

The Dark Energy Spectroscopic Instrument (DESI)

Michael Schubnell (University of Michigan / LBNL) for the DESI Collaboration

> 15th Rencontres du Vietnam ICISE Quy Nhon, August 2019

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

DESI Science Goals

The Dark Energy Spectroscopic Instrument will

- make a precision measurement of dark energy, while making important contributions to the physics of inflation and neutrinos
- observe 14,000 deg² of the night sky
- study the distribution of ~ 35M distant galaxies (correlations between them)

DESI will use Baryon Acoustic Oscillation (BAO) & Redshift Space Distortion (RSD) techniques

- BAO gives us a ruler in the sky and enables us to measure the expansion of the Universe
- RSD allows us to measure the pull of gravity and check General Relativity

DESI will be the largest spectroscopic survey for dark energy. Each spectrum measures a galaxy redshift.

DESI will explore a x30 larger map over a x10 larger volume than SDSS

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

DESI is installed at the Mayall 4 meter Telescope at Kitt Peak National Observatory (KPNO), Arizona (US)

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

DESI by the Numbers

- DESI is a Fiber-fed multiobject spectrograph. It uses robotic control to position optical fibers onto the location of a known galaxy
- 5000 fiber positioner robots on the focal plane
- 8 sq. deg. FOV
- Ten 3-channel spectrographs
- Spectra of 35 million galaxies and quasars over 14,000 deg² in five years

DESI Subsystems – Wide-field Corrector

New 6-lens wide-field Corrector on Hexapod

Lenses mounted in cells that are in turn mounted in the stiff barrel structure

Barrel is supported in cage on a hexapod to compensate for temperature, gravity, and misalignment.

Cage is suspended from telescope cage trusses by a ring and spiders.

DESI Subsystems – Wide-field Corrector

New 6-lens wide-field Corrector on Hexapod

Lenses mounted in cells that are in turn mounted in the stiff barrel structure

Barrel is supported in cage on a hexapod to compensate for temperature, gravity, and misalignment.

Cage is suspended from telescope cage trusses by a ring and spiders.

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

TVITCHIGCT SCHUDHCT

This is the light path from the galaxies to the robots

5000 fiber positioner robots here, in the **Focal Plane System**

Focal Plane Assembly

Focal Plane Assembly (FPA) w/5000 fiber positioners (10 petals)

15th Rencontres du Vietnam, August 11-17, 2019 Michael Schubnell

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

FPA: 10 Petals \rightarrow 10 Fiber cables \rightarrow 10 spectrographs

Each Petal has 500 Fiber Positioners

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

DESI Fiber positioner robots have 2 DoF, driven by two independent, open-loop controlled gearmotors

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

5000 Fiber Positioning Robots

- Position a 107 fiber μm tip on a galaxy
 < 5 μm RMS accuracy in <45sec
- 500 per petal 10.4 mm center-to-center, 12 mm patrol disk
- Positioner powered and controlled through an attached driver board.
- Motors driven by PWM (motor current 0% - 100%)
- Open-loop control
- Each positioner uniquely addressed by ID on CAN bus

2013: First prototype fiber positioner

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Assembly of DESI Petal (2018)

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

2017: R&D petal with ~ 300 positioners

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

July 2019: 5000 positioners in the DESI focalplane

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Positioner performance is excellent

Performance of 6404 DESI positioners built and tested at the University of Michigan

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

10 Custom CCD cameras (one per petal) **guide** telescope and **focus/align** the corrector + focal plane on the 6 DOF hexapod

GFA cameras two types - identical except for optical filter: 6 x guide star tracking - feedback to telescope 4 x focus and alignment - data for hexapods

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Fiducial point sources, embedded throughout the array constrain optical plate scale and distortion polynomials

120 total fiducials x 4 dots each

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Fiber View Camera

- Observes illuminated fiducials ... and backlit fiber positioners
- Provides feedback to positioners to align fibers to guide stars

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

How we position the fibers on galaxy targets

Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science

Law15th Rencontres du Vietnam, August 11-17,

2010

Michael Schubnell

Subsystem key performance requirements

Requirement Name	Requirement	Actual	Notes
Positioner Accuracy	100 um blind, 5 um final rms	42 um typical, < 2 um rms	All units burned in and tested after built and re-tested after install into petal
Lifetime moves	> 100,000k	tested to 1,600,000 (98% > 107,000)	Test program included lifetime testing at low/high temperature extremes.
Positioner Reconfiguration Time	45s rms blind 5s rms correction	16.4s rms blind 5.2s rms correction	Simple speedups exist for correction calculation time.
Power consumption	< 3W	3.23 W while moving	Idle: 180 mW Sleep mode: < 1mW
GFA Read Noise	25 e-/pixel max	17.5 e-/px rms 20.0 e-/px max	Measured on GFAs #1-#8, all 4 amps on each.
FVC Camera Accuracy	3 um	2 um	Successful ProtoDESI run, Au.g 2016.

Petal Install

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Law 15th Reficient Net Od Vietnam, August 11-17, 2010

Installation of Petals

15th Rencontres du Vietnam, August 11-17, 2019 Michael Schubnell

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

June 25, 2019: First petal installed

First petal is mounted to installation sled arm and slowly cranked into place

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Inbound

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Done, nine to go.

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Fiber System: 10 X 49 meter fiber cable

No connectors to maximize

throughput

- Fiber core size $-\Phi$ 107 μ m (1.47 arcsec)
- optimize fiber transmission and FRD
- 90% of the output light within f/# > 3.57

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

DESI Subsystems - Spectrographs

15th Rencontres du Vietnam, August 11-17, 2019 Michael Schubnell

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

3 channel spectrograph design follows BOSS heritage

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science

Lawrence Berkeley National Laboratory

15th Rencontres du Vietnam, August 11-17, 2019

Michael Schubnell

Key Requirements and Performance

Requirement Name	Requirement	Actual or Expected Performance	Notes
Spectrograph Bandpass	360-980nm	352-983 nm	
Spectrograph throughput	see next slide	3 spectrographs below near 550 nm	Little impact to science
Number of Fibers	5,000	5,000	10 spectrographs, each with 500 fibers
CCD Total noise (per Pixel in 20 min)	<3.51 e- Avg. < 4.0 e- Max	2.6e- (LBL), 3.45e-(ITL) 2.9e- (LBL), 3.8e- (ITL)	LBL: 21 Grade A and 4 Grade B ITL: 13 Grade A and 2 Grade B

Summary of Testing Results

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

First of ten spectrographs delivered to Kitt Peak

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

6 spectrographs tested at Mayall

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

2019: Commissioning Instrument – Success!

- Commissioning Instrument run started April 1, ended June 3 •
- Hugely successful! Important checkout of software & hardware
- Sub-arcsecond images obtained on all 5 cameras within 2 hours of • opening the dome on April 1.
- Corrector, hexapod, ADC, works perfectly ۲
- Image quality excellent and as modeled:

EXPID: 14374 PROGRAM: Self Mode test with CIC EXPTIME: 20.0 SKYRA: 185.6 SKYDEC: 32.0 NIGHT: 20190529

15th Rencontres du Vietnam, August 11-17, 2019 Michael Schubnell

U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Took images on the first night of CI run

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

DESI Operations Schedule

Milestone	Date	Data Products
Start of Commissioning	October 2019	
	December 2019	Final Imaging Data Assembly
Start of Survey Validation	February 2019	
Start of Science Survey	June 2020	
	November 2020	SV Data Assembly
	April 2021	Data Assembly 1
	April 2022, '23, '24, '25	Data Assembly 2,3,4,5
Science Survey End	June 2025	
	March 2026	Final Survey Data Assembly

DESI is a large Project with many Institutions involved

Argonne National Laboratory + Barcelona – Madrid RPG + Boston University Brookhaven + National Laboratory + Carnegie Mellon University + Cornell University + École Polytechnique Fédérale de Lausanne (EPFL) + Eidgenössische Technische Hochschule Zürich (ETHZ) + Fermi National Accelerator Laboratory + GMT RPG + Harvard University + Korea Astronomy and Space Science Institute (KASI) + Korea Institute for Advanced Study (KIAS) + Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE) + Lawrence Berkeley National Laboratory + LinEA-Brazil + Max Planck Institut fur Extraterrestriche Physik + Mexico RPG + National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) – Shude Mao + National Optical Astronomy Observatory + New York University + Ohio State University + Ohio University + Peking University + Sao Paul Laboratorio Interinstitional de e-Astronomia + Shanghai Jiao Tong University + Siena College + SLAC National Accelerator Laboratory + Southern Methodist University + Swinburne University of Technology + UK RPG + Universidad de los Andes + Universitat de Barcelona + Université Aix-Marseille (AMU) + University College London + University of Arizona + University of California, Berkeley + University of California, Irvine + University of California, Santa Cruz + University of Durham + University of Florida + University of Michigan + University of Paris Saclay + University of Pittsburgh + University of Portsmouth + University of Queensland + University of Rochester + University of Toronto + University of Utah + University of Waterloo + University of Wyoming + Yale University

Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory Visit DESI at: desi.lbl.gov

Follow our progress on Twitter: @desisurvey

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory