Infrared universality of ζ
in asymptotically FLRW Universe

Yuko Urakawa (Bielefeld U., NagoyaU.)

Tanaka \& Y.U. JCAP 1606 (16) 020
Tanaka \& Y.U. JHEP 1710 (17)127
Tanaka \& Y.U. In progress
with Takahiro Tanaka (Kyoto U.)

Infrared triangle

$$
\begin{aligned}
& \text { Strominger+ }(13,14, \ldots) \\
& \text { review } 1703.05448
\end{aligned}
$$

Christodoulou(1991)

Theorem
Bloch E Nordsieck(1937)
Weinberg(1965)

from talk slide of A.Ishibashi

SYMMETRY

(approaches to M_{4} in $r \rightarrow \infty$)
Bondi, Metzuer, Sachs (1962)

Soft theorem • \triangle

Soft photon theorem
\langle out $| a_{+}^{\text {out }}(\vec{q}) \mathcal{S} \mid$ in $\rangle \left.=e\left[\sum_{k=1}^{m} \frac{Q_{k}^{\text {out }} p_{k}^{\text {out }} \cdot \varepsilon^{+}}{p_{k}^{\text {ot }} \cdot q}-\sum_{k=1}^{n} \frac{Q_{k}^{\text {in }} p_{k}^{\text {in }} \cdot \varepsilon^{+}}{p_{k}^{\text {in }} \cdot q}\right]\langle$ out $| \mathcal{S} \right\rvert\,$ in $\rangle+\mathcal{O}\left(q^{0}\right)$
propagator

$$
\frac{-i}{(p+q)^{2}+m^{2}}=\frac{-i}{p^{2}+2 p \cdot q+q^{2}+m^{2}}=\frac{-i}{2 p \cdot q}
$$

vertex factor $i e \varepsilon^{\mu} 2 Q p_{\mu}$

Infrared triangle

Infrared physics in cosmology

Questions

- Gauge theories in asymptotically flat spacetimes,

Conditions on asym. geometry + Gauge invariance (symmetry group therein)
$\longrightarrow I R$ universal properties: Soft th., Memory effect, Canc. of IR div.
Q1. Does the same argument apply to ζ ?

Questions

- Gauge theories in asymptotically flat spacetimes,

Conditions on asym. geometry + Gauge invariance (symmetry group therein)
$\longrightarrow I R$ universal properties: Soft th., Memory effect, Canc. of IR div.
Q1. Does the same argument apply to ζ ?
Conditions on asym. geometry + Gauge invariance
asym. FLRW spatial Diff (including large GTs)
$\longrightarrow I R$ universal properties: Soft th., const sol. of ζ, Canc. of IR div.

Questions

- Gauge theories in asymptotically flat spacetimes,

Conditions on asym. geometry + Gauge invariance (symmetry group therein)
$\longrightarrow I R$ universal properties: Soft th., Memory effect, Canc. of IR div.
Q1. Does the same argument apply to ζ ?
Conditions on asym. geometry + Gauge invariance asym. FLRW spatial Diff (including large GTs)
$\longrightarrow I R$ universal properties: Soft th., const sol. of ζ, Canc. of IR div.

Q2. Does it apply just w/ spatial Diff but w/o 4D Diff?
IR universal properties hold e.g., for Horava-Lifshitz gravity

Outline

1) Exercise in classical theory (Mostly review)

- Definition of asym. FLRW, following gradient expansion
- IR properties: Const. solution of ζ (a.k.a.Weinberg's adiabatic mode)

2) Extension to quantum theory

- Stochastic approach + Gradient expansion

Basic assumptions

【 Asymptotically FLRW spacetime】

【Spatial Diff．invariance】 $\quad x^{i} \rightarrow \tilde{x}(t, x)$
Including dilatation inv．$\quad x^{i} \rightarrow e^{-s} x^{i}$
Asymptotic symmetry which is compatible w／asym FLRW

【 Locality】（of the original Lagrangian）＊before solving constraints

$$
\mathcal{L}(x)=\mathcal{L}[\Phi(x)]
$$

Gradient expansion

Gradient expansion

 salopek \& Bond (1990), Shibata \& sasaki (1999)Physical scale of inhomogeneity of our focus $L \gg 1 / H$ (or coarse graining scale)

$$
\epsilon \equiv 1 /(H L)
$$

In local theory, we identity ϵ exp. as derivative exp.
(d+1)-dim line element \& Gauge choice

$$
d s^{2}=-N^{2} d t^{2}+g_{i j}\left(d x^{i}+N^{i} d t\right)\left(d x^{j}+N^{j} d t\right) \quad g_{i j}=a^{2} e^{2 \zeta} \gamma_{i j} \quad \operatorname{det}[\gamma]=1
$$

- spatial coordinates: Transverse $\quad \gamma_{i j}{ }^{\mid j}=0$

Asymptotically FLRW spacetime

Asymp FLRW condition

$$
\left|e^{-\bar{\zeta}} \frac{N_{i}}{a N}\right|=\mathcal{O}(\epsilon)
$$

spatial average at reference time t_{*}

$$
\begin{gathered}
\bar{\zeta} \equiv \frac{\int d^{d} \boldsymbol{x} \zeta\left(t_{\star}, \boldsymbol{x}\right)}{\int d^{d} \boldsymbol{x}} \\
x^{i} \rightarrow e^{-s} x^{i} \quad \bar{\zeta} \rightarrow \bar{\zeta}-s
\end{gathered}
$$

* Do not impose condition on time derivative of $\gamma_{i j}$

Lyth, Malik E Sasaki (2004)

* At linear order,【 AsympFLRW】 is a condition on shear. $k \sigma_{\mathrm{g}} \sim \partial_{i} N_{i} / a$
* $\bar{\zeta}$ is introduced for the dilatation invariance.
(* For (d+1)-Diff, the above condition is imposed on $K=d H$ slicing.)

Classical Lagrangian

【Spatial Diff．invariance】 \＆【Locality】

$$
S=\int d^{d+1} x \sqrt{-g}\left[\mathcal{L}_{\mathrm{g}}+\mathcal{L}_{\text {matter }}\right]
$$

with

$$
\begin{gathered}
\mathcal{L}_{\mathrm{g}}=\frac{1}{16 \pi G}\left[\left(K_{j}^{i} K_{i}^{j}-\beta_{1} K^{2}\right)+\beta_{2}{ }^{s} R+\mathcal{O}\left(\epsilon^{2} \mathrm{w} / \mathrm{o} N_{i}, \epsilon^{3} \mathrm{w} / N_{i}\right)\right] \\
K_{i j}=\frac{1}{2 N}\left(\dot{\gamma}_{i j}-D_{i} N_{j}-D_{j} N_{i}\right) \quad K \equiv \gamma^{i j} K_{i j}
\end{gathered}
$$

＊Condition on matter sector needs a bit more inspection．
Matter sector \ni Integer spin fields w／sDiff＋locality

Bottom-line argument

(d+1)-dim Diff $\quad \mathrm{H}$-const $\& \mathrm{M}$-const $\longrightarrow \frac{\dot{\zeta}}{H}=\mathcal{J}+\mathcal{O}(\epsilon)$
\mathcal{J} is described only by other independent dynamical fields.
$\begin{array}{cc}\text { c.f. projectable } \mathrm{HL} & \mathrm{M} \text {-const } \\ \text { non-projectable } \mathrm{HL} & \mathrm{H} \& \mathrm{M} \text {-const }\end{array} \longrightarrow \quad \frac{\dot{\zeta}}{H}=\mathcal{J}+\mathcal{O}(\epsilon)$

IzumigMukohyama(11) Gumrukcuoglu et al. (11)

Armendariz-Picon et al(10)
Arai, sibíryakov, Y.U. (18)
(ex) Single scalar field, Linear perturbation

$$
\begin{array}{ll}
\text { H-const } \frac{\dot{\zeta}}{H}=\frac{2(d-1) H^{2}}{16 \pi G \dot{\bar{\phi}}^{2}} \frac{\partial_{k} N_{k}}{a^{2} H}+\mathcal{O}\left(\epsilon^{2}\right)=\mathcal{O}\left(\epsilon^{2}\right) \\
k \sigma_{\mathrm{g}} \sim \partial_{i} N_{i} / a \propto 1 / a^{d-1} \quad \zeta^{(\mathrm{L}), \operatorname{dec}} \propto \int d t \frac{H^{2}}{a^{d^{2}}} & \text { ultra-SR Kinney (05) }
\end{array}
$$

Existence of const．solution w／（d＋1）－dim Diff

Choosing time slicing $K=d H \quad \longrightarrow \quad N=1+\frac{\dot{\zeta}}{H}+\mathcal{O}\left(\epsilon^{2}\right)$
recall $\delta \mathrm{N}$ formalism Starobinsky（82），sasaki－Stewarat（95）
H－const $\quad \frac{\delta \rho_{\text {tot }}}{\bar{\rho}}=\mathcal{O}(\epsilon) \quad \delta \rho_{\text {total }} \equiv \delta \rho+\delta \rho_{\mathrm{TT}} \quad \delta \rho_{\mathrm{TT}} \equiv \frac{A^{i}{ }_{j} A^{j}{ }_{i}}{16 \pi G}$
M－const Remove one field e．g．scalar field system $\quad \phi^{1}=\phi^{1}\left(\phi^{2}, \phi^{3}, \ldots\right)$

> Tanaka \& Y.u. (in progress)
$\zeta \mathrm{w} / \mathrm{o} \mathcal{O}\left(\epsilon^{2}\right)$ appears only through $N\left(\right.$ or δN ）in $\frac{\delta \rho_{\text {tot }}}{\bar{\rho}}=\mathcal{O}(\epsilon)$
【Spatial Diff．】\＆【Asymp FLRW】
$\longrightarrow \quad \frac{\dot{\zeta}}{H}=\mathcal{J}+\mathcal{O}(\epsilon) \quad$ also for inhomogeneous ζ 【locality】

Outline

1) Exercise in classical theory (Mostly review)

- Definition of asym. FLRW, following gradient expansion
- IR properties: Cost. solution of 弓 (a.k.a.Weinberg's adiabatic mode)

2) Extension to quantum theory

- Stochastic approach + Gradient expansion

Repeat the same argument, using effective action.

Dilatation invariance

$|\Psi\rangle$: Quantum state for $\mathrm{g}_{\mu \mathrm{v}}, \varphi^{\alpha} \quad \varphi^{\alpha s}\left(t, \boldsymbol{x}_{s}\right)=e^{-\mathcal{S}_{\alpha} s} \varphi^{\alpha}(t, x) \quad \boldsymbol{x}_{s}=e^{s} \boldsymbol{x}$ including higher spin particles Arreani-Hameds maldacena(15)

Noether charge of the dilatation

$$
Q_{\zeta} \equiv \frac{1}{2} \int d^{3} \boldsymbol{x}\left[\Delta_{s} \zeta(t, \boldsymbol{x}) \pi(t, \boldsymbol{x})+\sum_{\alpha} \Delta_{s} \varphi^{\alpha}(t, \boldsymbol{x}) \pi_{\alpha}(t, \boldsymbol{x})+\ldots+\text { (h.c.) }\right]
$$

Dilatation invariance of the quantum system

$$
Q_{\zeta}|\Psi\rangle=0
$$

Locality

Effective action is in general non-local.
Assuming that a quantum state can be expressed as

$$
|\Psi\rangle=U\left(\delta g, \varphi^{\alpha}\right)\left|\Psi_{\mathrm{adi}}\right\rangle \quad U^{\dagger} U=1
$$

$\left|\Psi_{\text {adi }}\right\rangle$: adiabatic vacuum or Euclidean vacuum

$$
Q_{\zeta}\left|\Psi_{\text {adi }}\right\rangle=0
$$

e.g. non-adiabatic vac. $\left|\Psi^{\prime}\right\rangle=\prod_{k} S_{k}\left(\theta_{k}, \phi_{k}\right)\left|\Psi_{\text {adi }}\right\rangle$

【locality】

$$
S_{\mathrm{tot}}=S+\delta S \quad \text { is local. }
$$

Integrating out short modes

$\varphi \equiv\left\{\delta g, \varphi^{\alpha}\right\} \quad$ metric perturbations \& matter fields short modes

$$
\boldsymbol{\varphi}^{(\mathrm{S})}(t, \boldsymbol{x}) \equiv \int \frac{d^{d} \boldsymbol{k}}{(2 \pi)^{\frac{d}{2}}} \theta\left(k-k_{c}(a)\right) e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \boldsymbol{\varphi}(t, \boldsymbol{k})
$$

long modes

$$
\boldsymbol{\varphi}^{(\mathrm{L})}(t, \boldsymbol{x}) \equiv \boldsymbol{\varphi}(t, \boldsymbol{x})-\boldsymbol{\varphi}^{(\mathrm{S})}(t, \boldsymbol{x})
$$

Stochastic inflation
starobinsky (86)

Smeared field in gradient exp. corresponds to $\varphi^{(\mathrm{L})}$

Influence functional
Feynman \& Hibbs (65)

$$
i S_{\mathrm{eff}}\left[\boldsymbol{\varphi}_{+}^{(\mathrm{L})}, \boldsymbol{\varphi}_{-}^{(\mathrm{L})}\right] \equiv \ln \left[\int D^{g} \boldsymbol{\varphi}_{+}^{(\mathrm{S})} \int D^{g} \boldsymbol{\varphi}_{-}^{(\mathrm{S})} e^{i S_{\mathrm{tot}}\left[\boldsymbol{\varphi}_{+}^{(\mathrm{L})}, \boldsymbol{\varphi}_{+}^{(\mathrm{S})}\right]-i S_{\mathrm{tot}}\left[\boldsymbol{\varphi}_{-}^{(\mathrm{L})}, \boldsymbol{\varphi}_{-}^{(\mathrm{S})}\right]}\right]
$$

effective action $w /$ influence of $\varphi^{(S)}$

Existence of constant solution

【Spatial Diff．invariance】
including dilatation inv．
$x^{i} \rightarrow e^{s} x^{i}$
$Q_{\zeta}|\Psi\rangle=0$

【 Asymptotically FLRW spacetime】

$$
\left|e^{-\zeta \bar{\zeta}} \frac{N_{i}}{a N}\right|=\mathcal{O}(\epsilon) \quad \mathrm{N}, \mathrm{Ni}, \zeta \text { satisfy the eoms derived from effective action }
$$

【 Locality】 $S_{\text {tot }}=S+\delta S$ is local． δS ：excitation from adiabatic vac．

WT identity for dilatation

dilatation preserves asymp FLRW

$\boldsymbol{\star}=\frac{\int D^{g} \boldsymbol{\varphi}_{+}^{(\mathrm{S})} \int D^{g} \boldsymbol{\varphi}_{-}^{(\mathrm{S})} \boldsymbol{\varphi}_{ \pm}^{(\mathrm{S})}\left(x_{1}\right) \cdots \boldsymbol{\varphi}_{ \pm}^{(\mathrm{S})}\left(x_{n}\right) e^{i\left(S_{\mathrm{int}}\left[\boldsymbol{\varphi}_{+}^{(\mathrm{L})}, \boldsymbol{\varphi}_{+}^{(\mathrm{S})}\right]-i S_{\mathrm{int}}\left[\boldsymbol{\varphi}_{-}^{(\mathrm{L})}, \boldsymbol{\varphi}_{-}^{(\mathrm{S})}\right]\right)}}{\int D^{g} \boldsymbol{\varphi}_{+} \int D^{g} \boldsymbol{\varphi}_{-} e^{i\left(S_{\mathrm{int}}\left[\boldsymbol{\varphi}_{+}^{(\mathrm{L})}, \boldsymbol{\varphi}_{+}^{(\mathrm{S})}\right]-i S_{\mathrm{int}}\left[\boldsymbol{\varphi}_{-}^{(\mathrm{L})}, \boldsymbol{\varphi}_{-}^{(\mathrm{S})}\right]\right)}}$

$$
S_{\text {int }}\left[\boldsymbol{\varphi}^{(\mathrm{L})}, \boldsymbol{\varphi}^{(\mathrm{S})}\right] \equiv S_{\mathrm{tot}}\left[\varphi^{(\mathrm{L})}, \varphi^{(\mathrm{S})}\right]-S\left[\boldsymbol{\varphi}^{(\mathrm{L})}\right]
$$

WT \star before dilatation $=\star$ after dilatation

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} x_{i} \cdot \partial_{x_{i}}+\sum_{\alpha} \mathcal{S}_{\alpha}\right)\left\langle\varphi_{ \pm}^{(\mathrm{S})}\left(x_{1}\right) \cdots \varphi_{ \pm}^{(\mathrm{S})}\left(x_{n}\right)\right\rangle \varphi_{\boldsymbol{\varphi}^{(\mathrm{S})}} \\
& =\int d_{\text {int }}\left[\varphi^{(\mathrm{L})}, \boldsymbol{\varphi}^{(\mathrm{LL}, s]}=S_{\text {int }}\left[\varphi^{(\mathrm{L})}-\delta \boldsymbol{\varphi}^{(\mathrm{L})}, \varphi^{(\mathrm{L})}\right]\right. \\
& \left.=\left\langle\left.\varphi_{ \pm}^{(\mathrm{S})}\left(x_{1}\right) \cdots \varphi_{ \pm}^{(\mathrm{S})}\left(x_{n}\right) \frac{\delta i S_{\mathrm{int}}\left[\varphi_{+}^{(\mathrm{L})}, \varphi_{+}^{(\mathrm{S})}\right]}{\delta \zeta_{+}^{(\mathrm{L})}(x)}\right|_{\varphi_{+}^{(\mathrm{L})}=0}\right\rangle_{\varphi^{(\mathrm{S})}}-\int d^{d+1} x\left\langle\left.\varphi_{ \pm}^{(\mathrm{S})}\left(x_{1}\right) \cdots \varphi_{ \pm}^{(\mathrm{S})}\left(x_{n}\right) \frac{\delta i S_{\mathrm{int}}\left[\varphi_{-}^{(\mathrm{L})}, \varphi_{-}^{(\mathrm{S})}\right]}{\delta \zeta_{-}^{(\mathrm{L})}(x)}\right|_{\varphi_{-}^{(\mathrm{L})}=0}\right\rangle\right\rangle_{\varphi^{(\mathrm{S})}}
\end{aligned}
$$

Soft theorem

Soft theorem: WT for dilatation + 【locality】

$\left(-\sum_{i=1}^{n} \partial_{k_{i}} \boldsymbol{k}_{i}+\sum_{\alpha} S_{\alpha}\right)\left\langle\varphi_{ \pm}^{(S)}\left(t_{1}, \boldsymbol{k}_{1}\right) \cdots \varphi_{ \pm}^{(S)}\left(t_{n}, \boldsymbol{k}_{n}\right)\right\rangle_{\varphi^{(S)}}$

Remark

Soft theorem $D \varphi^{(\mathrm{S})} \quad \neq \quad$ Consistency relation $D \varphi^{(\mathrm{S})} D \varphi^{(\mathrm{L})}$

Soft theorem \rightarrow Consistency relation

Soft theorem $D^{g} \varphi^{(\mathrm{S})} \quad=\quad$ Consistency relation $D^{9} \varphi^{(\mathrm{S})} D^{g} \varphi^{(\mathrm{L})}$
only when the contribution of $\zeta_{k L}$ is factorizable.
$\zeta^{(\mathrm{L})}\left(t, \boldsymbol{k}_{\mathrm{L}}\right)=\zeta^{(a d)}\left(\boldsymbol{k}_{\mathrm{L}}\right)+\int^{t} d t^{\prime} H\left[\mathcal{J}_{\mathrm{J}}\left(t^{\prime} \lambda_{\mathrm{L}}\right)+\boldsymbol{\mathcal { J } _ { \mathrm { IF } } (t ^ { \prime } , \boldsymbol { k } _ { \mathrm { L } })]}+\mathcal{O}(\epsilon)\right.$
$\mathrm{CR} \quad\left(\sum_{i=2}^{n} \boldsymbol{k}_{i} \cdot \partial_{\boldsymbol{k}_{i}}+(n-1) d-\sum_{\alpha} \mathcal{S}_{\alpha}\right)\left\langle T \boldsymbol{\varphi}^{(\mathrm{S})}\left(t_{1}, \boldsymbol{k}_{1}\right) \cdots \boldsymbol{\varphi}^{(\mathrm{S})}\left(t_{n}, \boldsymbol{k}_{n}\right)\right\rangle$

$$
=-\frac{(2 \pi)^{\frac{d}{2}}}{P_{\zeta}\left(k_{\mathrm{L}}\right)}\left\langle T \zeta^{(\mathrm{L})}\left(\boldsymbol{k}_{\mathrm{L}}\right) \boldsymbol{\varphi}^{(\mathrm{S})}\left(t_{1}, \boldsymbol{k}_{1}\right) \cdots \boldsymbol{\varphi}^{(\mathrm{S})}\left(t_{n}, \boldsymbol{k}_{n}\right)\right\rangle .
$$

No additional requirement for gauge theories in asymp. flat sp.

LSZ reduction formula (, Lorentz symmetry)
Inserting soft legs.

$$
\frac{-i}{(p+q)^{2}+m^{2}}=\frac{-i}{p^{2}+2 p \cdot q+q^{2}+m^{2}}=\frac{-i}{2 p \cdot q} \text { \& } i e e^{\mu} 2 Q p_{\mu}
$$

Summary

Soft theorem
【 Asymp FLRW】
【Spatial Diff．】 w／dilatation
\mathbf{X} Non－flat FLRW

【 Locality】
X non－BD

weinberg
（02）

Consistency relation

Existence of const．sol（WAM）

$$
\frac{\dot{\zeta}^{(\mathrm{L})}}{H}=\underline{\begin{array}{c}
\text { long } \\
\text { isocurvature }
\end{array}}=\underline{\mathcal{J}_{\mathrm{cl}}}+\underline{\mathcal{J}_{\mathrm{IF}}}+\underset{\text { short }}{\text { modes }}+\underset{\substack{\text { eg.ultra } \\
\text { SR }}}{\mathcal{O}(\epsilon)}
$$

