Constraining DM-neutrino interactions with IceCube-170922A

Jongkuk Kim (KIAS)

Phys. Rev. D **99**, 083018 (2019) [arXiv: 1903.03302] In collaboration with Prof. Ki-Young Choi, Prof. Carsten Rott

2019. 8. 14 @ Quy Nhon, Vietnam

New Physics?

2

New Physics?

IceCube Telescope

- Neutrinos might interact in or near the detector
- Neutrinos are identified through Cherenkov light emission from secondary particles produced in the neutrino interaction with the ice

IceCube-170922A

IceCube 2018 Science

- September 22, 2017
 - A neutrino alert issued by IceCube

IceCube-170922A

 Fermi-LAT and MAGIC identify a spatially coincident flaring blazar (TXS 0506+056)

Flaring blazar

Blazar model

Shan Gao et al, 2018 Lots of Astrophysics papers

- In the center, supermassive black hole
- Emit relativistic jets \rightarrow electron, positron, proton

IceCube-170922A

- o Icecube-170922A
 - TXS 0506+056 determined to be z = 0.3365 S. Paiano et al, ApJL 2018
 - 1421 Mpc
 - Right ascension: 77.42, Declination: 5.72

IceCube 2018 Science

Mean free-path for a neutrino

- How far a neutrino can travel without any scattering process
- The definition of the mean free-path

•
$$\lambda_{\rm MFP} = \frac{1}{n_X \sigma(\nu X \to Y)}$$

• X can be a neutrino/anti-neutrino or DM

• A new physics model can be constrained

Coordinate transformation

• From equatorial coordinates to Galactic coordinates

 $\tan(l_0 - l) = \frac{\cos(\delta)\sin(\alpha - \alpha_0)}{\sin(\delta)\cos(\delta_0) - \cos(\delta)\sin(\delta_0)\cos(\alpha - \alpha_0)}$

 $\sin(b) = \sin(\delta)\sin(\delta_0) + \cos(\delta)\cos(\delta_0)\cos(\alpha - \alpha_0)$

the equatorial coordinates of the Galactic north pole $\begin{array}{l} lpha_0 \approx 192.8595^\circ\\ \delta_0 \approx 27.1284^\circ\\ l_0 \approx 122.9320^\circ\end{array}$

o Icecube-170922A

- b = -19.6 degree
- I = 15.4 degree

o Icecube-170922A

- b = -19.6 degree
- I = 15.4 degree

- o Icecube-170922A
 - b = -19.6 degree
 - I = 15.4 degree
- Not travel through GC
 - Not depends on DM profile

Cosmic neutrino background

- If sizable v-CvB interaction exists, scattering off the v-CvB can cause a depletion of the detected neutrino events
- Scattering cross section between
 - Icecube-19022A neutrino and Cosmic neutrino background
 - Number density of the CvB: 340/cm^3
- Mean free-path of a 290 TeV neutrino
 - O(10^11) Gpc
 - Negligible effect in the SM
 - New neutrino self-interactions can be tested

K. J. Kelly & P. A. Machado, arXiv:1808.02889

- The interaction of neutrinos with DM can suppress the flux of neutrinos along the path from the source to Earth
 - Scattering cross section \rightarrow constant

$$\Phi = \Phi_0 e^{-\int_{\text{path}} \sigma n(\mathbf{x}) dl}$$

- The interaction of neutrinos with DM can suppress the flux of neutrinos along the path from the source to Earth
 - Scattering cross section \rightarrow constant

$$\Phi = \Phi_0 e^{-\int_{\text{path}} \sigma n(\mathbf{x}) dl}$$

- The interaction of neutrinos with DM can suppress the flux of neutrinos along the path from the source to Earth
 - Scattering cross section → constant

$$\Phi = \Phi_0 e^{-\int_{\text{path}} \sigma n(\mathbf{x}) dl}$$

 The suppression depends on the DM-v scattering cross section as well as the DM number density along the path

•
$$\int_{\text{path}} \sigma n(\mathbf{x}) dl \lesssim 1$$

• The suppression can be divide into two contributions

$$\int_{\text{path}} \sigma n(\mathbf{x}) dl = \int_{\text{los}} n(z) \sigma dl + \int_{\text{los}} \sigma n_{\text{gal}}(\mathbf{x}) dl,$$
$$= \frac{\sigma}{M_{\text{dm}}} \left(\int_{\text{los}} \rho(z) dl + \int_{\text{los}} \rho_{\text{gal}}(\mathbf{x}) dl \right)$$

• The suppression can be divide into two contributions

$$\int_{\text{path}} \sigma n(\mathbf{x}) dl = \int_{\text{los}} n(z) \sigma dl + \int_{\text{los}} \sigma n_{\text{gal}}(\mathbf{x}) dl,$$
$$= \frac{\sigma}{M_{\text{dm}}} \left(\int_{\text{los}} \rho(z) dl + \int_{\text{los}} \rho_{\text{gal}}(\mathbf{x}) dl \right)$$

Suppression from the cosmological DM

- Cosmological DM energy density is determined by Planck 2018 data
 - $\rho_{\rm dm}(z) = 1.3 \times 10^{-6} (1+z)^3 \,{\rm GeV/cm^3}$ Planck 2018

•
$$\begin{split} \int_{los} \rho(z) \, dl &= \int \rho(z) \frac{c dt}{dz} dz, \\ &\simeq 7.2 \times 10^{21} \, \mathrm{GeV}/\,\mathrm{cm}^2 \end{split}$$

• The suppression can be divide into two contributions

$$\int_{\text{path}} \sigma n(\mathbf{x}) dl = \int_{\text{los}} n(z) \sigma dl + \int_{\text{los}} \sigma n_{\text{gal}}(\mathbf{x}) dl,$$
$$= \frac{\sigma}{M_{\text{dm}}} \left(\int_{\text{los}} \rho(z) dl + \int_{\text{los}} \rho_{\text{gal}}(\mathbf{x}) dl \right)$$

• The suppression can be divide into two contributions

$$\int_{\text{path}} \sigma n(\mathbf{x}) dl = \int_{\text{los}} n(z) \sigma dl + \int_{\text{los}} \sigma n_{\text{gal}}(\mathbf{x}) dl,$$

$$= \frac{\sigma}{M_{\text{dm}}} \left(\int_{\text{los}} \rho(z) dl + \int_{\text{los}} \rho_{\text{gal}}(\mathbf{x}) dl \right)$$

• Galactic DM
• NFW DM profile
• $\int_{\text{los}} \rho_{\text{gal}}(\mathbf{x}) dl \simeq 3.8 \times 10^{22} \text{ GeV/ cm}^2$

$$\rho_{\text{gal}}(\mathbf{x}) = \frac{\rho_s}{\frac{r}{r_s} \left(1 + \frac{r}{r_s}\right)^2}$$

The suppression can be divide into two contributions

$$\int_{\text{path}} \sigma n(\mathbf{x}) dl = \int_{\text{los}} n(z) \sigma dl + \int_{\text{los}} \sigma n_{\text{gal}}(\mathbf{x}) dl,$$
$$= \frac{\sigma}{M_{\text{dm}}} \left(\int_{\text{los}} \rho(z) dl + \int_{\text{los}} \rho_{\text{gal}}(\mathbf{x}) dl \right)$$

- Incidentally both contributions from cosmological DM and Milky Way DM are very comparable
 - Very tiny cosmological DM density is compensated by the long distance

New constraint

- Demand less than 90% suppression of the flux
 - $\int \sigma n dl \lesssim 2.3$
- DM-v scattering cross section
 - The identification of the source can allow the precise evaluation of the neutrino flux change due to DM- v scattering cross section

$$\circ \sigma/M_{\rm dm} \le 5.1 \times 10^{-23} {\rm cm}^2/{
m GeV}$$

• @
$$E_{\nu} = 290 \text{ TeV}$$

New constraint

Known constraints

Lyman-alpha

C. Boehm, R. Wilkinson arXiv: 1401.7597

- WIMP DM stays in equilibrium with primordial plasma for longer time due to elastic scattering and undergoes acoustic oscillations
- Suppresses matter perturbations and reduces the amount of small scale structures today

• constant cross section:
$$\sigma_{\rm el} < 10^{-36} \left(\frac{m_{\rm DM}}{{
m MeV}} \right) {
m cm}^2$$

• T-dependent cross section: $\sigma_{\rm el} < 10^{-48} \left(\frac{m_{\rm DM}}{{
m MeV}}\right) \left(\frac{T_{\nu}}{T_0}\right)^2 {
m cm}^2$

 $T_0 = 2.35 \times 10^{-4} \text{ eV}$

• This constraint can be applied for neutrino energy at around 100 eV.

Known constraints

o SN1987A

G. Barbiellini, G. Cocconi, 1987

- Neutrino energies ~ 10 MeV
- Distance ~ 50 kpc
- v-DM interaction can be constrained
- This constraint can be applied for neutrino energy at around 10 MeV.

Neutrino energy	$\sigma/M_{\rm dm}[{\rm cm}^2/{ m GeV}]$
$\sim 100 \ {\rm eV}$	6×10^{-31}
$\sim 100~{\rm eV}$	10^{-33}
$10 \mathrm{MeV}$	10^{-22}

Scattering cross section

 $\mathbf{28}$

Scattering cross section

 Stringent constraint depends on the upper bound on DM-neutrino scattering cross section

Complex scalar DM model

A fermion mediator

• $\mathcal{L}_{int} = -g\chi \overline{N}\nu_L + h.c.,$

• Scattering cross section vs neutrino energy

Complex scalar DM model

 $M_{\rm dm}[{\rm GeV}]$

• Upper & right region are allowed

- Blue: IceCube-170922A
- Red: Lyman alpha

• Green region: ruled out by DM stability

Complex scalar DM model

Maximum values of (g vs Mdm)

Conclusions

 Identifying sources of astrophysical neutrinos gives us additional information

We find new constraint on DM-v scattering

Obtained from Icecube-170922A

•
$$\sigma/M_{\rm dm} \le 5.1 \times 10^{-23} {\rm cm}^2/{\rm GeV}$$

• • •
$$E_{\nu} = 290 \text{ TeV}$$

- Certain classes of new physics models can be probed by high energy neutrinos travelling very long distances
 - Light DM model