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• cosmological 
parameters


• properties of DM, 
DE


• initial conditions 
e.g. primordial 
non-Gaussianity
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• will dominate cosmo data in the 
coming years

CMB vs. LSS

• 2d map: information � (lmax)2

• 3d: information � (kmax)3

• linear theory 

• non-linear gravitational 
clustering at   k > kNL(z)

• T saturated            polarization
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N-body 
pros: 

• exactly 

incorporate 
physics of LCDM


• access deeply 
non-linear regime


cons:

• computationally 

expensive 

• hard to extend 

beyond LCDM

Analytic methods 
pros: 

• physical insight

• flexible

cons: 

• work in limited 

range of scales


(at z=0)
k � 0.2 h/Mpc
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identically 

cancellation in 
equal-time 
statistics

Spurious IR divergences from large bulk flows
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A 2% Distance to z = 0.35 : Methods and Data 3

Figure 1. A pictoral explanation of how density-field reconstruction can improve the acoustic scale measurement. In each panel, we
show a thin slice of a simulated cosmological density field. (top left) In the early universe, the initial densities are very smooth. We mark
the acoustic feature with a ring of 150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution
of the black points from the centroid of the blue points is shown in the inset. (top right) We evolve the particles to the present day, here
by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows the initial radius of the ring, centered on the current centroid of
the blue points. The large-scale velocity field has caused the black points to spread out; this causes the acoustic feature to be broader.
The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line) compared to the initial
rms (dashed line). (bottom left) As before, but overplotted with the Lagrangian displacement field, smoothed by a 10h�1 Mpc Gaussian
filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back
to their initial positions. (bottom right) We displace the present-day position of the particles by the opposite of the displacement field
in the previous panel. Because of the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has
been moved substantially closer to the red circle. The inset shows that the new rms radius of the black points (solid), compared to the
initial width (long-dashed) and the uncorrected present-day width (short-dashed). The narrower peak will make it easier to measure the
acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this figure illustrates the basic
opportunity of reconstruction.

steps of this algorithm below and discuss details specific to
our implementation in subsequent subsections.

(i) Estimate the unreconstructed power spectrum P (k) or
correlation function ⇠(r).

(ii) Estimate the galaxy bias b and the linear growth rate,
f ⌘ d lnD/d ln a ⇠⌦0.55

M (Carroll et al. 1992; Linder 2005),
where D(a) is the linear growth function as a function of
scale factor a and ⌦M is the matter density relative to the
critical density.

(iii) Embed the survey into a larger volume, chosen such
that the boundaries of this larger volume are su�ciently
separated from the survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that

matches the observed density and interpolates over masked
and unobserved regions (§2.3).

(vi) Estimate the displacement field  within the
Zel’dovich approximation (§2.4).

(vii) Shift the galaxies by � . Since linear redshift-
space distortions arise from the same velocity field, we shift
the galaxies by an additional �f( · ŝ)ŝ (where ŝ is the
radial direction). In the limit of linear theory (i.e. large
scales), this term exactly removes redshift-space distortions
(Kaiser 1987; Hamilton 1998; Scoccimarro 2004). Denote
these points by D.

(viii) Construct a sample of points randomly distributed
according to the angular and radial selection function and
shift them by � . Note that we do not correct these for
redshift-space distortions. Denote these points by S.
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radial direction). In the limit of linear theory (i.e. large
scales), this term exactly removes redshift-space distortions
(Kaiser 1987; Hamilton 1998; Scoccimarro 2004). Denote
these points by D.

(viii) Construct a sample of points randomly distributed
according to the angular and radial selection function and
shift them by � . Note that we do not correct these for
redshift-space distortions. Denote these points by S.

c� 0000 RAS, MNRAS 000, 000–000

A 2% Distance to z = 0.35 : Methods and Data 3

Figure 1. A pictoral explanation of how density-field reconstruction can improve the acoustic scale measurement. In each panel, we
show a thin slice of a simulated cosmological density field. (top left) In the early universe, the initial densities are very smooth. We mark
the acoustic feature with a ring of 150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution
of the black points from the centroid of the blue points is shown in the inset. (top right) We evolve the particles to the present day, here
by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows the initial radius of the ring, centered on the current centroid of
the blue points. The large-scale velocity field has caused the black points to spread out; this causes the acoustic feature to be broader.
The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line) compared to the initial
rms (dashed line). (bottom left) As before, but overplotted with the Lagrangian displacement field, smoothed by a 10h�1 Mpc Gaussian
filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back
to their initial positions. (bottom right) We displace the present-day position of the particles by the opposite of the displacement field
in the previous panel. Because of the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has
been moved substantially closer to the red circle. The inset shows that the new rms radius of the black points (solid), compared to the
initial width (long-dashed) and the uncorrected present-day width (short-dashed). The narrower peak will make it easier to measure the
acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this figure illustrates the basic
opportunity of reconstruction.

steps of this algorithm below and discuss details specific to
our implementation in subsequent subsections.

(i) Estimate the unreconstructed power spectrum P (k) or
correlation function ⇠(r).

(ii) Estimate the galaxy bias b and the linear growth rate,
f ⌘ d lnD/d ln a ⇠⌦0.55

M (Carroll et al. 1992; Linder 2005),
where D(a) is the linear growth function as a function of
scale factor a and ⌦M is the matter density relative to the
critical density.

(iii) Embed the survey into a larger volume, chosen such
that the boundaries of this larger volume are su�ciently
separated from the survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that

matches the observed density and interpolates over masked
and unobserved regions (§2.3).

(vi) Estimate the displacement field  within the
Zel’dovich approximation (§2.4).

(vii) Shift the galaxies by � . Since linear redshift-
space distortions arise from the same velocity field, we shift
the galaxies by an additional �f( · ŝ)ŝ (where ŝ is the
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Figure 1. Left panel: Two-point matter correlation functions in position space at redshift zero, ⇠(r) ⌘ h�(r)�(0)i:
N-body data from the Horizon Run 3 simulation [14] (red points), the prediction of linear theory (black dot-
dashed line), and the 1-loop SPT result (blue solid line). Right panel: Ratio of oscillatory (wiggly) part Pw of the
linear power spectrum to the smooth part Ps. The ⇤CDM cosmological parameters have been chosen as in [14].

2 Interaction with bulk flows: a simple physical picture

In this section we present a simple intuitive picture behind the non-linear evolution of the BAO (see
Refs [5–12] for more details). We start with the density contrast field in Fourier space, �(k, ⌘) ⌘
(⇢(⌘,k) � ⇢̄(⌘))/⇢̄(⌘), where ⌘ is conformal time, ⇢(⌘,k) is the local density and ⇢̄(⌘) is the average
matter density in the Universe. �(⌘,k) is a random stochastic field and one is typically interested in
its 2-point correlation function (power spectrum) defined as P(⌘; k)�(3)

Dirac(k + k

0) ⌘ h�(⌘,k)�(⌘,k0)i.
The linear power spectrum in our Universe can be decomposed into the smooth and wiggly parts (see
Fig. 1, right panel),

Plin(⌘; k) = Ps(⌘; k) + Pw(⌘; k) , (1)

and these two parts receive non-linear corrections from long-wavelength perturbations (IR modes) in
very di↵erent ways.

Let us first focus on the situation in which the linear power spectrum has only the smooth part,
i.e. is featureless. Consider two galaxies on top of a large scale bulk flow. If the separation between
these galaxies is shorter than the long wavelength associated to the flow, then at zeroth order its e↵ect
is a uniform acceleration, a = �r�L(x) ' const (�L(x) is a gravitational potential induced by a long-
wavelength perturbation). Then, according to the equivalence principle, at a given time the e↵ect of
this acceleration can be totally removed by a proper coordinate transformation, so that it cannot a↵ect
equal-time physical observables such as the power spectrum. At next-to-leading order one can take
into account inhomogeneity in the acceleration, in other words, the fact that the flow is not uniform
but rather "converging" or "diverging". In that case two galaxies are likely to be found at separations
shorter ("converging" flows) or larger ("diverging" flows) than in linear theory. However, since the
smooth power spectrum in the real Universe is close to scale-invariant, the e↵ect of the motions due
to long modes should be small. In SPT the latter fact is manifest if one considers the 1-loop correction
to the power spectrum in the IR limit (q ⌧ k, where q is the loop momentum),

P1-loop, SPT(k) = Plin(k) +
 

569
735

Plin(k) � 47
105

kP0lin(k) +
1

10
k2P00lin(k)

!

�2
S , (2)

Simple 1-loop calculation 
gets it wrong:
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Wiggly part of PS gets dressed with soft loops
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a transparent description of the physical e↵ects of bulk motion on the BAO feature. On

the other hand, TSPT does not feature some of the spurious e↵ects present in higher-order

Lagrangian perturbation theory. Our main result is a systematic technique to identify

and resum enhanced infrared contributions a↵ecting the BAO peak. It admits a simple

diagrammatic representation within TSPT and allows to compute and assess higher-order

corrections in a systematic way.

The main idea of TSPT is to disentangle time-evolution from statistical ensemble

averaging. In a first step, the probability distribution P is evolved from the initial time to

a finite redshift, and expressed in terms of a functional cumulant expansion in powers of

the density- and velocity divergence field at this redshift. In a second step, the statistical

averages are computed perturbatively. The latter step can be conveniently represented by

a diagrammatic series, where the quadratic part of the cumulant represents a propagator,

and the higher cumulants n-point vertices �n. In [24] it has been shown that these vertices

are IR safe, i.e. free from spurious enhancements / k/q when one of the wavenumbers

becomes small.

In order to identify enhanced contributions related to the BAO, we split the initial

power spectrum into a smooth component Ps and an oscillatory contribution Pw. Then

the TSPT three-point vertex expanded for q ⌧ k and to first order in Pw is given by

�
3

(k, q, q0) ! �(k + q + q0)
k · q
q2

✓
Pw(k + q)� Pw(q)

Ps(k)2

◆
. (1.1)

In the limit q ! 0 the two power spectra in the enumerator tend to cancel the 1/q enhance-

ment from the vertex, as required by the equivalence principle. However, as emphasized

recently in [8], the Taylor expansion of Pw(k + q) becomes unreliable for kosc ⌧ q ⌧ k.

This means that non-linear corrections to the power spectrum at scale k receive large cor-

rections from IR modes q within this range. In this work we identify these contributions

for all �n vertices, and establish a power counting scheme to compute corrections to the

most enhanced terms. The leading contributions to the oscillatory part of the power spec-

trum are given by so-called daisy diagrams, and their resummation can be represented

diagrammatically in the following form (cf. Sec. 3 for details),

P IR res,LO
w (⌘; k) = +

�̄w
4

(1.2)

+
�̄w
6

+
�̄w
8

+ + ...

– 3 –

+ + +

g2 k2
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�
g2 k2

q2

�2 �
g2 k2
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g2 k2

q2

�4

loop momentum

Blas, Garny, Ivanov, S.S. (2016)
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Sensitivity to the IR separation scale: LO 
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Figure 6. Infra-red resummed matter correlation function at LO obtained in TSPT for three
di↵erent values of the IR separation scale k

S

, and two di↵erent redshifts (left: z = 0, right: z =
0.375). Also shown is the linear result (dashed) and the result of the Horizon Run 2 large-scale
N -body simulation [25]. We use 1/k

osc

= 110Mpc/h.

We now turn to the NLO result. The comparison of the matter correlation function

obtained using (7.4) with the N -body data is shown in Fig. 7. One observes that the

agreement is considerably improved compared to the LO. Furthermore, the dependence on

the separation scale kS is reduced. This is an important consistency check, because the

dependence on kS vanishes in principle in the exact result. Thus, any residual dependence

on kS can be taken as an estimate of the perturbative uncertainty, and it is reassuring that

this uncertainty is reduced when going from LO to NLO.

We conclude that the systematic IR resummation gives a very accurate description

of the correlation function at BAO scales. The residual discrepancies at shorter distances

visible in Fig. 7 are expected due to several e↵ects. The variance due to the finite boxsize,

and the finite resolution of the N -body data leads to an uncertainty of several percent10.

In addition, the correlation function is sensitive to the UV physics which has been left

beyond the scope of our present study.

In Fig. 8 we show the ratio of the NLO result to the correlation function obtained

in the Zel’dovich approximation11. The di↵erences are around 5% in the BAO range,

and therefore our results are broadly consistent with ZA, as expected. Nevertheless, the

di↵erences are larger than the ultimate precision that is desired to match future surveys.

The ratio between the N-body correlation function and the one obtained in ZA is also shown

on the same plot by the red line. The TSPT result agrees with the N-body data somewhat

better than ZA in the BAO peak region, though the error range of the N-body data does

10Ref. [25] does not give error bars for the simulation data points. An estimate of the statistical variance

using the number of available modes in the simulation as well as the finite resolution suggests that the

uncertainty is at the few percent level in the range of scales relevant for BAO. This level of accuracy is

also consistent with the di↵erence between the correlation function extracted from Horizon Run 2 (L =

7.2Gpc/h, N = 60003) versus Horizon Run 3 (L = 10.8Gpc/h, N = 72103) data presented in [25].
11Here by the Zel’dovich approximation we mean the leading order of Lagrangian perturbation theory.

The 2-point correlation function in ZA was computed with the publicly available code ZelCa [35].
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Resummation: general scheme
To get the leading IR diagrams dress the wiggly vertices with soft petals

a transparent description of the physical e↵ects of bulk motion on the BAO feature. On

the other hand, TSPT does not feature some of the spurious e↵ects present in higher-order

Lagrangian perturbation theory. Our main result is a systematic technique to identify

and resum enhanced infrared contributions a↵ecting the BAO peak. It admits a simple

diagrammatic representation within TSPT and allows to compute and assess higher-order

corrections in a systematic way.

The main idea of TSPT is to disentangle time-evolution from statistical ensemble

averaging. In a first step, the probability distribution P is evolved from the initial time to

a finite redshift, and expressed in terms of a functional cumulant expansion in powers of

the density- and velocity divergence field at this redshift. In a second step, the statistical

averages are computed perturbatively. The latter step can be conveniently represented by

a diagrammatic series, where the quadratic part of the cumulant represents a propagator,

and the higher cumulants n-point vertices �n. In [24] it has been shown that these vertices

are IR safe, i.e. free from spurious enhancements / k/q when one of the wavenumbers

becomes small.

In order to identify enhanced contributions related to the BAO, we split the initial

power spectrum into a smooth component Ps and an oscillatory contribution Pw. Then

the TSPT three-point vertex expanded for q ⌧ k and to first order in Pw is given by

�
3

(k, q, q0) ! �(k + q + q0)
k · q
q2

✓
Pw(k + q)� Pw(q)

Ps(k)2

◆
. (1.1)

In the limit q ! 0 the two power spectra in the enumerator tend to cancel the 1/q enhance-

ment from the vertex, as required by the equivalence principle. However, as emphasized

recently in [8], the Taylor expansion of Pw(k + q) becomes unreliable for kosc ⌧ q ⌧ k.

This means that non-linear corrections to the power spectrum at scale k receive large cor-

rections from IR modes q within this range. In this work we identify these contributions

for all �n vertices, and establish a power counting scheme to compute corrections to the

most enhanced terms. The leading contributions to the oscillatory part of the power spec-

trum are given by so-called daisy diagrams, and their resummation can be represented

diagrammatically in the following form (cf. Sec. 3 for details),

P IR res,LO
w (⌘; k) = +

�̄w
4

(1.2)

+
�̄w
6

+
�̄w
8

+ + ...

– 3 –

+ + +

= e�SBtree
w

BLO,w =



Resummation: general scheme
To get the leading IR diagrams dress the wiggly vertices with soft petals

a transparent description of the physical e↵ects of bulk motion on the BAO feature. On

the other hand, TSPT does not feature some of the spurious e↵ects present in higher-order

Lagrangian perturbation theory. Our main result is a systematic technique to identify

and resum enhanced infrared contributions a↵ecting the BAO peak. It admits a simple

diagrammatic representation within TSPT and allows to compute and assess higher-order

corrections in a systematic way.

The main idea of TSPT is to disentangle time-evolution from statistical ensemble

averaging. In a first step, the probability distribution P is evolved from the initial time to

a finite redshift, and expressed in terms of a functional cumulant expansion in powers of

the density- and velocity divergence field at this redshift. In a second step, the statistical

averages are computed perturbatively. The latter step can be conveniently represented by

a diagrammatic series, where the quadratic part of the cumulant represents a propagator,

and the higher cumulants n-point vertices �n. In [24] it has been shown that these vertices

are IR safe, i.e. free from spurious enhancements / k/q when one of the wavenumbers

becomes small.

In order to identify enhanced contributions related to the BAO, we split the initial

power spectrum into a smooth component Ps and an oscillatory contribution Pw. Then

the TSPT three-point vertex expanded for q ⌧ k and to first order in Pw is given by

�
3

(k, q, q0) ! �(k + q + q0)
k · q
q2

✓
Pw(k + q)� Pw(q)

Ps(k)2

◆
. (1.1)
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IR resummation summary 
(with RSD and bias)

PL(k) = PLs(k) + PLw(k)

smooth wiggly Ivanov, S.S. (2018)
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PL(k) = PLs(k) + PLw(k)

Tree level: CLO = Ctree[P res
LO]

Bggg(k1,k2,k3) = Z2(k1,k2)P res
LO(k1)P res

LO(k2) + perm.

P res
LO(k) = PLs(k) + PLw(k)e�k2�2(µ;kS)

example:

1-loop:

CNLO = Ctree[PLs + PLwe�k2�2
(1 + k2�2)] + C1�loop[P res

LO]

etc.

smooth wiggly Ivanov, S.S. (2018)



An example of new physics: features in primordial statistics

PL(k) = PL,�CDM + Alin cos(�k) + Alog cos(� log k/k�)

� � 1/k
� � 1 kosc � k/� � k
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Works similarly for oscillating primordial bispectrum, with the damping 
factor depending on the shape

Important: LSS is more sensitive to features than CMB

Beutler et al. (2019)



Summary and Outlook

• Analytic methods give important insight into physics of LSS


• Per cent accuracy in LSS statistics at least up to k ~ 0.2 h/Mpc (z=0). 
Bigger reach at high redshifts 


• Internal estimate of the error budget


• Flexible to play with physics beyond LambdaCDM. Many scenarios to 
explore


• Complementary to N-body

To do: 

• Efficient codes to implement high order PT (2-loop PS, 1-loop BS, 
RSD, bias)


• More non-pert. spatistics: CiC in redshift space, joint PDF for multiple 
cells, PDF for convergence and shear, …


• Validation of N-body codes
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