H0 Tension: New Physics or Systematics?

Arman Shafieloo

Korea Astronomy and Space Science Institute (KASI) University of Science and Technology (UST)

15th Recontres du Vietnam, Qui Nhon, Vietnam 11-17 August 2019

Standard Model of Cosmology

Using measurements and statistical techniques to place sharp constraints on parameters of the standard cosmological model.

Baryon density

 Ω_{b}

Dark Matter is **Cold** and **weakly Interacting**: Ω_{dm}

FLRW

Neutrino mass and radiation density: *fixed* by assumptions and CMB temperature

Dark Energy is **Cosmological Constant**:

 $\Omega_{\Lambda} = 1 - \Omega_b - \Omega_{dm}$

Universe is Flat

Initial Conditions: Form of the Primordial Spectrum is *Power-law*

 n_s, A_s

Epoch of reionization

 τ

Hubble Parameter and the Rate of Expansion

Standard Model of Cosmology

Using measurements and statistical techniques to place sharp constraints on parameters of the standard cosmological model.

Baryon density

FLRW

Combination of Assumptions

Dark Energy is **Cosmological Constant**:

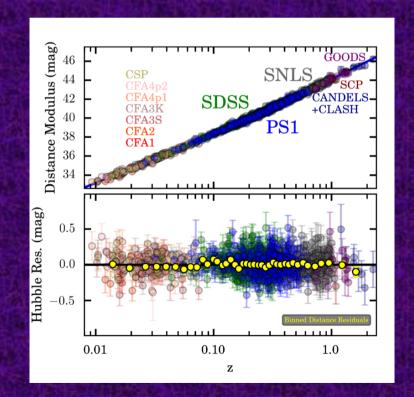
 $\Omega_{\Lambda} = 1 - \Omega_b - \Omega_{dm}$

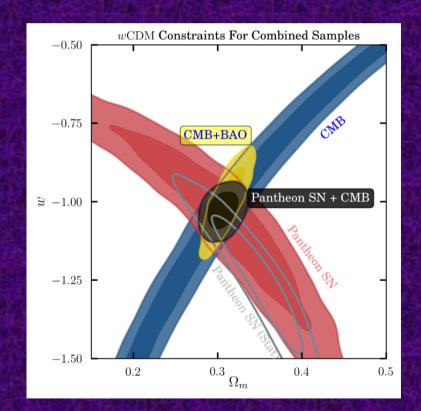
Universe is Flat

Epoch of reionization

 n_s, n_s

 $\boldsymbol{\tau}$

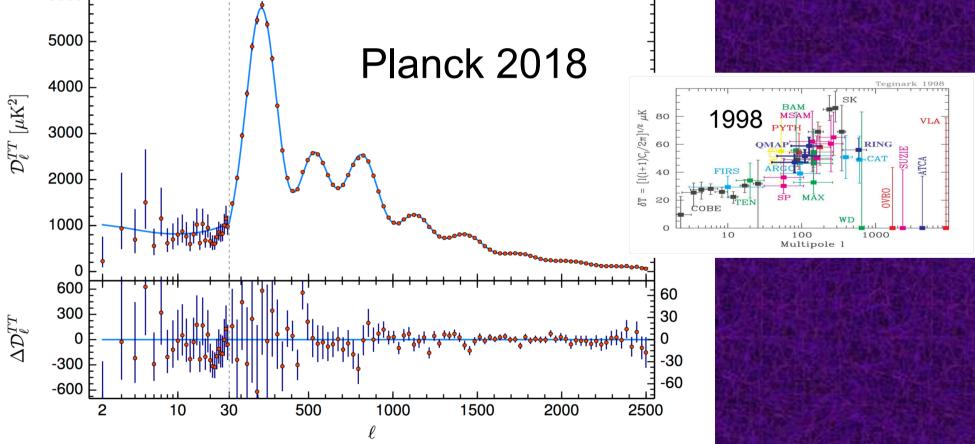

Hubble Parameter and the Rate of Expansion

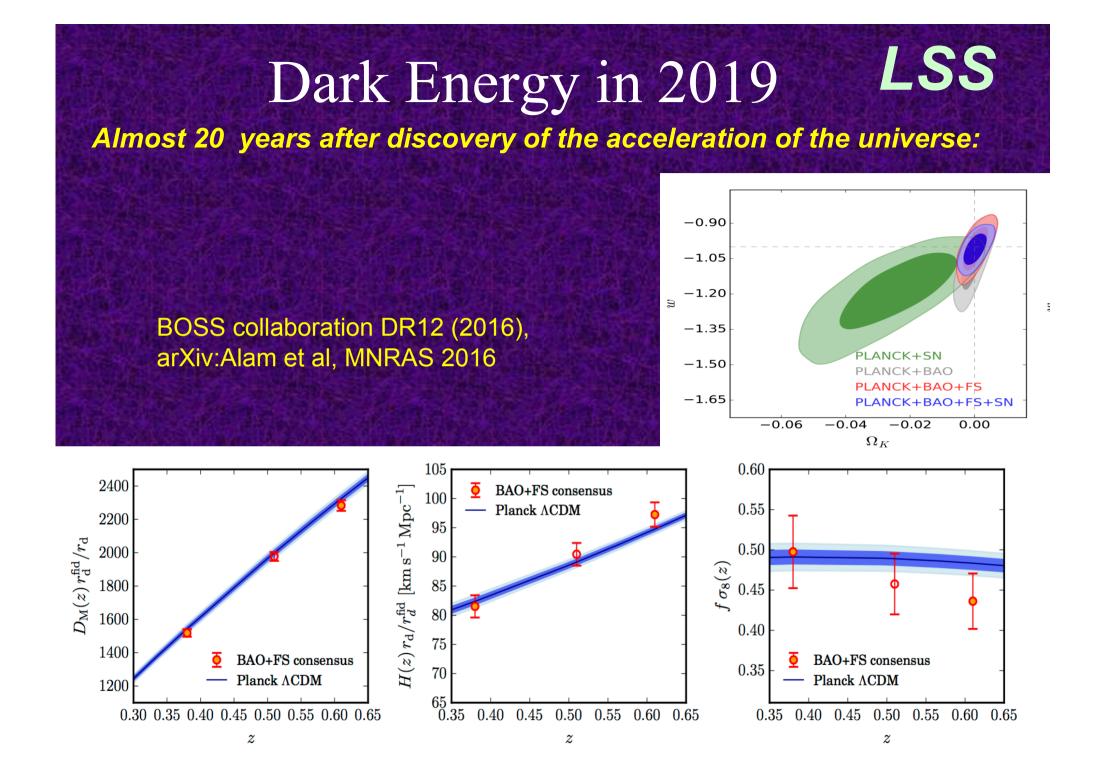

 H_0

Standard Model in 2019 SN

20 years after discovery of the acceleration of the universe:

From 60 Supernovae Ia at cosmic distances, we now have ~1000 published distances, with better precision, better accuracy, out to $z\sim2.0$. Accelerating universe in proper concordance to the data.

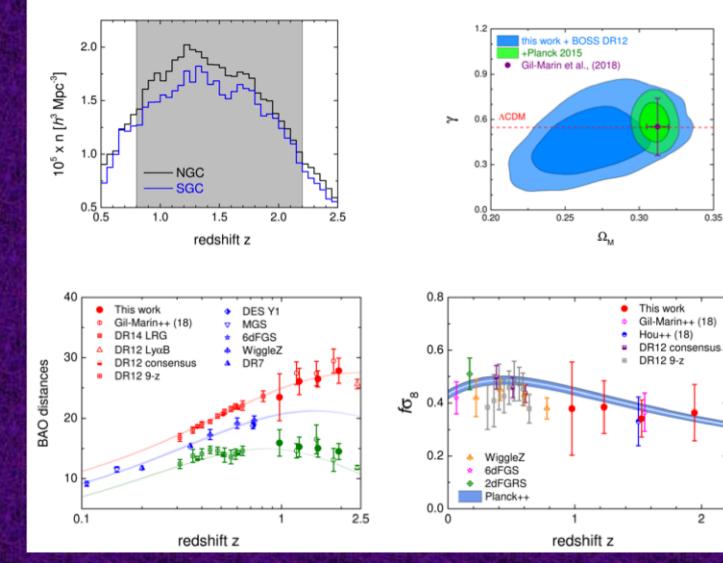




1048 spectroscopically confirmed SNIa

Pantheon Compilation Scolnic et al. (2018)

Standard Modelin 2019 CMB Almost 20 years after discovery of the acceleration of the universe: CMB directly points to acceleration. Didn't even have acoustic peak in 1998!



BOSS DR14Q

0.35

2

eBOSS collaboration: Zhao et al. MNRAS 2018

Standard Model of Cosmology

combination of *reasonable* assumptions, but.....

Baryon density

 Ω_{b}

Dark Matter is **Cold** and **weakly Interacting**: Ω_{dm}

FLRW

Neutrino mass and radiation density: assumptions and CMB temperature

Cosmological Constant:

Dark Energy is

 $\Omega_{\Lambda} = 1 - \Omega_{h} - \Omega_{dm}$

Initial Conditions: Form of the Primordial Spectrum is *Power-law*

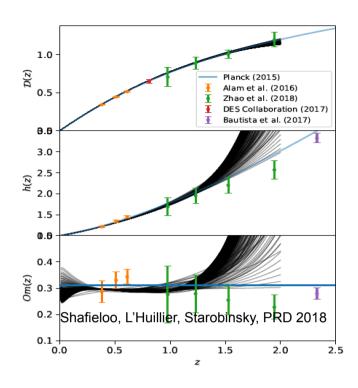
 n_s, A_s

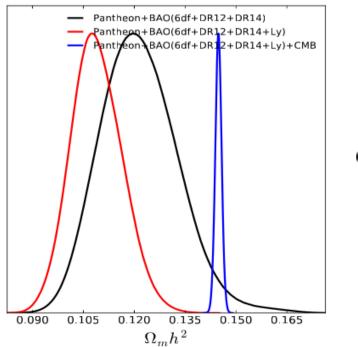
Epoch of reionization

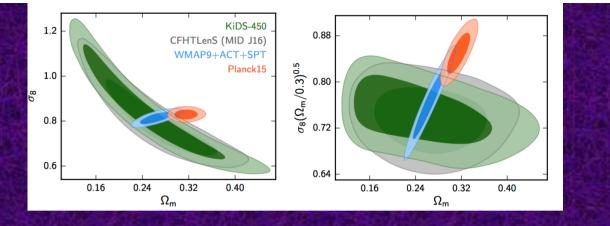
 τ

Hubble Parameter and the Rate of Expansion

 H_0

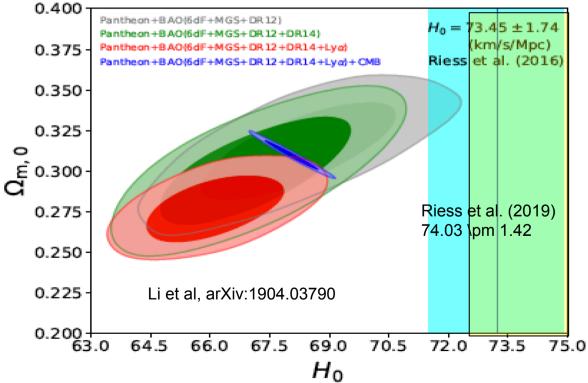


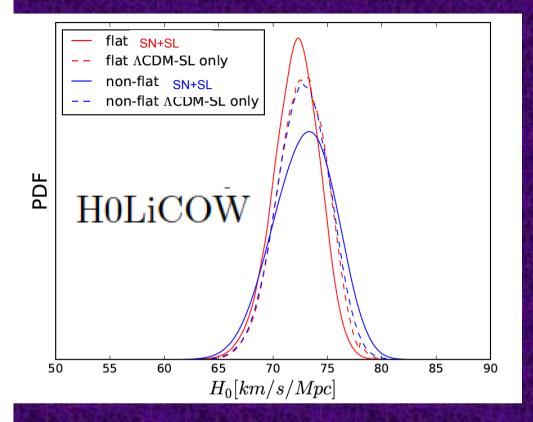

Persistent Tensions in the Standard Model



Local estimation of the Hubble constant seems to be substantially higher than the expected values fitting the standard LCDM model to CMB.

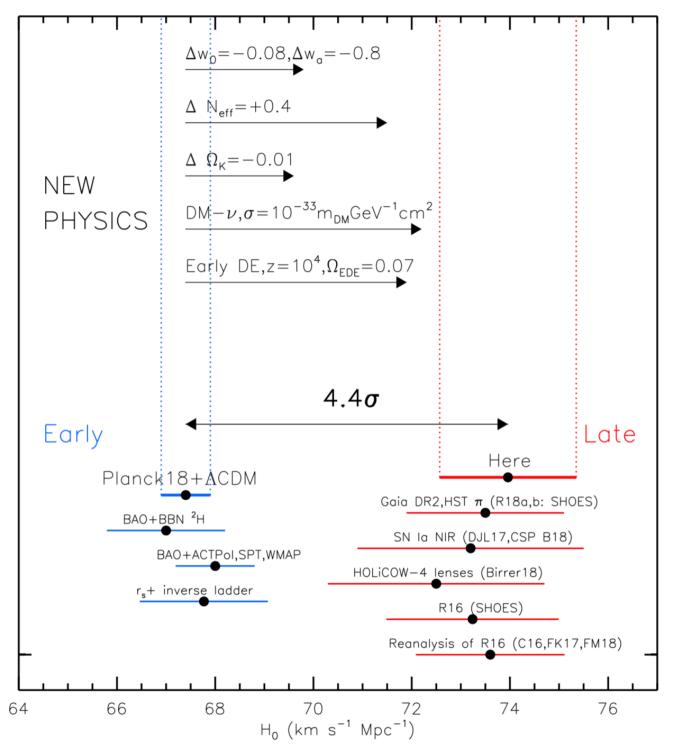
67 or 73?





Hildebrandt et al, MNRAS 2017

It is not only about H0 and CMB. Low H(z)r_d is suggested by BAO and low matter density by WL.


H0 from Strongly Lensed systems

Kai et. al, in preparation

H0LiCOW I. H0 Lenses in COSMOGRAIL's Wellspring

Suyu et al. MNRAS 2017

Order	Name	z_L	z_S
1	RXJ1131-1231	0.295	0.654
2	HE 0435-1223	0.4546	1.693
3	B1608+656	0.6304	1.394
4	SDSS 1206 + 4332	0.745	1.789

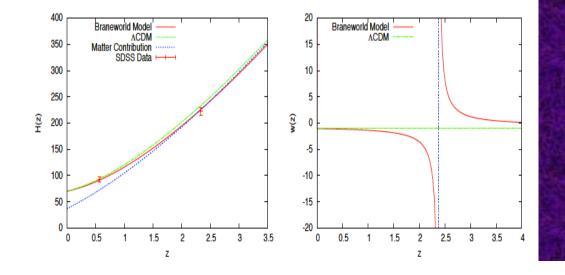
Tensions in the Standard Model

Riess et al, arXiv:1903.07603

How to go Beyond the Standard Model of Cosmology?

- Finding features/deviations in the data beyond the flexibility of the standard model using model-independent reconstructions.
- Falsifying the standard model using litmus tests.
- Introducing theoretical/phenomenological models that can explain the data better (statistically significant) than the standard model.
- Finding tension among different independent data assuming the standard model (making sure there is no systematic).

Implementing well cooked statistical approaches to get the most out of the data is essential!


Omh2

Model Independent Evidence for Dark Energy Evolution from Baryon Acoustic Oscillation

$$Omh2(z_1, z_2) = \frac{H^2(z_2) - H^2(z_1)}{(1 + z_2)^3 - (1 + z_1)^3} = \Omega_{0m} H_0^2$$

Sobri Shefieles Starshingky Ap II at 2014 Only for LCDM

Sanni, Shafieloo, Starobinsky, ApJ Lett 2014

$$= \Omega_{0m} H_0$$

Only for LCDM

$$Omh^{2} = 0.1426 \pm 0.0025$$

$$LCDM_{+Planck+WP}$$

$$Omh^{2}(z_{1}; z_{2}) = 0.124 \pm 0.045$$

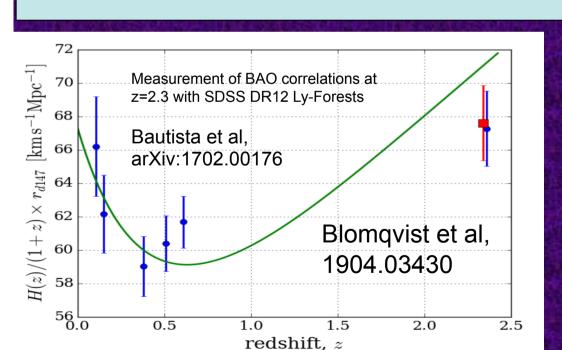
$$Omh^{2}(z_{1}; z_{3}) = 0.122 \pm 0.010$$

$$BAO+H0$$

$$Omh^{2}(z_{2}; z_{3}) = 0.122 \pm 0.012$$

$$H(z = 0.00) = 70.6 \text{ \pm 3.3 km/sec/Mpc}$$

$$H(z = 0.57) = 92.4 \text{ \pm 4.5 km/sec/Mpc}$$


$$H(z = 2.34) = 222.0 \text{ \pm 7.0 km/sec/Mpc}$$

2019 Omh2 No systematic yet found,

Model Independent Evidence for Dark Energy Evolution from Baryon Acoustic Oscillation

$$Omh2(z_1, z_2) = \frac{H^2(z_2) - H^2(z_1)}{(1 + z_2)^3 - (1 + z_1)^3} = \Omega_{0m} H_0^2$$

Only for LCDM

Sahni, Shafieloo, Starobinsky, ApJ Lett 2014

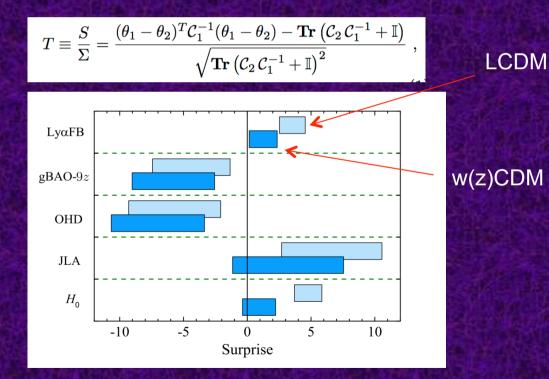
$$Omh^{2} = 0.1426 \pm 0.0025$$

$$LCDM_{+Planck+WP}$$

$$Omh^{2}(z_{1}; z_{2}) = 0.124 \pm 0.045$$

$$Omh^{2}(z_{1}; z_{3}) = 0.122 \pm 0.010$$

$$Omh^{2}(z_{2}; z_{3}) = 0.122 \pm 0.012$$


$$H(z = 0.00) = 70.6 \text{ ym } 3.3 \text{ km/sec/Mpc}$$

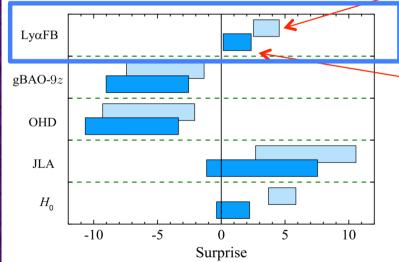
$$H(z = 0.57) = 92.4 \text{ ym } 4.5 \text{ km/sec/Mpc}$$

$$H(z = 2.34) = 222.0 \text{ ym } 7.0 \text{ km/sec/Mpc}$$

Comparing different data assuming a particular model

Zhao et al, Nature Astronomy, 2017

Kullback-Leibler (KL) divergence to quantify the degree of tension between different datasets assuming a model.


Acronym	Meaning	References
P15	The $Planck$ 2015 CMB power spectra	[6]
JLA	The JLA supernovae	[28]
$6\mathrm{dF}$	The 6dFRS (6dF) BAO	[29]
MGS	The SDSS main galaxy sample BAO	[30]
P(k)	The WiggleZ galaxy power spectra	[31]
WL	The CFHTLenS weak lensing	[32]
H_0	The Hubble constant measurement	[10]
OHD	H(z) from galaxy age measurements	[33]
gBAO-3z	3-bin BAO from BOSS DR12 galaxies	[34]
gBAO-9z	9-bin BAO from BOSS DR12 galaxies	[35, 36]
m Ly lpha FB	The Ly α forest BAO measurements	[2, 9]
В	P15 + JLA + 6dF + MGS	
ALL12	The combined dataset used in $[27]$	
ALL16-3z	$B+P(k)+WL+H_0+OHD+gBAO-3z$	$+Ly\alpha FB$
ALL16	$B+P(k)+WL+H_0+OHD+gBAO-9z$	$+Ly\alpha FB$
DESI++	P15 + mock DESI BAO [49] + moc	k SN [50]

For LCDM; H0, LyFB and JLA measurements are in tension with the combined dataset, with tension values of T = 4.4, 3.5, 1.7.

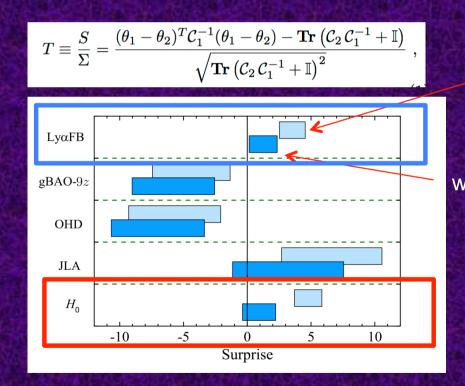
Comparing different data assuming a particular model

Zhao et al, Nature Astronomy, 2017

$T\equiv {S\over \Sigma}$ =	$= \frac{(\theta_1 - \theta_2)^T \mathcal{C}_1^{-1} (\theta_1 - \theta_2) - \mathbf{Tr} \left(\mathcal{C}_2 \mathcal{C}_1^{-1} + \mathbb{I} \right)}{\sqrt{\mathbf{Tr} \left(\mathcal{C}_2 \mathcal{C}_1^{-1} + \mathbb{I} \right)^2}} ,$

Kullback-Leibler (KL) divergence to quantify the degree of tension between different datasets assuming a model.

Bautista et al, [1702.00176] Blomqvist et al, [1904.03430]


Found no systematic/mistake in the previous measurement

VIII	II (~) II OIII BUIURJ UBO III OUDUI OIII OIII O	رمحا	
gBAO-3z	3-bin BAO from BOSS DR12 galaxies	[34]	
gBAO-9z	9-bin BAO from BOSS DR12 galaxies	[35, 36]	
${ m Ly}lpha{ m FB}$	The Ly α forest BAO measurements	[2, 9]	
В	P15 + JLA + 6dF + MGS		
ALL12	The combined dataset used in $[27]$		
ALL16- $3z$	$B+P(k)+WL+H_0+OHD+gBAO-3z-$	$+Ly \alpha FB$	
ALL16	$B+P(k)+WL+H_0+OHD+gBAO-9z+Ly\alpha FB$		
DESI++	P15 + mock DESI BAO [49] + mock	SN [50]	

For LCDM; H0, LyFB and JLA measurements are in tension with the combined dataset, with tension values of T = 4.4, 3.5, 1.7.

Comparing different data assuming a particular model

Zhao et al, Nature Astronomy, 2017

Kullback-Leibler (KL) divergence to quantify the degree of tension between different datasets assuming a model.

Bautista et al, [1702.00176] Blomqvist et al, [1904.03430]

Found no systematic/mistake in the previous measurement

Follin & Knox [1707.01175] Zhang et al, [1706.07573]

Both agrees with Riess et al 2016 H0 measurement New Ho measurement Riess et al 2019 *(situation has become worse)*

th

How to resolve the

tensions?

Tensions may disappear by themselves if they are due to statistical fluctuations (probably not anymore)

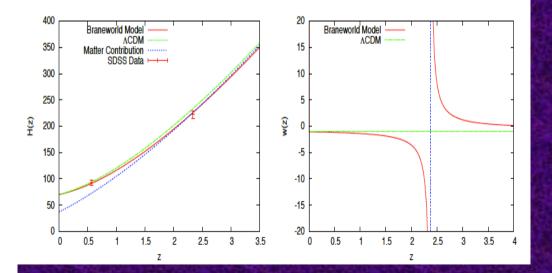
Finding systematics in different data [Sinful Adam? Not to be confused with primordial sin]

Touching any aspect of the concordance model, means going beyond the standard cosmology (which is great!) and its time to consider different possibilities:

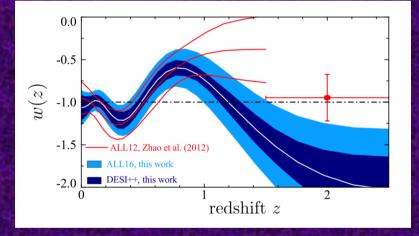
- Current tensions seems to be persistent at the background level. So just touching GR (modified gravity models) cannot help.
- Evolving dark energy? Possible but not yet so easy to satisfy all observations.
- Neutrinos? As always they are a possibility (they may not be able to help much though)
- Early Universe and seeds of fluctuations.

Standard Model of Cosmology

Universe is Flat Universe is Isotropic Universe is Homogeneous Dark Energy is Lambda (w=-1) Power-Law primordial spectrum (n s=const) Dark Matter is cold All within framework of FLRW

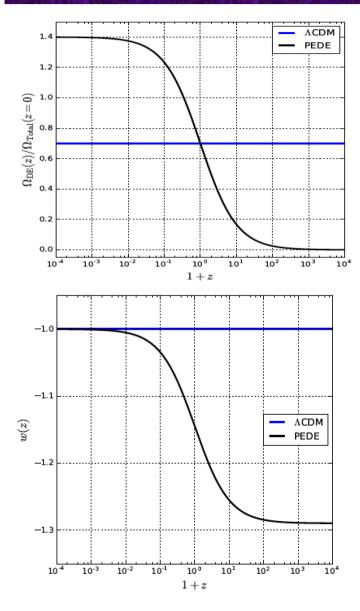

Dark Energy Models

- Cosmological Constant
- Quintessence and k-essence (scalar fields)
- Exotic matter (Chaplygin gas, phantom, etc.)
- Braneworlds (higher-dimensional theories)
- Modified Gravity


But which one is really responsible for the acceleration of the expanding universe?!

Evolving Dark Energy?

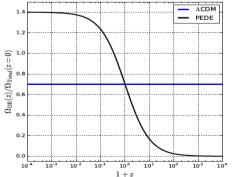
Not yet statistically significant

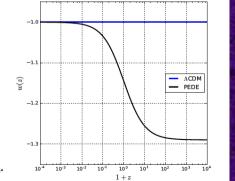

Zhao et al, Nature Astronomy, 2017

	P15	JLA	gBAO-9z	P(k)	WL	H_0	$Ly\alpha FB$	OHD
$\Delta\chi^2$	-0.7	-1.6	-2.8	+1.1	-0.1	-2.9	-3.7	-2.3
		ALL12		ALL16			DESI++	
S/N		2.5σ		3.5σ		6.4	σ	
ΔAIC		-0.3		-4.3		-24.6		
$\Delta \ln E$	-6.7 ± 0.3		-3.3 ± 0.3		11.3 ± 0.3			

Sahni et al ApJ 2014

Phenomenologically Emergent Dark Energy (PEDE)

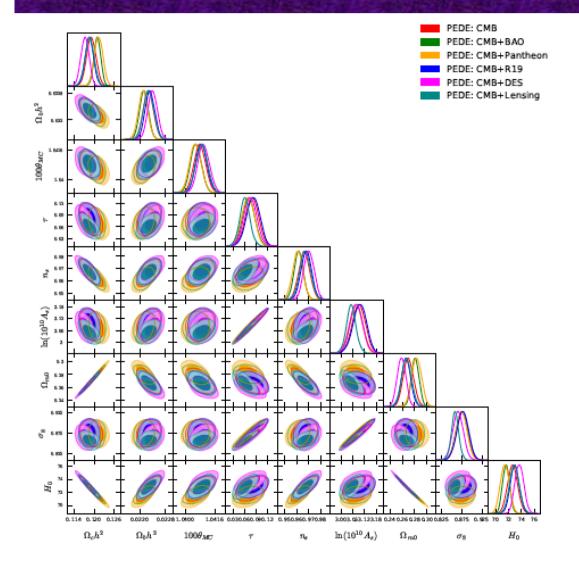

$$\Omega_{\rm DE}(z) = \Omega_{\rm DE,0} \times \left[1 - \tanh\left(\log_{10}(1+z)\right)\right]$$


$$w(z) = -\frac{1}{3\ln 10} \times \frac{1 - \tanh^2 \left[\log_{10}(1+z)\right]}{1 - \tanh \left[\log_{10}(1+z)\right]} - 1$$
$$= -\frac{1}{3\ln 10} \times \left(1 + \tanh \left[\log_{10}(1+z)\right]\right) - 1.$$

Li and Shafieloo, arXiv:1906.08275

Phenomenologically Emergent Dark Energy

Model	Data	Pantheon+BAO Pantheon+BAO			on+BAO+Lya	+CMB	
Model	Parameters	No H_0 Prior	$2\sigma H_0$ Prior	$1\sigma H_0$ Prior	No H_0 Prior	$2\sigma H_0$ Prior	$1\sigma H_0$ Prior
	Ω_m	$0.299^{+0.047}_{-0.043}$	$0.335^{+0.040}_{-0.036}$	$0.347^{+0.041}_{-0.036}$	$0.311\substack{+0.016\\-0.014}$	$0.271\substack{+0.002\\-0.003}$	$0.256\substack{+0.002\\-0.002}$
ACDM	H_0	$66.94\substack{+3.721\\-3.256}$	$71.19^{+1.890}_{0.0}$	$72.61\substack{+1.617 \\ -0.000}$	$67.91^{+1.074}_{-1.150}$	$71.19^{+0.271}_{-0.000}$	$72.61\substack{+0.200\\ 0.000}$
NOD M	χ^{2}_{bf}	1046.94	1054.76	1060.25	1056.12	1112.28	1168.98
	DIC	1051.00	1058.88	1064.27	1062.35	1127.03	1195.07
	Ω_m	$0.285^{+0.113}_{-0.180}$	$0.332\substack{+0.071\\-0.050}$	$0.350\substack{+0.050\\-0.043}$	$0.307\substack{+0.026\\-0.021}$	$0.286\substack{+0.007\\-0.011}$	$0.274_{-0.009}^{+0.006}$
	H_0	$64.84^{+14.49}_{-16.12}$	$71.30^{+5.561}_{-0.117}$	$72.70_{-0.091}^{+2.746}$	$68.49^{+2.302}_{-2.680}$	$71.19^{+1.277}_{-0.002}$	$72.61\substack{+0.918\\-0.004}$
CPL	w_0	$-0.82^{+0.193}_{-0.541}$	$-1.08^{+0.422}_{-0.347}$	$-1.05\substack{+0.350\\-0.347}$	$-0.98^{+0.267}_{-0.218}$	$-1.07\substack{+0.259\\-0.240}$	$-1.13\substack{+0.274\\-0.206}$
	w_a	$0.675_{-3.103}^{+0.547}$	$-0.11^{+1.510}_{-3.192}$	$-0.46^{+1.830}_{-2.686}$	$-0.16^{+0.816}_{-1.109}$	$-0.20^{+0.986}_{-1.249}$	$-0.11^{+0.728}_{-1.321}$
	χ^2_{bf}	1044.98	1048.84	1049.66	1055.52	1066.85	1080.83
	DIC	1052.59	1054.46	1056.23	1065.48	1085.06	1128.50
	Ω_m	$0.341^{+0.045}_{-0.041}$	$0.341^{+0.041}_{-0.037}$	$0.341^{+0.041}_{-0.030}$	$0.291\substack{+0.015\\-0.016}$	$0.289\substack{+0.002\\-0.014}$	$0.274_{-0.006}^{+0.002}$
PEDE	H_0	$72.84_{-3.530}^{+3.814}$	$73.01\substack{+3.371 \\ -1.8231}$	$72.79_{-0.186}^{+2.652}$	$71.02^{+1.452}_{-1.368}$	$71.19^{+1.306}_{-0.001}$	$72.61_{-0.000}^{+0.651}$
I LDL	χ^{2}_{bf}	1050.04	1050.04	1050.04	1071.12	1071.20	1080.40
	DIC	1052.01	1053.33	1052.98	1091.15	1091.65	1100.94



$$p_D = \overline{\chi^2(\theta)} - \chi^2(\overline{\theta}).$$

DIC
$$\equiv D(\bar{\theta}) + 2p_D = \overline{D(\theta)} + p_D,$$

Li and Shafieloo, arXiv:1906.08275

Phenomenologically Emergent Dark Energy (PEDE)

Reconciling H0 tension in a 6 parameter space?

Dataset	$\ln B_{ij}$	Strength of evidence
CMB	-0.2	Weak
CMB+BAO	-3.1	Strong
CMB+Pantheon	-5.8	Strong
CMB+R19	2.7	Definite/Positive
CMB+DES	-1.6	Definite/Positive
CMB+Lensing	-0.6	Weak

Pan, Yang, Di Valentino, Shafieloo and Chakraborty, arXiv: 1907.12551

Standard Model of Cosmology

Universe is Flat Universe is Isotropic Universe is Homogeneous Dark Energy is Lambda (w=-1) Power-Law primordial spectrum (n s=const) Dark Matter is cold All within framework of FLRW

Model Independent Estimation of Primordial Spectrum

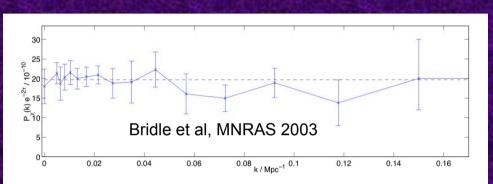
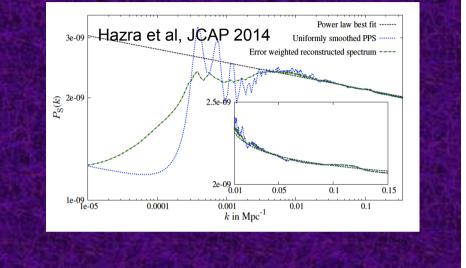
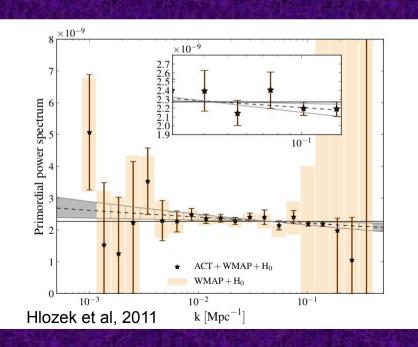
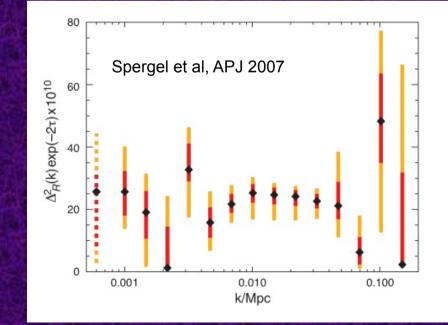
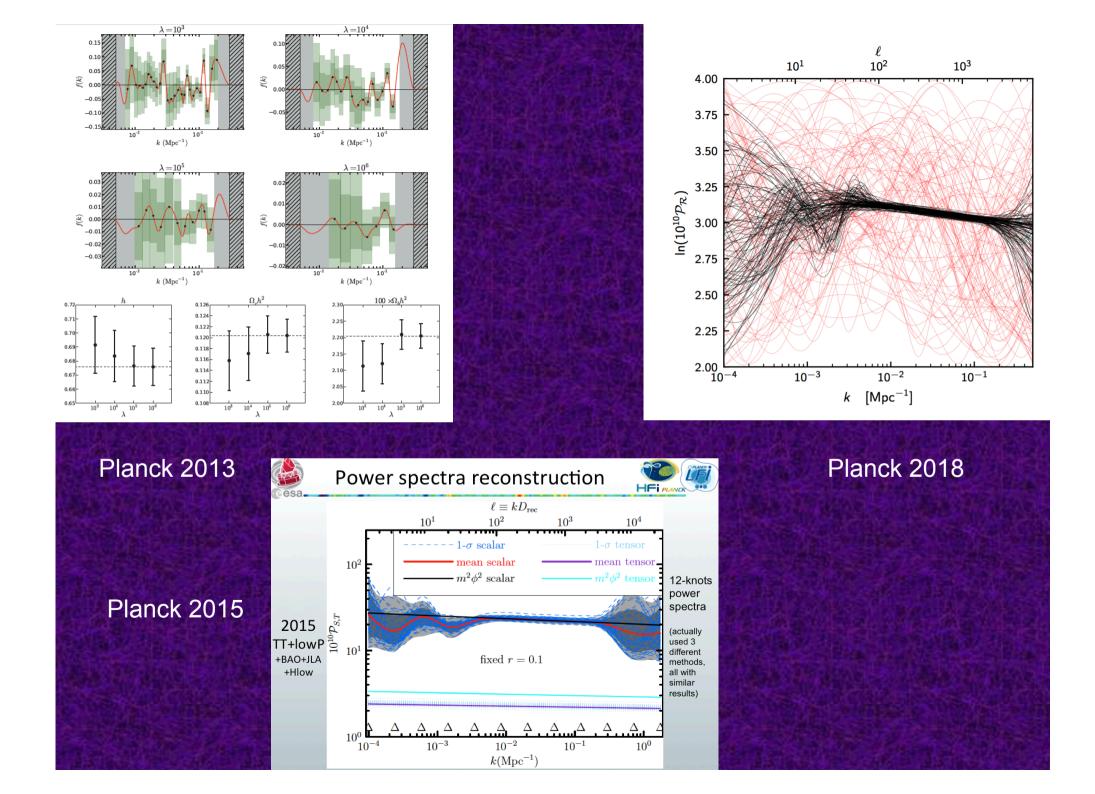
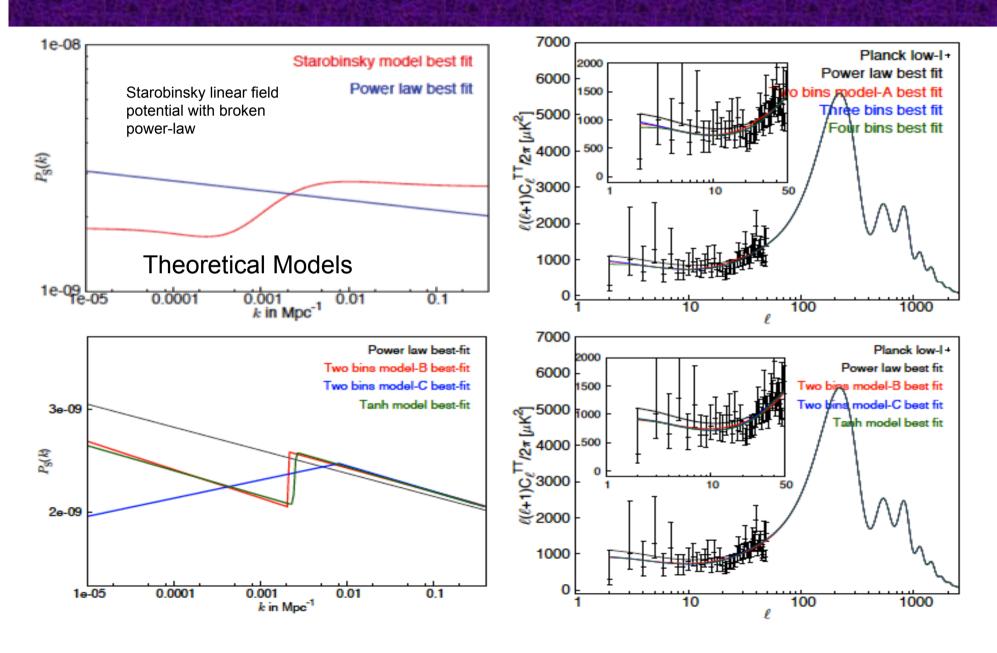






Figure 4. Reconstruction of the shape of the primordial power spectrum in 16 bands after marginalising over the Hubble constant, baryon and dark matter densities, and the redshift of reionization.



Beyond Power-Law: there are some other models consistent to the data.

Forms of PPS and Effects on the Background Cosmology

- Flat Lambda Cold Dark Matter Universe (LCDM) with power–law form of the primordial spectrum
- It has 6 main parameters.

 $C_l = \sum G(l,k)$

3

obs

 $P(k) = A_{\rm s} \left[\frac{k}{k}\right]^{n_{\rm s}-1}$

2

G(I,

 Ω_{b}

 Ω_m

 H_{0}

au

 $A_{\mathfrak{s}}$

 n_{s}

Forms of PPS and Effects on the Background Cosmology

 Cosmological parameter estimation with free form primordial power spectrum

2

 $C_l =$

4

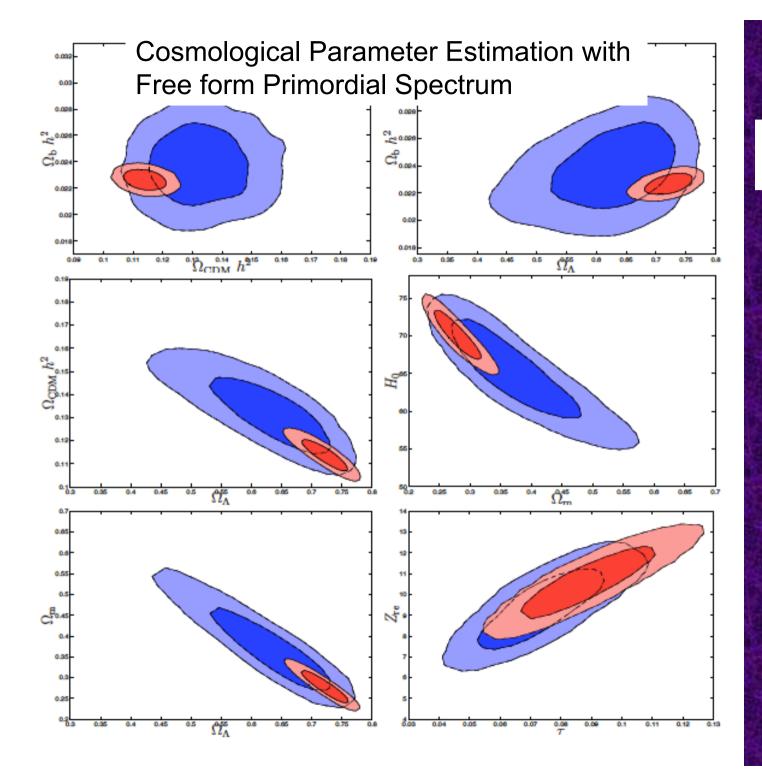
 $\overline{G(l,k)}$

 C^{obs}

3

3

G(I,

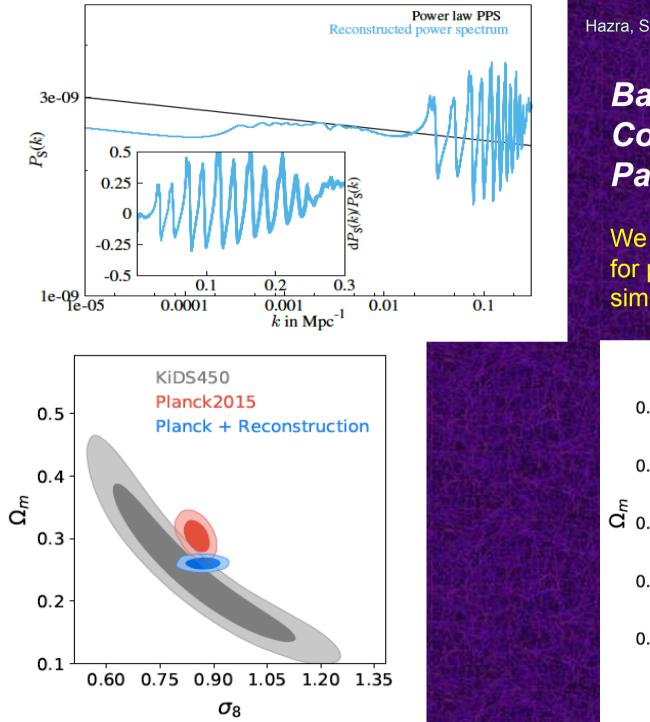

2

P(k)

 Ω_h

S2m

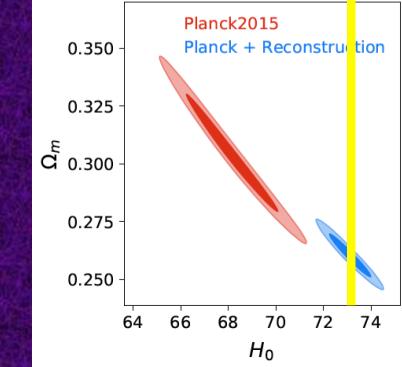
 H_{0}



WMAP9 Data

Red Contours: Power Law PPS

Blue Contours: Free Form PPS


Hazra, et al, PRD 2013

Hazra, Shafieloo, Souradeep, JCAP 2019

Background Cosmological Parameters and PPS

We use the reconstructed PPS for parameter estimation, similar to what we do with PL.

Systematics and Cosmology

High possibilities for systematics in different data

Need for independent measurements

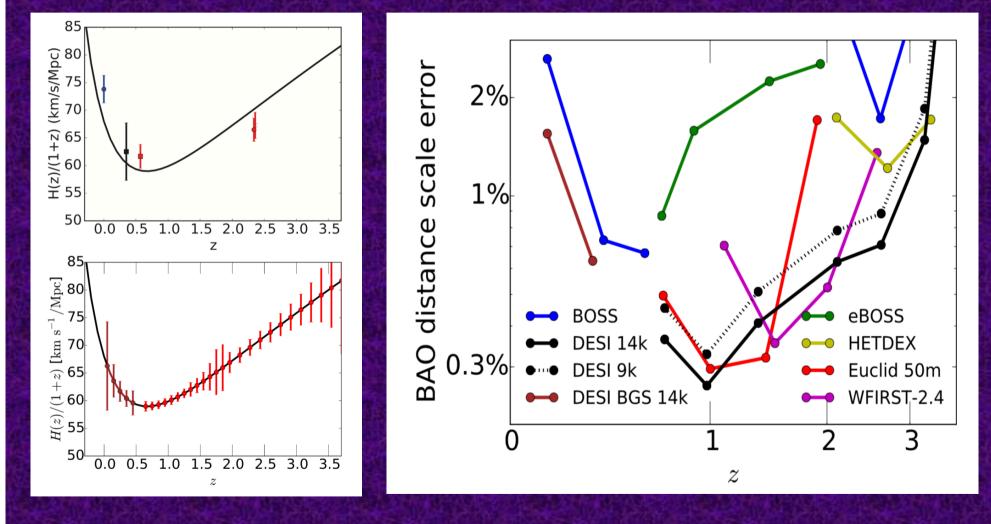
Two key questions:

Power-law PPS? Lambda DE?

Future Perspective

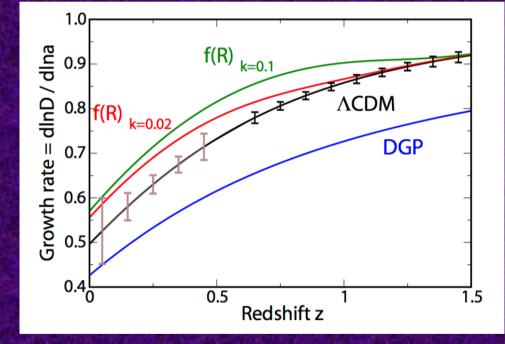
Full picture

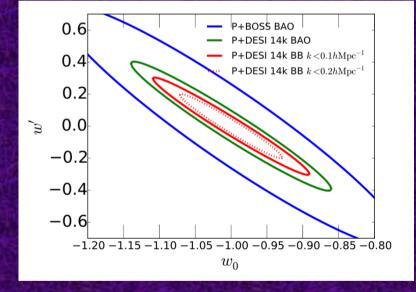
Complete reconstruction analysis with polarization data


$$C_{\ell}^{TT} = \int \frac{dk}{k} P(k) \quad G_{\ell}^{TT}(k)$$
$$C_{\ell}^{EE} = \int \frac{dk}{k} P(k) \quad G_{\ell}^{EE}(k)$$
$$C_{\ell}^{BB} = \int \frac{dk}{k} P(k) \quad G_{\ell}^{BB}(k)$$
$$C_{\ell}^{TE} = \int \frac{dk}{k} P(k) \quad G_{\ell}^{TE}(k)$$

Searching for correlations!

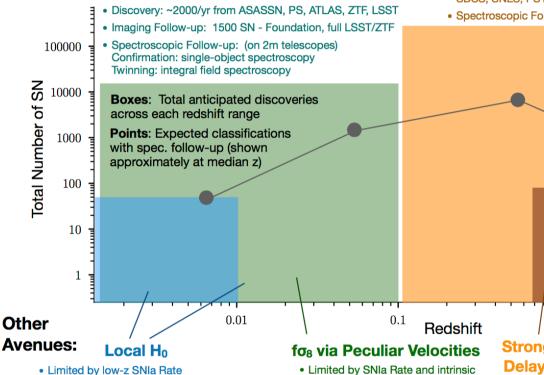
$$P_{S}(k), P_{T}(k), P_{iso}(k)$$


Primordial power spectra from Early universe $G_{\ell}^{TT}(k), G_{\ell}^{EE}(k), G_{\ell}^{BB}(k), G_{\ell}^{TE}(k)$ Post recombination Radiative transport kernels in a given cosmology


Future perspective (late universe)

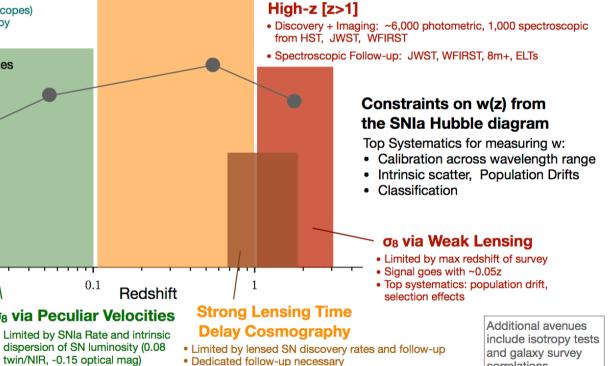
Aghamousa et al, [arXiv:1611.00036] DESI Collaboration

Future perspective (late universe)


Aghamousa et al, [arXiv:1611.00036] DESI Collaboration

Future perspective

Astro2020


The Future of SN Ia Cosmology at a Glance

Low-z [z<0.1]

Mid-z [0.1<z<1]

- Discovery + Imaging: >300,000 photometric, 6,000 spectroscopic from SDSS, SNLS, PS1, DES, LSST, WFIRST
- Spectroscopic Follow-up: multi-object spec. on 4-8m telescopes

- ~1 SN / yr in distance-calibrated galaxy at z<0.01 Top systematics: cross-matching cepheid and Hubble flow host galaxy properties
- Top systematics: MW extinction
- Top systematics: microlensing, lens model systematics

correlations

Scolnic, et al, arXiv:1903.05128

Cosmology vs Systematics vs Assumptions

- With higher quality of the data the role of systematics will become more and more prominent.
- Higher precision may cost us uncontrollable bias if we make wrong assumptions.

Conclusion

The current standard model of cosmology seems to work fine but this does not mean all the other models are wrong.

 H0 tension seems remaining persistent in the context of the LCDM model. This can open ways for competitive alternatives (PEDE?).

First target can be testing different aspects of the standard 'Vanilla' model. If it is not 'Lambda' dark energy or power-law primordial spectrum then we can look further. It is possible to focus the power of the data for the purpose of the falsification. Next generation of astronomical/ cosmological observations, (DESI, Euclid, LSST, WFIRST, SKA(?), etc) will make it clear about the status of the concordance model in 2020s.

Combination of different cosmological data also hints towards some tension with LCDM model. If future data continues the current trend, we may have some exciting times ahead!