Constraining galaxy assembly bias in redshift surveys

Jeremy Tinker, Center for Cosmology and Particle Physics New York University

Image from the Aemulus Project (ask me about that later). /'ae.mu.lus/, ['ae.mʊ.ɬʊs] : (Latin) Striving to equal or exceed.

What is assembly bias?

- Before we talk about galaxies, we first have to talk about halos.
- All galaxies live in halos.
- The most basic property of galaxies and halos is their mass. Total mass (mostly dark) for the halos, and stellar mass for the galaxies.
- Much attention has been put toward the relationship between these two properties.

The Galaxy-Halo Connection

Wechsler & Tinker, 2018 ARAA Reionization Stellar winds Supernovae AGN 10^{-1} Behroozi et al. 2010 (AM) Behroozi et al. 2013a (AM) Reddick et al. 2013 (AM) Moster et al. 2013 (pAM) 10⁻² Moster et al. 2017 (pAM) Guo et al. 2010 (pAM) Wang & Jing 2010 (pAM) Zheng et al. 2007 (HOD) Yang et al. 2012 (CLF) M_{*}/M_h 10⁻³ Yang et al. 2009 (GG) Hansen et al. 2009 (CL) Lin et al. 2004 (CL) Kravtsov et al. 2018 (AM+CL) Behroozi et al. 2018 (UM) 10^{-4} 10^{-5} **10**¹⁰ 10¹¹ 10¹³ 10^{8} 10⁹ 10¹² 10¹⁴ 10¹⁵

Halo mass M_h (M_{\odot})

The Galaxy-Halo Connection

Halo mass M_h (M_{\odot})

Halo Assembly Bias

<u>Halo Assembly Bias or Secondary Bias</u>: At fixed halo mass, the clustering of dark matter halos depends on secondary halo properties (which are generally correlated with the assembly history of the dark matter halo).

- Signal at low masses: formation time, concentration.
- Signal at high masses: spin, amount of substructure.

Do halo properties other than mass enter here?

Approaches to modeling the galaxy-halo connection

Physical models			Empirical models		
Hydrodynamical simulations	Semianalytic models	Empirical forward modeling	Subhalo abundance modeling	Halo occupation models	
Simulate halos and gas; star formation and feedback recipes	Evolution of density peaks plus recipes for gas cooling, star formation, feedback	Evolution of density peaks plus parameterized star formation rates	Density peaks (halos and subhalos) plus assumptions about galaxy–(sub)halo connection	Collapsed objects (halos) plus model for distribution of galaxy number given host halo properties	

Wechsler & Tinker, 2018 ARAA

Do halo properties other than mass enter here?

<u>Galaxy Assembly Bias</u>: At fixed halo mass, the properties of a galaxy—or number of galaxies within a halo—correlate with secondary properties of the dark matter halo. Thus, the clustering of galaxies depends on more than just the masses of their dark matter halos.

Approaches to modeling the galaxy-halo connection

Ph	ysical models		Empirical models		
Hydrodynamical simulations	Semianalytic models	Empirical forward modeling	Subhalo abundance modeling	Halo occupation models	
Simulate halos and gas; star formation and feedback recipes	Evolution of density peaks plus recipes for gas cooling, star formation, feedback	Evolution of density peaks plus parameterized star formation rates	Density peaks (halos and subhalos) plus assumptions about galaxy–(sub)halo connection	Collapsed objects (halos) plus model for distribution of galaxy number given host halo properties	

Wechsler & Tinker, 2018 ARAA

Why should you care?

- <u>Galaxy formation</u>: A key question in how galaxies are made within dark matter halos, and what causes the diversity in the galaxy population.
- Cosmology: The observed clustering bias of galaxies is not just a function of the masses of the halos they occupy, but a more complicated multi-parameter function.

Taken from Alam et al 2017, the BOSS DR12 cosmological analysis

Difference in fo₈ values obtained from mock BOSS surveys built on the same dark matter distribution, but different bias models mapping galaxies onto the dark matter.

Do old and young galaxies live in old and young halos?

A "young" galaxy

Active star formation... Emission lines... Selected as ELG. An "old" galaxy

0

Old stellar population... red colors... Selected as LRG.

0

Croton, Gao, White 2007

• • •

- Found in semi-analytic models of galaxy formation!
- The "shuffle test" means taking all galaxies at fixed halo mass, and re-assigning them randomly to other halos of the same mass ("shuffling").
- Any correlation with halo formation history is now removed. See if the clustering has changed.
- and boy it did.

Galactic Conformity

- The idea that galaxies will exhibit the same properties as their neighbors.
- If "old" galaxies live in old halos, then old galaxies will be spatially correlated.
- (More than what is generically expected from mass-only effects.)
- So if galaxy properties were a function of M_h only, these curves would all lie on top of each other.

Detection of conformity in SDSS from Kauffmann et al 2013

Consistent with other data on galaxy bimodality?

- f_Q clearly depends on large-scale environment.
- Qualitatively consistent with the idea that old (quenched) galaxies preferentially reside in old (early-forming) halos.

Tinker et al 2008, Peng et al 2010, Tinker et al 2017, 2018, Zu & Mandelbaum 2016, 2018, Wang et al 2018.

Volume-limited 10° slice through SDSS-MGS

Tinker, Wetzel, Conroy, Mao 2017 arXiv:1609.03388

Applying the group finder to this slice.

Cen/Sat

Tinker, Wetzel, Conroy, Mao 2017 arXiv:1609.03388

SF/Quenched: Centrals

Tinker, Wetzel, Conroy, Mao 2017 arXiv:1609.03388

Consistent with other data on galaxy bimodality?

- f_Q clearly depends on large-scale environment.
- Deconvolving the contributions of centrals and satellites shows driven by satellites.
- Not consistent with central quenching being correlated with halo formation history.

Tinker et al 2008, Peng et al 2010, Tinker et al 2017, 2018, Zu & Mandelbaum 2016, 2018, Wang et al 2018.

Consistent with other data on galaxy bimodality?

- f_Q clearly depends on large-scale environment.
- Deconvolving the contributions of centrals and satellites shows driven by satellites.
- Not consistent with central quenching being correlated with halo formation history.

Tinker et al 2008, Peng et al 2010, Tinker et al 2017, 2018, Zu & Mandelbaum 2016, 2018, Wang et al 2018.

How to explain the galactic conformity detection?

- Left: Reproduction of the K13 conformity detection. Primary galaxies are found using isolation criterion.
- Right: Signal after removing "impurities" from the K13 sample of isolated galaxies.

- Examples of impurities in the Kauffmann et al sample,
- galaxies classified as "isolated" but the group finder labels them as satellites within high-mass halos.
- Source of the false conformity signal.

Orange circle: Kauffmann et al isolation radius

Grey dashed circle: Halo virial radius

Sin et al 2017 found consistent conclusions when investigating the K13 detection.

Voids as a critical test

Can you simultaneously fit the two-point correlation function and the void probability function with a model where halo occupation is independent of large-scale environment?

Test applied to BOSS LRGs

Walsh & Tinker 2019

This is a standard model: halo occupation only depends on halo mass.

Constraining Assembly Blas

Shift the mass scale depending on the large-scale density

$$f_{\rm HOD} = \frac{f_{\rho}}{2} \left[1 + \operatorname{erf} \left(\frac{\log \rho_m - \log \rho_0}{\sigma_{\rho}} \right) \right]$$

Red curve shifts galaxies from low densities to high densities Purple curve shifts galaxies to high densities from low densities

Impact of assembly bias on correlation function

Impact of the same models on the void probability function.

Tinker, Weinberg, Warren 2006

Constraints from BOSS

Recall the parameterization of assembly bias:

$$f_{\rm HOD} = \frac{f_{\rho}}{2} \left[1 + \operatorname{erf} \left(\frac{\log \rho_m - \log \rho_0}{\sigma_{\rho}} \right) \right]$$

- *f*_ρ is the key parameter for controlling the amplitude of the assembly bias.
- 68% confidence region of:

 $f_{\rho} = [-0.022, +0.026]$

Conclusions

- Any assembly bias in BOSS LRGs must be very small only impacting clustering by a couple percent.
- Assembly bias in galaxy color is minimal (or not detected) as well, including measurements of galactic conformity.
- However (#1) with DESI and future missions, "a couple percent" will be within the statistical errors.
- However (#2) assembly bias within the star-forming population needs to be looked at more closely: DESI, Euclid, WFIRST all target ELGs.