2 h/Mpc (z=0).
 Bigger reach at high redshifts
- Internal estimate of the error budget
- Flexible to play with physics beyond LambdaCDM. Many scenarios to explore
- Complementary to N-body

To do:

- Efficient codes to implement high order PT (2-loop PS, 1-loop BS, RSD, bias)
- More non-pert. spatistics: CiC in redshift space, joint PDF for multiple cells, PDF for convergence and shear, ...
- Validation of N-body codes

Summary and Outlook

- Analytic methods give important insight into physics of LSS
- Per cent accuracy in LSS statistics at least up to k ~ 0.2 h/Mpc (z=0).
 Bigger reach at high redshifts
- Internal estimate of the error budget
- Flexible to play with physics beyond LambdaCDM. Many scenarios to explore
- Complementary to N-body

To do:

- Efficient codes to implement high order PT (2-loop PS, 1-loop BS, RSD, bias)
- More non-pert. spatistics: CiC in redshift space, joint PDF for multiple cells, PDF for convergence and shear, ...
- Validation of N-body codes