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BH entropy

o kgc3

B 4RGy

* Gravity (Gy) & quantum mechanics (h) &
statistical mechanics (kg) are involved!

S = In(# of states).
Can be understood microscopically.

S = In(# of states)? Can we
understood it microscopically?

* We might be able to learn something about
quantum gravity from BH entropy.

* BH entropy is also expected to be a key to
understand information loss problem.
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BH entropy

(c=h=Gy=ky=1)

. dr?

* Schwarzschild BH ds? = —f(r)dt* + o r?dQ?
energy Eqry = Mgy fory=1-2 = 2M gy
temperature Ty, = THawking ; ok f) 1

Aawiing = om ~  4m 8mMpy

* 1Y |aw (Bardeen-Carter-Hawking 1973)
Tgy dSgy = dEgy,
dSgy = dEg,, / Tay = 8nTM;,dMg,, = d(4TM;,,2)

Sqy, = 4nM, 2 = A/4 Ky 3
* (classical) 2" law SpH = Y Ay
ASg, = 0 N

* (semi-classical) generalized 2"9 [aw (GSL)
ASio = 0, where Stot = Sgn T Smatter

* Quantum gravity probably breaks GSL @ Page time



Bekenstein bound (1981) 2

dr
| ds? = —f(r)dt? + —— + r2dQ?

<—> f(r)
D _ Kk fim)
: Tpy = 5= =
Box (size R, mass M, entropy S) 2m 4

* Near horizon behavior (r : box’s position)
f()=f'(rg)(r —ry) = 4AnTgy(r —ry)

=~ (ZﬂTBHl)Z l—]r ar' 1 jr ' r—ry
- rH\/f(r’)_\/47TTBH rH\/T'—TH_ Ty

* Box’s energy measured @ infinity E=M,f(r) =2nMTgyl

o , _ AM E
15 law with AM,, = E ASpy = BH _ _— ~ ZnMBHl
TBH TBH

AS,,. = ASgy — S ~ 2Ml — S
tot = 0) for VI = Rrequires | ¢ < 2 MR

* Total entropy

« GSL (AS




Unruh-Wald argument (1982)

Thermal atmosphere around BH causes a buoyancy force

LR AN
R

Box filled with agas (o, P, s)

* Buoyancy force

(457) mh|  |e= (apyF)

[-R/2

[+R/2
fo() = (4PF) ,

— (4P ¥)
* Work done against the buoyancy force

W, (1) = — fﬁamr—fiwﬂw

box

I+R/2

* Box’s energy measured @ |nf|n|ty

Epox = f p\/FdV
box



Unruh-Wald argument (1982)

Thermal atmosphere around BH causes a buoyancy force
o ,P,3)

Y

Box filled with a gas (p, P, s)
15t [aw with AMg, = Ebox + W,

ASpy = ——— =1+ j (p + P)/fdv
BH BH JYpox

* Total entropy =
AStOtzASBH_S [ (p‘l‘P)_S]dV
box

TBH
T : Tolman temperature

s : entropy density of gas
1
= j =[(p=Ts)— (p—T3]dV =0
box T

Gibbs-Duhem relation The thermal state
p=Ts—P minimizes p — Ts
Bekenstein bound is NOT needed for the validity of GSL!

This argument can be extended to a charged BH (Shimomura-Mukohyama 2000)
& a rotating BH (Gao-Wald 2001).




Casini’s “proof” of Bekenstein bound (2008)

* Relative entropy
S(p1lp2) = Tr(pilnpy) — Tr(pilnp,)

non-negativity of relative entropy

S(p,|p,) = 0, where equality holds iff p,= p,
(proof)

{la;)}&{|b;)} complete orthonormal sets of eigenvectors of p; & p,
p1 = Zlai)ai(ail P2 = Zlbi>bi(bi|

2
S(p1lpz) = Tr(pilnpy) — Tr(pslnpy) + Trp, — Trpy = Z|(ai|bj>| (ai Ina; —a;Inb; + b; — ai) 20

ij Q.E.D.
* Setup
"V : aspatial region on a Cauchy surface
-V : complementary set of V pv =Tr_yp
po.. a quantum state 00 = Tr_,p°
_ pY:vacuum

* Local Hamiltonian K (modular Hamiltonian in continuum theory)

oK
0 _
Py =

Tre K

_ ” — 3 H(x,y,z) =
e.g.) K= andxdyjo dz zH(x,y,z) = jd E e for V = half space



Casini’s “proof” of Bekenstein bound (2008)

* “Proof”

0 < S(pvlpy) = Tr(pylnpy) — Tr(pylnpy)
S K —In(Tre X¥) _1=Trp®

= Tr(pylnpy,) + Tr(Kpy) + ln(Tre‘K)@

N
TG
\S

Y—K —Inp?
= Tr(pylnpy) — Tr(pplnpy) + Tr(Kpy) — Tr(Kpy)

S =S(y) =S

S(py) = S(p) < Tr(Kpy) — Tr(Kp2)

S 0(1) x MR

“Q.E.D.”

* This is basically Bekenstein bound S < 2TMR

* Therefore, despite the doubt on its derivation/motivation, the bound
itself seems correct if interpreted properly!

* Perhaps we should be cautious but, at the same time, open-minded to
new ideas and conjectures!



Swam pla nd co njectu €S (0oguri-Vafa 2007, + a 2018)

* Distance conjecture

1

Lin = —57ab(6)9" 0,0 0,8"  V(¢°) = 0

A¢ : geodesic distance in the moduli space
- towers of light states with mass

m ~ e—aAqb

* Assumption | : The distance conjecture holds not only in the moduli
space with V(¢¢) = 0 but also in the field space with V(¢¢) # 0.
[This is in conflict with e.g. monodromy inflation.]

a (>0) =0(1)

* # of particle species below the cutoff of an EFT

d
N ~ n(gb)eb“b : ﬁ > () n(¢) : effective # of towers

* Ansatz : entropy of the towers of particles in accelerating universe

Stower (N, R) ~ N%t R 8., (>0) =0(1) N: # of particle species
R=1/H : AH radius



Covariant entropy bound (Bousso 1999)

S :entropyon L
S S Z A :areaof B
L L (light-sheet) : a hypersuraface generated by null geodesics that

are orthogonal to B and that have non-positive expansion

B : a spacelike 2-surface
B

* Bekenstein bound is not covariant and it assumes
constant and finite size, negligible gravity, and no negative energy.

* Bousso bound is covariant and can be applied to
gravitational collapse and FLRW universes.



Swamp land co nj @CtUres (ooguri-vafa 2007, + o 2018)

 Covariant entropy bound, conservatively applied to quasi de Sitter

then S < W/HQ

2

H MIN Mgealar >

If _Sca ~ &
H2|~ 5 HE Y

c;, (>0)=0(1)
+ the entropy ansatz withR=1/H - N ,f, H_(2_52)/51

* Assumption Il : The upper bound on N is an increasing function of the
horizon radius and is saturated for large N.

2—49

(V]

1 o1
N~ | — 00 >0, 0<o 2
(H) y 1 ’ < 02 <

* Equate the two expressions for N, considering ¢ as a time variable
2—4 2
Inn(¢) ~ —bp — 552 In H

2
dn L dH?)| B 255
— >0 > _ 1 .
do "2 dp | ™ Co, Co S if (1)&(2) hold
* If (3) does not hold then either (1) or (2) should be violated
H?2 dgb Z Co, OI ﬁ Z ci, Or 72 5 —C9




Swampland conjectures (ooguri-vafa 2007, + a 2018)

* This is the (refined) de Sitter swampland conjecture rewritten in a way that
is useful for extensions

1 d(H? H min m?
( ) 2 Co, O s z c1, or scalar 5 —col
H? dg¢ H? H?
* For a single-field slow-roll inflation with a canonical kinetic term,
Vl Vll
7> ¢ or < —c ¢ =min(co, v2¢1) ¢ =c2/3

this is what is usually known as the (refined) de Sitter conjecture.

* The de Sitter conjecture would be a serious challenge to the standard single-
field slow-roll inflation (or to string theory).

* On the other hand, our universe may be fine-tuned. An “O(1)” number
may be as small as 1022% in our universe (the c.c. problem).

* Anyway, | think it is important/interesting to push forward the idea as far as
we can go.



EXte nSiOI'I tO D BI SCa Ia r (arXiv:1905.10950 w/ Shuntaro Mizuno, Shi Pi and Yun-Long Zhang)

* String theory allows for not only canonical scalar but also DBI scalar
(representing the position of a D-brane in extra-dimensions)

B =L S
T(p)

* Can we extend the swampland conjectures to a DBI scalar and, more
generally, to a k-essence type scalar with Lagrangian P( X, @) ?

1
- U(s@)} X = —59“”%@8#

Ippr = /d4$\/—_9 {T(‘P)

* There seems at least three options:

A) Expand the action w.rt. Xas P(X,p) = Py(p) + Pi(p) X + O(X?)
and then make the following identification

V(p) & —Po(p), do < /Pi(p)dy

B) Introduce perturbation as p = o (t) (¢, T)
calculate the quadratic actionas  P(X,¢) > _’CHW — —ICL(S* 070

and then make the identification

C) Make the identification do < VK. dy KL= P,(;(?

* None of the three options is convincing...



2-field model with hyperbolic field space

* Distance conjecture - negatively curved moduli/field space
simplest : 2d hyperbolic field space

Yab()dpde” = dx* + e*Xdp?
* Simple 2-field model

1 1
I = /d%\/—g {§g“”8uxc'9,,x — 562[’)"9“”8%08,,90 — T'(p) [cosh(25x) — 1] — U((p)}
* y-eom for large [32 N
1 - X
—Bx—+ 28e?PX X — 28T () sinh(28x) =0 X =~ 25 In-y L= 70

1 LV

AT
¥, has a large mass 2V |28x=n = 762 ¥ can be integrated out

* Effective single-field action

I = /d4ﬂ3\/—_9 {T(W)

This is a DBI action!

c.f. This is a special case of the gelaton (Tolley & Wyman 2010; Edler &
Joyce & Khoury & Tolley 2015).



2-field model with hyperbolic field space

* The 2-field model and the single-field DBl model agree very well!

o(t)

o(t)

-20f

-25}

_30': | 1 1 1 ]
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.....................

Ule)=1401¢% T(p) =¢*/N, f=20and A =05
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Y(t) or
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O,
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* For the 2-field model we know how to use the swampland conjecture.

* Perhaps we can obtain the swampland conjecture for the single-field
DBI model by taking 32 = oo limit



2-field model with hyperbolic field space
* Geodesic distance in the field space for large 32

,.°y2 2
dp = \/%b(cbc)dcbadcbb = \/dx2 + e2Pxdp? = [W + ’Y] dp >~ /ydyp
Thus the fist condition in the dS conjecture is
1 d(H?) 1 | 1 d(H?)
H? dg V7| H? dy
. Squared masses of scalar perturbation modes for large BZ
2
1 = [ dta®> |[YTKY +YTMY + YT MTY YT ( /cv— -~ v) Y
Y

— 0O ¢ - 1
o = "(t) dynamical VO~ L0 0 =

(0) 20 (¢®)2 — 0
x = xOt) +Qx(t, 7) 1= 75m Y

ZCO

ZCO

gudzrde’ = —[1+2®(t,Z))dt* + 2N (t)a(t)O(B(t, T)dtdx’ + a(t)*dz'dx?
det [mle — 2imM — V] =0 1 (v — 1)
mi = 4T(p)yB* + O(8") V=30 + o T

m? = Q+O0(F7%) +O(Mp") -

(V2T +2y(T" = U") - 3T"]"
Thus the last condition in the dS conjecture is

: 2
T T ) ar < _¢ (2 < _¢
72 ~ 2 gz ~ 2




De Sitter swampland conjecture for a DBI scalar
(arXiv:1905.10950 w/ Shuntaro Mizuno, Shi Pi and Yun-Long Zhang)

* For the 2-field system (@, y ) in f? =2 oo limit

H 2

1 d(H2) min mscalar
ﬁ de ZJ Co or ﬁ 2 C1, or H2 5 —C2
1 |1 d(H? H 0
2 ( ) 2607 or T79 zcla or _25_62
V| H? dy H H
1 (v —1)2 2
QO=—=-U"+~~1—217"— 2T 4 24(T" = U") — 37"
73 + 274 16’)/4T [f}/ + 7( ) ]

* In 32 =2 oo limit, the 2-field model is equivalent to the single-field DBI
and thus the above condition may be considered as I ( .
de Sitter swampland conjecture for a DBI scalar - l :

2X e | I
ID]31:/d4:r; —gsT(p)|—4/1—=——=+1| —Ulp | '
V=34 T(%) o ()

* This would ensure the equivalence between the de Sitter swampland
conjectures in the 2-field model and the single-field DBI model

* The limity =2 1 with ¢ & Xand (In T)’ & (In T)”” kept finite recovers
canonicalone | 1 g(g2) H [

02 dy R O E e

Z Co, Or




Extension to general P(X, o)

* Equivalent Lagrangian

L =P(x,p) + Ax —X)= POx,¢) + Py (x; 9)(X = x)
* Adding a small kinetic term of

L=L+ Z?g"d,x0,x/2

» Geodesic distance in the field space
Z2>0

dp = /Py(x,¢) + Z2(dx/dp)?de = do = \/Px(X,p)dy

* Scalar perturbations in the k=0 sector contain
two fast modes ~ e="*! with m? = O(Z72) > 0

two slow modes ~ e=™-! with m2 = O(Z")

* De Sitter swampland conjecture for P( X, ¢ )
1 1 d(H?) H m?
VPx(X,p) | H? dp e H®

> e

~J )

or




Summary

* Analogy between thermodynamics & properties of BH
- BHentropy S;,=A,/4 (A, horizon area)

* Bekenstein bound was “derived” by a gedanken experiment
S < 2nMR

* Bekenstein’s “derivation” was refuted by Unruh & Wald. Nonetheless the
bound seems correct (if interpreted properly) and was “proven” by Casini.

* The distance conjecture + the covariant entropy bound motivate the de
Sitter swampland conjecture under a number of speculations. Some of the
speculations may be doubtful but the conjecture itself may be correct (as in
the case of Bekenstein bound).

e Note that in our universe “O(1)” numbers may be small (could be as small as
10-129 35 in the case of c.c.).

* The conjecture was formulated for scalars with linear kinetic terms but string
theory allows for DBI scalars with nonlinear kinetic terms.

* We therefore extended the de Sitter conjecture to a DBI scalar by
considering a model of two scalars with a hyperbolic field space that reduces
to a single-field DBI and applying the conjecture to the 2-field model.

* We also considered extension to a general P( X, @ ).





